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For systems of massive particles with arbitrary spins we define complete sets of invariant c.m. helicity
amplitudes. W'e construct the associated partial-wave amplitudes and give a detailed derivation of the
constraint equations which they must satisfy if scattering processes are to be invariant under space-time
translations and proper homogeneous Lorentz transformations. We then indicate how these amplitudes
are related to those of Jacob and Wick and Feldman and Matthews. In appendixes we col!ect together
the definitions and transformation properties of various two-particle states and scattering amplitudes,
and derive some useful kinematical transformation formulas.

I. INTRODUCTION

We have shown elsewhere' that for scattering
systems involving sets of r particles (k) it is pos-
sible to define complete sets of invariant scat-
tering amplitudes which are parametrized by the
eigenvalues ~(k~ of spin-component observables'
8(»'(» provided r ~3. The new observables ~(k) &k)

are defined by'

J1

S(a) (~) =In(p())) ~q(a) )~ W(~) 'q(~ ), (l)

where q(» is a four-vector function of the single-
particle momenta p(» for k = 1, 2, . . . , r, and 8'(k )

is the Pauli-Lubanski spin of the particle (k),

(k) p 2 p P(k)p (k) p~ (2)

For a two-particle system these Poincare'-invariant
observables coincide up to a sign with the c.m.
helicity4 observables of Feldman and Matthews,

(k )
— (k)

(p(2) ~p())))~ ()') ~(&)

where the total momentum observable P,» is
defined by

P [» p(i) +P(2) (4)

In this paper we shall construct various types of

two-particle c.m. helicity amplitudes. We shall
investigate some of their properties and shall show
how they are related to the helicity amplitudes of
Jacob and W'ick' and c.m. helicity amplitudes of
Feldman and Matthews. '' In order to follow our
notation we suggest the reader refer to Appendix
A of Ref. 1 and to Appendix A of this paper, where,
for convenience, we have listed the definitions and

properties of several two-particle states.
In Sec. II we construct a complete set of c.m.

helicity scattering amplitudes which, apart from
a momentum-independent phase factor, coincide
in the c.m. frame with the helicity amplitudes of

Jacob and Wick. ' These amplitudes, contrary
to the suggestion of Feldman and Matthews, ' are
not Poincare-invariant. They are functions of
single-particle momenta which change under
constant velocity transformations of the reference
frame. It is possible to define a complete set of
c.m. helicity amplitudes which are invariant and
coincide with Jacob-Wick-type amplitudes in that
special c.m. frame which is conventionally chosen
for the Reggeization of partial-wave amplitudes.
We construct some explicitly in Sec. III and relate
them to the conventional frame-dependent scat-
tering amplitudes of field theory. We then define
the associated partial-wave amplitudes and exam-
ine some of their properties.

In Sec. IV we discuss the relation between our
amplitudes and those of other authors, ' ' and in
Sec. V we summarize the results obtained in Secs.
II—IV.

In Appendixes A and B we collect together the
definitions and properties of various two-particle
states and scattering amplitudes, and in Appendix
C we derive some kinematical transformation
formulas.

II. CENTER-OF-MASS HELICITY AMPLITUDES

We define a set of c.m. helicity states which co-
incide with Jacob-Wick-type helicity states when
the total three-momentum p is zero. We then
show explicitly that the associated scattering
amplitudes are not invariant.

A. Center-of-mass helicity states

We have shown elsewhere' that two-particle
c.m. helicity states

~ p(, ), p(» . )(«), )((» ], may
be defined in terms of two-particle standard rest
states

~ 0, 0:)((»,A(, )) by E(l. (Al),
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P(l) t P(2) (1) & (2) ]+
t&tt

=+(1)+(p(1)tp} (2)+(p(2)»)I 0 0:"(1) (2) ) t

where P denotes the eigenvalue of the total mo-
mentum observable P &», Eq. (4). These states
are parametrized by the eigenvalues p&, ), p(»,
~~, ), and ~(, ) of observables P~, ), P~, ), &~, ) & &,
and S&,)2&», Eq. (3), respectively. Like the
ordinary helicity states I p(, ), p(» ..&&(», &&(2)j, of
Appendix A they are not well defined when the c.m.
momentum P(» (A9} lies in the 3-direction. For
this reason we prefer to consider a different set
of c.m. helicity states I p&», p&».. &&(», &(»]„
which, like the Jacob-Wick-type helicity states
I p&, ), p(, ) . &&(, ), &&(2) ] + are well defined unless
momentum p(y) lies in the negative 3-direction,

I P(1) t P(2) (1) t (2) ] 1

=If(,),(p(, ),p)H(2) (p(, ),p)(-1)'&2) &»

x
I 0, 0; A (,), —&(( ) ) (6)

The new states are related to the old ones by a
phase factor which depends upon the c.m. mo-
mentum P(, ) (A9),

Ip(1)&P(2) (1)& (2)]2

Ps

P(1) )& P(2) )& P(Y) && ~(2) )&

tt&~ A

!&IV (y) PV + (2) PV + {y)PV + (2)]IV +

(9)

(10)

and the associated homogeneous Lorentz transfor-
mation and translation operators A and a are given
by

A = It (&2, P, r) Z (6)ft (0, P', y'),
a =e"''

(11)

(12)

For scattering theories which are invariant under
space-time translations, rotations, and constant-
velocity transformations, the scattering operator
S must satisfy the equations

y [
(P(1) &P(2) ' Q) & (2) I P(1) &P(2) (1) & (2) ]

=,[p(r), p(-, ) .~&&), ~(g I
s

I p(, ), p(. ) ..&(,), &(, ) ] '
(8)

By construction they must coincide with Jacob-
Wick-type helicity amplitudes

S &. P(1)&p(2) . (1) & (2)& p(l) tp(2). (1)& (2)}

in the c.m. frame.
The generators P of space-time translations

a and generators ~» of homogeneous Lorentz
transformations A of the scattering system as a
whole are of the form

=exp!: —»~(, ) e(P(, ) }]I 0(,), p(, ) .~(, ), ~(, ) ].,
(7)

»tt A &&t.

aSa '=S,
ASA-'=S .

(13)

(14)
and coincide in the c.m. frame with the Jacob-
Wick-type helicity states I p(, ), p&» .A(, ), &&(»j, .
This is possible because, by definition, the single-
particle helicities and c.m. helicities coincide
in the c.m. frame.

B. Frame-dependent center-of-mass helicity amplitudes

We sandwich a scattering operator S between
complete sets of initial-particle states Ip(, &, p(, ) .
&&(,), &&(» ], and final-particle states

I p(~), p(-, ) .
&&(~), &(2) ], (6) to obtain our c.m. helicity ampli-
tudes,

It then follows from Eq. (13}and the transforma-
tion property of our two-particle states under
translations Eq. (A13) that the scattering ampli-
tudes

y f'

& P(1) & P(2) ' (T) & (2) ) P(1) & P(2) ' (I ) t (2) ]

vanish unless energy and momentum are con-
served. We may thus relate them to a set of
reduced amplitudes,

P(l) & P(2) ' (I) & (2) P(1) t P(2) (1) t (2) ] &

which are functions of only eight independent mo-
mentum components,

ar»S (p(» pe):~rl) ~(2)I p&» p(2):~(» "(2»=6 (P -&}S &pn»p(2):~(~) ~(»!p(» p(2):~(» ~(2)]

where momenta p and p are defined by Eqs. (83). Under the action of homogeneous Lorentz transforma-
tions A the c.m. helicity states !P&,), p(2) . &&(,), &1(2)], satisfy Eq. (A14). The Lorentz invariance of the

scattering operator S described by Eq. (14) then implies that the c.m. helicity amplitudes

r~r « I

&P(1) &P(0) &t) t (2)) P(1) &P(2) (1) & (2) ]

must satisfy the constraint equation

~p(T) p(2) ' (I) (2) I p(1) p(2) (1) (2) ] PI. AT) ( (I) 8) } 4(1) ( (1) (2) )]
)al «g I «f

&P(&) & P(2) ' (T) t (5) ( P(1) & P(2) ' (1) & (2) ] (16)
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where the transformed momenta are defined by
Eq. (A15) and the phases Q» are given by

~A A A

exp( 2-J2(t}&2)) =H, (L(A:p) p(») .

Since these frame-dependent phases are generally
nonzero the c.m. helicity amplitudes

& P(1 j 1 P(2) ' (1) 7 (2) ( P(1) 7 P(2) ' (1}t (2)

cannot be functions of Poincare scalars alone.
It is generally the case that if scattering ampli-

tudes are defined to be matrix elements of a scat-
tering operator S between independent two-particle
c.m. helicity states, they will not be invariant.
Each amplitude will take the form of a Poincare
scalar function multiplied by a frame-dependent
phase. In the case which we have considered we
used the two independent four-momenta P(, ] and

P(, ] to define the c.m. helicity state operators
H, (P&,},P) and H (P&»,P). The Lorentz frames
of reference defined by these operators are
consequently only defined up to a rotation about
a 3-axis and the state phases become frame-
dependent.

We shall show in Sec. III that, if one allows the
definitions of initial-particle states to involve
final-particle momenta and vice versa, one may
then construct sets of invariant two-particle c.m.
helicity amplitudes.

III. INVARIANT CENTER-OF -MASS HELICITY

AMPLITUDES

The S matrix associated with the scattering of
two particles (1) and (2) into two particles (1) and

(2) may be a function of four single-particle mo-
menta, three of which are usually linearly in-
dependent. Let us define a four-vector f by

P(1) +P(2) (18)

Away from the physical region boundary this
vector will be linearly independent of the total
four-momentum P and linearly independent of
each single-particle momentum. We may then
associate with each particle three linearly in-
dependent four-momenta and can use the multi-
particle techniques developed elsewhere' to con-
struct two-particle states with associated invariant
scattering amplitudes.

A. Center-of-mass helicity states

We define our c.m. helicity states! p&, },p(» .
f.}(,(), }(&,)], in terms of the standard rest states
! 0, t}:}((,), }(&,)) of Eq. (A11) by

! p(1)1p(2) f (1) (2)]&

=H(, ),(p(, ), p, f)H(, ) (p(.), p, f)
X(-1)'(2) (2)! 0, 0:&(,), —}((2)),

(19}

where the homogeneous Lorentz transformation
operators H, (P(,},P,f) and H (P&,},P,f) are given
in Appendix A. It should be noted that we have
chosen the operators H, (p;q, f) and H (p;q, f)e~~&
to replace the multiparticle state operators
L(p; q, f) of Eq. (A6) which have the same 4&&4

matrix representation as L(p;q, f) because they
are closely related to the operators ff, (P; q) and
H (P;q)e" ~2 in terms of which we defined the
frame-dependent c.m. helicity states (6).

We may use Eqs. (A4} and (A5) to rewrite Eq.
(19) in the form

! p(1).p(.):f (1) '(.)].=L(.)(p'p(. ) f@&1)(P()}Z(.)(P(.))(-'} ") &2}!o o (1) -'(.)) (20)

where the c.m. momenta P&» and P&, } are defined by Eq. (A9). As in the multiparticle case' we now modify
the overall signs of initial and final two-particle states so that they have similar Lorentz transformation
properties,

(21)

I p(-, ), p(;)'f: }((-,), ) (2)],(2)f. =[i(L '(p; p(2), f):p; p(-, ),f)]' &
)"& )

I p(-, ), p(-, ).f:}((-,), &(2)], , (22)

where the sign function L(L '(p; p&», f):p; p&2 f)
is given by Eq. (A26). These c.m. helicity states
have been so constructed that they coincide with
the frame-dependent c.m. helicity states
I p(1) p(2)' (1) ~(2)I a"d I p(1) p(2)' (1) ~(2)j
with the helicity states I p&», p(». }(«},)1&»), and

I p&-, ), p&2). )(&», A&»), in that c.m. frame in which
the three-vector p(g)xp(]) lies in the positive 2-di-

rection and momentum p(y) lies in the positive
S-direction, when

L(P; P(.),f) =f . (23)

They satisfy the space-time translation equation
(A13) and have the homogeneous Lorentz transfor-
mation properties (A14),
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and

Al P(i) P(. ) f.&{{i& ~(2&]2(,)y. =I I(A: pr p{2&tf)]"'"' "' I P(i)r P(2)r f:&i(i)t &({2)]2{2&l~ (24)

(25)I P(l) P(» f (1) (2)]2&2&» I ( 'p»(2) f I P(i) P(2)'f ' r» (2)]2{2)~1

where the transformed momenta are given by Eq. (A15) and the sign function l(A: p; p&», f) is defined by
Eq. (A26).

B. Center-of-mass helicity amplitudes

We define a set of two-particle c.m. helicity amplitudes

LP(l)t P(2)' ~{1)t~(2& P(1)t P(2) ' ~(1 It ~(2)]

in terms of the c.m. helicity states (21), (22):

&(2)f&I'

Lp(l)t p(2) ~(l)t ~(2)I P{i)r P(2) ~(i» &I(2)1 2iiL-P(l)t p(2):I &{(1)r~(2)l Sl P(i)r P(2):f:~(i)t &{(2)]2
(2) (2)

(26)

By construction they coincide in the special frame
defined by Eq. (25) with the frame-dependent c.m.
helicity amplitudes

S I. P&i&, P&. &
~&», ~&2&I P&i&, P&. ) ~&i&, ~&2&I

of Eq. (8) and with the Jacob-Wick-type helicity
amplitudes

~$f»
Lp{l)r P(2}' ~(1)r ~(2&l p(l)t P(2)' (l)r (2) ~

For theories which are invariant under space-time
translations the translation property (A13) of the
states (21) and (22) implies that S-matrix elements
vanish unless energy and momentum are con-
served. We may thus introduce a set of reduced
amplitudes

p far»» i »
(2)l P(l) P(2): ~(» ~(2&1

which are functions of only eight independent mo-
mentum components,

ip&i& p&2)t: &l(i&t &1(2)IP&i&tp(2&: &1(i)t &l(2)]=5 'ip-p)S fp(i&t P(2): &{{i)t~&2)I P&i»P(2&:&1&1&t &1&2&].
& 2)«f (27)

We may also use the homogeneous I.orentz transformation properties (24) and (25) of the c.m. helicity
states (21) and (2) and the invariance of the scattering operator S described by Eq. (14) to show that the

reduced amplitudes satisfy a trivial constraint equation,

[p(i)r p(2) (;)r (2)'I p&, ), p&, ).'~(i&t &I(2)]-I.I(A»P(2)tf)l

yc'iP(2)f&r Q»Q . I
»t

Lp(1)t P(2) ~(1&r ~(2)l P(1)t P(2) ~{1)r ~(2 'I] t (28)

where the transformed momenta are given by Eq. (A15). Consider first of all the effect of a transformation
A of the form exp(21{iJ,). Equation (28) then takes the form

[P(1)r P(2) ~{1&t ~{2)I p(l&t P(2&' ~(1)r ~{2)]

= ( —1) (i) (2)+ (1 &+ (2) S (2) [p(l ), p(2&.
' X(l), r{{2)Ip(l), p(2&.

'
&{(lit X(2)] r

and if $-matrix elements are not to vanish, the sum of all individual particle spins must be an integer.
In this case for an arbitrary transformation A Eq. (28) becomes a spin-independent constraint equation,

IP f &r» c fP(2)f~f»t
LP(1)t P(2) ~(1)r ~(2)l P(1'lt P(2) ~(1 Ir ~ (2)] LP(l)r P(2)' ~(1 It ~{2)l P(l )r P(2) ~ ~(1&t ~(2)] . (30)

The amplitudes

P f 1
LP(1)r P(2) ~(1}r ~(2 )I P(l )r P(2 & ~(l )t ~(2)]

are evidently functions of Poincare scalars alone.
In order to see this explicitly one need only re-
place the transformation A of Eq. (30) by
I '(p; p&, &,f) According to Eq. (A1.5), momenta

p(», p(», p(, ], and p(2] will then be replaced by

P(», P&-, &, P&», and P&» of Eq. (A10), and it fol-
lows from the discussion in Appendix C of Ref. 1
that each momentum component will be a function
of scalar momentum products alone.

We have thus constructed explicitly a set of two-
particle amplitudes which are parametrized by the
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eigenvalues of Poincard -invariant observables
alone. With the aid of the defining Eqs. (26} and
(2 t) and those of the associated c.m. helicity
states (19), (21), and (22), we may relate these
invariant amplitudes to any of the frame-depen-
dent two-particle amplitudes listed later in Table

III. In particular, in the case of standard ampli-
tudes

~I
~ p(1). p(2) (1)r (2)~ p(1)r p(2) ~(1)r ~(2))

we have the invariant amplitude expansion

~ P(1)& P(2)' (1)r (2) P(1)r P(2)' (1)' (2))

p

(1) (2 ') (1) (2)

D), 1 (H+ (p(1),p, f)L,(p(—,)))D'{,') (H '(p(,-), p, f)L(p(,-)))

xD, ' (H+'(P{», P, f)L(P(»))D ",
" (H '(P{2},P, f)L(P(»))

(1 ) (1 ) (2 ) (2)

x[1(L '(p; p{.},f):p; p(2), f)j"(1)"{»}(-1){»"(» '{»-'{-.}

pf 1r~ ~ p p )
~ ~ p p

LP{1)rP(2)' ~(1}& ~(2)l P(1)& P(2) ~ ~(1)& ~(2 j] (31)

Since the expansion coefficients are unitary we
can invert this equation directly and express each
invariant amplitude as a sum of standard ampli-
tudes with frame-dependent coefficients.

Although two-particle q-spin operators 8{»{"(1)
are uniquely determined up to a sign to coincide
with the Feldman-Matthews c.m. helicity operators
of Eq. (3), invariant two-particle helicity ampli-
tudes are not unique. They may differ by Poincare
scalar phases which are functions of the four-
vector f. We have examined here the case where

UP 0P (1) ~ P (2 ) )&P (2 ) o r

in which case the associated amplitudes

p
tp(1)r P{2)~ ~(1}&){(2)l P(1)r P(2) '~(1)& p. (2)]

are related to the amplitudes

"P(1)' P(2)' (1)' (2)' (1)' (2)' (1)' (2}]

(32)

the vector f is of the form (18). We could alter-
natively have taken it to be given by

tP(1) P(» (1) (2}}P{1}P(2) (»

=exp[-i2){()((1)+ x(2) —){(1)—)1(2))]S' ( ) [p(1), p(2)'. L(1)r x(2)( p(1), p(2}.'A(, ), A(2)]. (33)

The new amplitudes

pP
Lp(1)r P(2) ~ ~(1)& ~(2)l P(1)r P(2) ~(1)& ~(2}]

evidently coincide with the helicity amplitudes

l

LP(1}&P(2) ~(1)r ~(2)) P(1)r P{2)' ~(1)& ~(2))

cal region boundary when' A(p{», p(», p{»)x 0. On
the boundary there is a phase ambiguity and at
threshold, like the frame-dependent c.m. helicity
amplitudes, they are not defined at all. This is
not surprising because at threshold the matrix
elements of c.m. helicity operators between mo-
mentum eigenstates are not all well defined. "

in that c.m. frame in which the vector p(j )
+ p(1)

lies in the positive 1-direction and vector p(» lies
along the positive 3-axis, i.e. ,

C. Partial- wave decomposition of two-particle

amplitudes

L(p; p(2), g) =I . (34}

Invariant two-particle c.m. helicity amplitudes
are only well defined by Eq. (26) within the physi-

We first of all introduce amplitudes of type II
which are matrix elements of the scattering opera-
tor between two-particle states defined by a rela-
tion analogous to Eq. (A19),
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S '[-':p;4', 8: ~(-„, )"(,—)i:p; $, 8: &'(, ), )"(,)]=~ z, [s:P; 4, 8: 0: ~(»~(z)i Sls:p;0, 8: (:z(, ), ) (,&]~{2} 1 & 2} P{2}fk

The space-time translation properties (13) of the scattering operator S and of these type-II states, (A21},
then enable us to define a set of reduced amplitudes

S '(»"[y, 8: &((-„, & „-)i s, pi y, 8:~(», ~(»],

S'(2)"[s:p; 4&, 8: &((-„, X,„i s:p; 4), 8: &((, ), X(, )]= 6 (t&
-p) S' (2) '[4), 8: X(-,), A(-, )i S, p; (p, 8: &(„), A(2)] . (36)

It follows from Eq. (A23}, which relates type-I and type-II two-particle c.m. helicity states, that the cor-
responding amplitudes satisfy the equation

[(p, 8:A(-), )((-) i s, p i p, 8:X( ), X( )] = 2ss [A(s; 1, 2)n(s; I, 2)]S' [p(-&), p(-)'.X(-), X(-) i p( ), p( ).)(( ),X( )],
(3't)

which suggests that type-II amplitudes are invariant. Indeed, one may use the homogeneous Lorentz trans-
formation properties (A25) of the type-II states of (A23) to show directly that the reduced type-II ampli-
tudes are independent of the total three-momentum p and are functions of a single angle 0™,

[4), 8:)((I),~(2) I
s p I p 8:&(,), )&(,)] =S' (') [0,8: &((-,), X(;)i s, ()

i 0, 0X(,&, )((2)]

z P{2}f&=S [X(-,), )((-) is, 6 i)&.(,), )(( )]. (38)

We find

A(0, 8, 0) = I, '(p;p(, ),p(-, ) )I-(p;p(-, ),p(,)), (38}

and explicit expressions for the angle 8 as a func-
tion of momentum components are given in Ap-
pendix C.

Like type-I amplitudes, the reduced type-II am-
plitudes

S [A(i)& A(2) i
s, e i A(y) y X(p)]

are well defined away from the physical region
boundary where 810, n.

We now sandwich the scattering operator S be-
tween the c.m. helicity states of Eq. (A27) to ob-
tain a set of type-III scattering amplitudes,

S[sjoppXX($)$)((2) i Slf (7p f X A(\))X(2)]

=[s, p,oX:)(I),X((-) i
S

i s, cr:p, X:X(,), I( )].
(40)

The translation properties (A28) of the type-III
states of Eq. (A2't) and translational invariance
(13) of the scattering operator S enable us to de-
fine a reduced S matrix
S'[:X:A(I), (2) i s, p i

o:)(:X( ), &((~)]:

S[s, (x:p, X:X(I), A (2) i s, 0':p, )(:X( &&, X(2) ]

xS'[o".X:X(-,), &((-,) i s, p i o:P. :A(,), )&(,)]. (41)

The Lorentz transformation properties Eq. (A29}
of the states defined by Eq. (A27} and Lorentz in-
variance of the scattering operator S described by
Eq. (14) then enable us to show that our reduced
amplitudes satisfy the constraint equation

S'[rr:) (-,), ) (-.)Is, p lo:):)((.), ) (2)]=+ D~ -.«(Ap)» «(Ap)»'[o:~':) (-), &(,-)lsp lo:) ')(,), ) (.)]
V )).'

(42)

Let us first of all take the Lorentz transformation A to be of the form exp(2mi J,). We then have the rela-
tion

S '[o, A. :X(I), X(2) i s, p i o:X:A ( i), X(2)]= ( —1) + S '[o, X:X(i), A (2) i s, p i
o:X:)((i), X(2)], (43)

and our amplitudes must vanish unless the sum of initial and final spins is an integer. If we now take A to
be of the form I(p')L '(p) for any momentum p' we find

S [o X . )((~), )((2) i s, p i o, A. :X(~), )(( )]= S [o,X:)(( ), )((2) i s, p i o, )(:X(~), )((2)] . (44 )
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The amplitudes must be independent of the total three-momentum p. Finally, if we take the Lorentz trans-
formation A to be L(p)R((2, p, y)L '(p) and integrate over the angles n, &3, and y we obtain the spin-depen-
dent constraint equation

S'[cr, XA(-,&, &I(,-& ~
s, p ~ot&(:X(,&, &((2&] =6- 6- g S'[o, X'.&&(-,&, &((2& ~

s, p ~(TyA. ':X(,), &((2)]. (45)

It follows that the amplitudes of Eq. (41) are diag-
onal in parameters o and A. and independent of the
value of the spin component X. These observations
enable us to define new reduced amplitudes of type
111 S'[&((-, &, &(2—

&
~ s, o

~ &1(,&, &((2&], which are explicitly
functions of only six parameters,

where

d2 2 (6}= Dq 2(R(0, 6, 0))

and

= A( g) A. (2) P = A( I ) A.(2) ~

(48)

(49)
8' [g; x: &((-,), A(2& ~ s, p ~

o:&1: &1(,), A(2) ]
S'[A.(—, , A(

—
i s, oi &((, , X( ) . (46)

Such amplitudes are well defined throughout the

physical region and on the physical region bound-

ary away from threshold, whereas the type-I and
type-II amplitudes defined by Eqs. (26) and (35)
were only well defined within the physical region.

We may use Eq. (A27) relating type-III states to

type-II states to expand type-III amplitudes in a
series of type-II amplitudes

S"(»'"[~(1)1~(2) ~s 6~~(1) ~(2&]

= g [ 2o + I]d—„„(6)S'[&((—,», ((2) I s, ((I ~(», &1(„],
6e (0, v} (47)

We see that amplitudes of type III are simply par-
tial-wave amplitudes associated with the invariant
amplitudes of types I and II. One may now use
Eq. (37) relating amplitudes of types I and II, and
equations of the type (B6) relating various two-
particle scattering amplitudes to obtain a, partial-
wave decomposition of any two-particle S matrix
listed in Table V. In particular the Jacob-Wick-
type belie ity amplitudes

cf&j
(P(1)t P(2) (1)& (2)I P(l) ~ p(2) ' (1) ~ ~(2)j

satisfy the equation

Ip(1) 1 P(2)' ~(1) r (2) I P(1) 1 P(2) ' (1) s (2)[

=2ss '[n(s; 1, 2)&(s;I, 2)]

(I.) (2) (I.) (2)

[2o+I][I(L '(p; P(., f):f2; P(-),f)]"

x D, ' (H, (L '(p}:P(-,&))D'( ) (H (L '(P):P(,-&))D'& & (H, (L '(f2):I)(,&))() () ' ' ' v-)- ' ' v() ()(2) (2)
rh A )-@-() —-x —)]x D ( ) (H (L '(P):&()(2&))e ' (1) (1) (2&' (1)' (» (2) "d2„(6)s'[&'(-„,&(I»~s, o~&I», &I2)],

(2) (2)

(50)

where the phases Q, &
and Q(-,

&

are given by

R3((()(,))=R3(R, '(P(, ))P(,))—
and

=R,(R, '(P(„))F)

Jh

3(Q(1)} 3( + (P(1))P(2))

=R3(R, '(P(„))F)—(52)

In our special c.m. frame (23) the expansion takes
the familiar Regge-theory form

*
I (1)1 (2) ~ ~(1) ~(2)~P(1) P(2): (1) ~ (2)[

=2sv '[n, (s; 1, 2)n. (s, 1, 2)]

x Q [2g+1]d—„'„(6)

x S'[A( —
&, A(-&

~ s, o~ A( ), A(2)], (53)

where the starred momenta are defined by Eq.
(A10). Indeed we may take advantage of this fact
to rewrite Eq. (50) in the simpler form
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pf ~
Lp(1) & p(2) ' (1)) (2) p(1) I p(2) ' (1) r (2)]

= 2s)) '[A(s; 1, 2)S(s; 1, 2)]

{1) (2) (&) {~)

[2o+1]D'(') (H, (A: p(, )))D' ') (H (A: p(2)))
~{I)~{1) {2) {2)

xD &,
" (H, (A:P(, )))D &') (H (A: p(, )))'{1)'{1) ' ' ) {2)1{2)

X &i~ ~ (O)S [A(i) ~ A(2)! s) o!A(i)q A(2) ] q (54)

where A=f. '(P; P&,),f). We should like to stress
the point that the helicity amplitude expansion
[Eq. (53)J is only valid in the special Lorentz
frame defined by Eq. (23), whereas the invariant
c.m. helicity amplitude expansion [Eq. (47)) is
valid in all Lorentz frames.

One may use the orthogonality and completeness
properties of rotation group [SU(2)] representation
functions or the defining equation (A22) of type-III
states to express the partial-wave amplitudes
S'[A(-„,A„-&!s, o!A&», A„,]as integrals over type-II
invariant amplitudes S'(2) [A&-, ), A&,-&I s,el A&», A(, )]:

S [A(g) A(2 ) ! S (7~ A( ~) A( 2)]

d-:~(O)S"' '*[A()) A(2)!s O!A( ) A(.)]

(

set of helicity amplitudes

(e(('A( —,
7 (2)!S(s )!00A(, )A(2)&

in terms of a set of partial-wave helicity ampli-
tudes

(A(i) A(2)! S (s" )IA&», A(»&

in the c.m. frame. One can show that in the spec-
ial frame defined by Eq. (23) their amplitudes are
related to the c.m. helicity amplitudes of Eq. (47)
by

(80A(-, ), A(,—)!S(s'i')! 00A(, ), A(, ) &

=4v '(-1)'&.) "&» '(.)-'&2)'

xS' &" '[A&i~ A( ) I s, Ol A( ) A(2) ], (56)

&sinOd8 . (55)
( (i) (2)!S (' )!A&i) (.)&

= (-1) '(2) (&) (2) (2)
The integrand is not wel. l defined when the angle
8 is zero or v. However, since this constitutes
a set of points of measure zero the integral is un-
affected and our partial-wave amplitudes are well
defined away from threshold. In another paper9
we shall see that it is possible to construct a com-
plete set of c.m. orbital angular momentum par-
tial-wave amplitudes which, unlike these c.m.
helicity amplitudes, are well defined everywhere
on the physical-region boundary.

IV. COMPARISON WITH CONVENTIONAL

AMPLITUDES

The first major step in constructing an equation
of the form (47) was taken by Jacob and Wick, '
who determined the partial-wave expansion of a

xS'[A& —,), A(,—)!s, (x! A&, &, A(, &] . (57)

However, since they only define helicity states
and partial-wave helicity states in the c.m. frame,
their helicity amplitudes and partial-wave helicity
amplitudes are only defined in the c.m. frame.

In his paper on three-particle states Wick' de-
fines precisely a set of helicity states
!p&»A&, ),' p&» A. &»&, which are parametrized by
the eigenvalues A{» and A{,] of the helicity oper-
ators S{,] and S{,], and a set of partial-wave
c.m. helicify states IP; ((A: A«), A&»), which are
parametrized by the eigenvalues A. , ~{,], and ~{»
of the helicity operator 3 and the c.m. Aelicity op-
erators S&, )~(» and R(»~(2& defined by Eq. (3), re-
spectively. His helicity states are related to those
of Appendix A by

!
Clp(, ), p(, ) . A(, ), A(, )j, e(p(, )), (e(,p)) g ov

P(~) A(~):P(.) A(. ) &=
~. &lp(~), p(, )'. (,), (,)]', , p=(&, e(p(, ))=0, etc. , (58)

where

g = (-1)"'& )'"&i)"&2)'"(2)"
and

(59)

to the standard type-III partial-wave states of Eq.
(A27) by

!P; ()A: A(, ), A(~) &

e (p) = tnt. pt. [(( (p)/~] . (60)

His partial-wave c.m. helicity states are related
=(-1)"'"Q D)',, A(R(p))! s, o:p, A.':A(, ), A(, )] .

(61)
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We see that the corresponding Wick partial-wave
expansion would be an expansion of helicity ampli-
tudes in terms of partial-wave c.m. heIicity am-
plitudes.

Feldman and Matthews have made the suggestion
that a frame-independent equation of the form (47)
could be obtained if one replaced the helicity am-
plitudes which coincide with Jacob-Wick helicity
amplitudes in the c.m. frame. Although their
Wick-type partial-wave amplitudes would be in-
variant, we have shown explicitly in Sec. II that
the c.m. helicity amplitudes would be frame-de-
pendent. On the other hand we have seen that it
is possible to construct c.m. helicity amplitudes

fp(2) f&f
Lp(1)& P(2) (1)& (2)(p(1) & P(2) . (1) & (2)]

by Eq. (26) which are invariant provided we only
demand that they coincide with Jacob-Wick-type
amplitudes in the special c.m. frame of Eq. (23).
We suggest that these amplitudes should be identi-
fied with the amplitudes

(P& 2(P(1) P(2)) 1&& 2 l Sl P& 2(P(1) P(2})& ~1& 2)

of Feldman and Matthews.

V. GENERAL DISCUSSION AND CONCLUSIONS

In Sec. II we constructed a complete set of c.m.
helicity states Ip(1&, p(2&: x(1), x(, &j 2, Eq. (6),

which coincided in the c.m. frame with Jacob-
Wick-type helicity states

~ p(, &, p(, ) . &(,), &((,&), .
We then showed that the corresponding c.m. hei. ic-
ity amplitudes

natl
P(1) & P(2) ' (1) & (2) P(1) & P(2) ' (1) & (2)] &

Eq. (8), were not invariant. In Sec. III we
showed that if one allowed initial two-particle
states to have phases determined by a final-par-
ticle momentum and vice versa, it was possible
to construct c.m. helicity states
~p(, ), p(».f:A«), a(»] 2(,&~„Eq. (22), in such
a way that the corresponding S-matrix elements

gP f f/~
tp(1) & P(2) ' (1) & ~(2) I P(1) & P(2) ' (1) & (2)]

Eq. (26), were invariant. Moreover, in Eq.
(31) we indicated how the standard two-particle
amplitudes of field theory could be expanded in
terms of such invariant amplitudes with frame-
dependent coefficients.

We proceeded to define reduced two-particle
c.m. helicity amplitudes,

S"(2)~' [X(-,), &((-, ) ~
s, e~ &((, ) I &((,)]

by Eq. (38) and

S '
[&((-,), &((pi s, gi &((„),&(( ) ]

by Eq. (46), which were related by the partial-
wave equation (47):

S"" '[&(g&, &((2& I s, eI &((,), ~(2&] = Q (2&+1)d'k(~) ~ ).
,

).. .(8)S'[&((~), &((2& ~
s, o~ A(, &, X(,)], ee(0, &().

In Eqs. (56) and (57) of Sec. IV we pointed out that,
apart from a frame-independent phase, in the
special c.m. frame (23) these c.m. helicity ampli-
tudes of types II and III coincided with the helicity
amplitudes of Jacob and Wick. ' Moreover, we
suggested that the type-I amplitudes of Eq. (26) be
identified with the invariant amplitudes of Feldman
and Matthews. 4

In this paper we have made no reference to the
analyticity, crossing, or unitarity properties of
c.m. helicity amplitudes. We should however like
to point out that because such amplitudes coincide
with Jacob-Wick-type amplitudes in the special
c.m. frame defined by Eq. (23), any analyticity,
crossing, or unitarity formulas will closely re-
semble those which have already been derived for
helicity amplitudes. '
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APPENDIX A: TWO-PARTICLE STATES

1. States of type I

One may use the formalism which we have
developed in Appendix A of Ref. 1 to define various
two-particle states in terms of standard rest
states

~ t&, t);&((,), &((2)),

~ P(1) & P(2) (1) & (2))

=S(1) (P (1))&(2) (P (2) )~ t) t&:~(1) ~(2) & .

The parameters ~[,) and ~[,) on the left-hand side
of this equation are eigenvalues of some spin-
component observables ~&» and ~[,) . We list
the states together with the associated operators
&(» and B(P(,&) in Table I (see Ref. 12). Since
the properties of these states are discussed in
Appendix A of Ref. 1 we shall not review them
here.

For two-particle systems it proves convenient
to construct states of mixed type. Before doing
this we define the follow'ing momentum-dependent
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TABLE I. Two-particle states. '

State

Standard helicity

c.m. helicity

IP1, ),P,):A.({),X(1)}

IP(1) P{2): (1) (2)}

IP(l) iP(2): "(1) ~(2)) +

IP((), P(1): (1), (1))
~(1) 'P(2) ' (1) (1)}+

P

H, (p(, ))

H(p(i))

H+ (p( ();p(2))

[A11]

[A103

[A9]

(A2)

A

s(t) ~
A

s(i)

s(i)
s(, )~

Reference

12

Numbers in square brackets refer to equations in Ref. 1.

Lorentz transformations for timelike momenta
P, P(„), and q( ) (Ref. 2):

H, (q;P) =L(p)H, (Q), ~(p, q)~0, '(Q)~v

H (q;p}=L(p)H (Q} a(p, q)eo, g(g)wo

H, (q;p, f) =H, (q;p}R,(R, '(Q)F),

(A2)

(A2)

'(P, q, f)&0, e(Q)«(A4)
H (q;p, f)=H (q;p)A, (R '(Q)E),

'(P, q, f)&0, '(@}«(As)

(A7)

L(P; q, f) = L(p)R-(Q)R. (R '(Q)~},

a(p, q, f}&0, e(Q) ~0 (As)

.»'P(2}»:P() 'qo, ) f(a)) = L(P; p(», f)H. V'(', ),
' 0(,), ~(,)),

P(„=L '(P)P(, ), etc. , (A9}

and starred letters denote the special c.m. mo-
menta

Po, ) =L '(P;P(», f}P(a, etc. (A10)

We define mixed two-particle states
I p&,}.p&», ~&», g»), in terms of standard rest states

(1)~ (2)}~

H pip(2)1f:p«)iq(a) J«)}
=L(P; P(,},f)H-(p«), Q(",},~g) ), (AS)

where capital letters are used to denote c.m. mo-
menta,

jp(1) P(2) (1) ~(2)).-~(»+(P(1))~h}-(P(2})(-I) "' ""'IO 0:'(» -'(2)}

and list them together with the corresponding operators B, (p »)&and Q, ) in Table II.
The overlap of any two states jp&,},p&,)'.A«), &&»}, and jp&,},p{».X&,},X&,)) is given by

(A11)

(P(1)&P(2)' (l)~~(2) P(1)r P(2)'~(1}r (2)}1 4P(leap(»oS(P(1) P(1))S(P(2) P(2))

~DR(„}{)(H» ' (p())&.(p())) x('Ix(,}( -' '(p(»)~-(p(»)), (A12)

where the functions D& 1(R) are irreducible unitary rotation group jSU(2)] representations of rotations R.
The states transform in the following way under space-time translations a and homogeneous Lorentz

transformations A of Is. (11) and (12):
~

(I
~ J

~ P( ) P(2) ' (l) (2) ) I P(l) P(2) ' (l) (2) ) (A13}

~(l) Q(2)
Ajp(, )iP(2} (1)i {2))1 )1}1(1) +( P(1))) 1'(2}&(2)( —(~ ~ p(2)))IP(1}~P(2) (1)~ (a))»

"«) "0)
(A1 4)

TABLE II. Mixed two-particle states. '

Helicity

c.m. helicity

IP&(),P~): {1), (1)1

IR{) p'-):~({) &(1)}1

IR{) P(2): (1) (1)}1

IP(t) P(1)'f' (1) (1))1

I&({),p(2):f: (1) (1))af1

&+ V'(i))

H. &(i))
(A2)

.(p(i) 'pL. 2: ~) (A4)

rh

s(i)

s(a) ~'~

$(l)~I 2~

s( )&t2J

Reference

'Numbers in square brackets refer to equations in Ref. 1.
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where the transformed momenta are given by

(A15)~(l) =A~(l) e C ~

and the Wigner rotations B,(A: P&,)) and B (A:P&,) )

are defined by R (&t&, 6, —»p) =B,(P(&) ) . (A18)

mentum p, and angles Q and 8 which are asso-
ciated with the c.m. momentum &(» defined by Eq.
(A9):

B,(A:p(, ) ) = B,'(Ap(, ) )AB(p(, )),

B (A:P(,)) =B '(AP( )&)AB(P(,)) .

2. States of types II and III

(A16)

(A17)

They are simply related to the corresponding
states of type I, '

Is:p; &p, 6:)&&,), X&»), = s ' '(-,'&(A(s, 1, 2)]' '

I p(&) » p(» (&) » (2) ) » »

States of type II are parametrized by the square
of the total four-momentum s, the total three-mo- and have the simple normalization

(A19)

, (s':p'; &p', O': A& ), )&&2) I
s:p; &p, 6:)&&», )&&»), = 5(s' —s)2p, 6(p' —p)4»6(&t&' —&p)6(cos6' —cos 6)6) ~ ) 5„& . (A20)

(1) (1) (2) (2)

They transform in the following way under space-time translations a and homogeneous Lorentz transforma-
tions A:

((Is:p; 4, 6:&(,), )(,)), =e"'ls:p;4, 6:&(&),+(»), ,

Als:P;&(', 6:)(),)(»),= Q Dx '~ (B.(:p()))»i,", )(„+ (A: p()))l~:p'; 4', 6'. &(), )&()), ,

(l) (2)

where angles &P~ and 6' are defined in terms of the transformed momenta of Eq. (A15) by Eq. (A18).
The special c.m. helicity states of type II depend on a phase angle g,

(A22)

l~:p;4, 6:C:)«,)» (»ly f» I2 (»» )] IP(&)»P(2)'f' (&)» (»]p &»f » (A22)

where

B(&p, 6, (I&
—&p)

= L '(p) L(p; p(», f ) (A24)

They satisfy the normalization equation (A20) and space-time translation equation (A21). They transform
in the following way under homogeneous Lorentz transformations:

A Is:p; &P, 6: &I':)&(), )&()],()f, = [f(A:P,P(),f)I"'""'" Is:p'; 4&', 6': (C'': ~(,), )&(»],(), (A25 }

where the sign function l(A:P, P&»,f) is defined by

f(A:P, P(,),f)"'= L(A:P, p(.),f)
= L '(O', P('.),f')AL(P;P(. ),f),

(A26)

and the angles $1, 8, and g are given in terms

of momenta p, p('», and f' of Eq. (A15) by Eq.
(A24).

We now define states of type III which are param-
etrized by the total effective spin or c.m. total
angular momentum parameter 0 and the third com-
ponent of spin A, ,

l, "»,»:»&»&, »») = f f ';, ,
—

&,
&»&(, , -»»il "»;», »:»», »„&), »i ««»

0 0

(A27)

These states transform like single-particle states
under space-time translations a and homogeneous

A

Lorentz transformations A,
~ i

(( I s, o:p, )&: )«,), )&& )] = e' '
I s, &(: p, )&: )&&,), )&&»],

(A28)

A
I s, o:p, )&: )&(,), )&(2)]

= Q D) )(L(A:p))l s, o:p, A. ': A(, ), )&()], (A29}

and have the simple normalization
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[s', o': p', P.'. X&), X{')I s, o:P, X: k&», A&$1 = 5(s' —s)5„,2&),5(p' —p)5~, 5), ~ „5)~ ~(» (» (2) (2)'

APPENDIX B: SOME TW'0-PARTICLE SCATTERING AMPLITUDES

We define scattering amplitudes to be matrix elements of a scattering operator S between two-particle
states listed in Tables I and II,

S(p(r) ~ P(s) ' ~(t) t ~(2)}P(z)l P(a) '~(s) i (2)) (P(Dl P($ ~(D) ~&$ ~

S
~ P(i) t P(2) ~(x)t (2') )

In order to follow our notation one should refer to
Table III in which we list various amplitudes to-
gether with the corresponding two-particle states.

In the rest of this appendix we shall only be
concerned with amplitudes defined in terms of

mixed two-particle states. The properties of the
other amplitudes have been discussed in Appendix
8 of Ref. 1.

Each amplitude satisfies a space-time transla-
tion contraint equation of the form

(P(r) t P($ ' (D r ($1 P(l) r P(2) &1) ) (2) ) s (P(D ) P($ ' {D~ ($) P(»t P(2) ' ~(1) 1 ~(2) )
i(p -g) ' a

where

P' =0'(f)+0'(Z) P' =~(iq +~(P-

(B2)

(BS)

We are thus able to factor out a 5 function of energy-momentum conservation and define a set of reduced
amPlitudes S"(P&;), P&$: ~&D, ~&$1 P«), P&2): ~&», &2) ),

S'(p&D, p&$'. )&&D, &&$lp&», p&)')&&), )&&2)) —6 (J)-f))S (P(D~ P&$ )&(D~)&($)p(»~ P(2) ' (1)& (2) }. (B4}

They satisfy homogeneous Lorentz transformation constraint equations of the form

(P&Dr P($ ' (D y ~($ I P(1)t P(2) ' ~(1)t ~&2) ) »ID~, &D+. (A: P(D)}»(,), (B-(A:f'(n)}», , ~(,)N. (~:P(i))}
'('r)'(Z)'('f)" (2)

"(2)* " " . , P y t. f i ) & t . f r

)( ) x& )+-( 'P(2)) } (P(D1 P($' &D 1 ($ P(1) 1 P(2) ' (l)f (2)) &

(B5)

where the transformed momenta and generalized Wigner rotations are defined by E&ls. (A15), (A16}, and

(A17).
Since each set of scattering amplitudes is complete we may use E&l, (A12} connecting multiparticle states

TABLE III. Two-particle scattering amplitudes.

Amplitude

Standard helicity IP(&) .P&». )&(&),~(, ) &

Ip()) ~p(2) ' (&) (2){+

lp{ &), P (2) ~(&), )&(q))

Ip{&) .P&2) ~(&) . {2)}.

s{p(f) p(2):~(& ),~(f) Ip(&), p(2): (&) ~(s)

S(p&&),p&&): (&), (2)lp(&), p&2)
' &(&), (2))

)P& & ) 1& 2) ~(l) ~(2)) P{& ) P(2) ' ~& &) ~(2)I
f~
P(&) 'p(2) (&) (2)'p(&)»(&) (&) '(2)&

(p&&), p{p). (&), (2) lp&&), P(2). &&&), (2)}

c.m. helicity (f) (~)~+

Ip(&), p(, ):)&(&),)&(, ) },
Ip(&) .p(~):f: (&) '(2)).
IP(&) P(..):f:~«), )&(2) 4f&

tP (f ) P(2) ( f) ~ (I)~P(f )»(2):~(f) ~ (2)

S tP; —f), P(-,).Qf), ~(—..)IP(f),P(g): ~(f) ~(2)~

S tP(f)~P(Y) - (f) ~ (2)~P(f) ~P(2)' (f) ~ (2) ~

s' '(P(T), p(2) (&) {Y)IP(&) P&2): (&) {2)}
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to relate the amplitudes to each other'.

i*a /
P(D P($ (f) ($]P(i) P(2) (i) (2) )—

I
y

I I I
(D (S (i) (2)

a&)
„(i'&„(i&(, '(p(, &)B,(p(, &

}}D,'„g '(p(»)B (p(,&))

Q(i) ~ P($ ~(i) ~ ~(5~P(i) ~ P(2). (i) ~ (2) ) ' (B6)

g(p4 Q

»(~~i(n+. '&(i&)B.(P(&&)}»7„&(»+' '(P(»)B 5(g)}

APPENDIX C: TWO-PARTICLE KINEMATICS

In Appendix C of Ref. 1 we define some kinemat-
ical 6 and ~ functions. For a timelike momentum

p&» we identify A(p&»} with the mass

~&(i& }= [p(» ']' ' = m(i& .

p(», p(2&) =-,'a(s;1, 2)

lg=-. i( -
~ (i& ™&»}]

x [s —(m(, &+ m( &)'])' '. (C3)

Moreover, when momenta P~i) and P~~ are timelike
and satisfy the equation

For two timelike momenta P~, ) and P~,) we define
the parameter s by

P'(i)+~(2) - ~(D +~(2) ~

we may define Mandelstam variables I, and M,

(C4)

s = [p(» +p(2&) (C2) t = (p(, &

—p«&)', M = (p(, &

—p(»)', (C5)

and relate the 6 function AQ&», p&») to the thresh-
old-yseudothreshold function b,(s:1,2),

and relate the h function A(p(, &, p&», p&i&) to the Kibble
boundary function (P (s, t, M),

+@(i& p(2&ip(ig) 44(s, t, u)

i= —,[sfu —s(m(, &' —m(n') (m(,&' —m(» ') —t (m(, &' —m(,&') (m(r&' —m &»
')

(m&,
&

m&@' —m& &'m&&&')(m(, &'+m(&&' —m&2& —m&, &'}]' '. (C6)

Moreover, the 0 function may be expressed in the
form

"@ip(», p(m)

= ~[s(f —u)+ (m&,
&

™&»')(m&t&'—m&» )]. (C7)

In Sec. III we introduced a rotation of the form

B~@ 8 @-4')=L '[p'p(» p(n)L[p'p(» p(2&}.

(C8)

It follows from this equation that angles 4, 8, and
4' are given by

B(C', 8, @)=B (L '(P;P(,&, P(n)P(-, &}, (C9)

B,(@ - 4') = B,(L '(P; P(», P(»)P(») (C10)

We now use Eqs. (C17) and (C18}of Ref. 2 to show

that angles 4 and 4 are zero and angle 8 is given
by

-f}V 'p(.&, p(»}
i&0, p(»)&V&, p(r&)'

&(p)~(p, p(.&, p(»)
&0, p(») &(p, p(»)

(C11)

2s' '(p(s, t, u)
4(s; 1, 2)h(s; I, 2)

' (C13)

With the aid of Eqs. (Cl), (C3), (C6), and (C7)
these formulas may be rewritten in the conven-
tional form

s(f —u) + (m(„' —m(, &') (m(&' —m(@')
i&(s;1, 2)h(s;1, 2) @12)
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