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Using the coherent-state representation we write down a set of relations that must be satisfied by

scattering amplitudes having full s-channel and elastic t-channel unitarity. While general solutions to
this set of equations have not been found, we discuss several models that illustrate certain aspects of
the problem. In particular we show that the "Born term" in the t-channel equation must itself satisfy
full s-channel unitarity. Some properties of functional integration are discussed.

I. INTRODUCTION

One of the most elusive aspects of the theory
of multiparticle production at high energies is
the implementation of basic constraints that will
limit the arbitrariness in the approximations
needed to describe the dynamics of strongly in-
teracting systems. It was natural to think that
the unitarity condition should drastically reduce
the number of acceptable models; however, the
work of several authors in the past years' ' has
shown that models satisfying s-channel unitarity
can yield any asymptotic behavior and particle
distributions not in violation of the Froissart and
related bounds. It has thus become abundantly
clear that some additional constraints must be in-
troduced in order to further restrict the scatter-
ing amplitude. Since it is well known that these
models violate t-channel unitarity, it seems na-
tural to try to build models in which some degree
of t-channel unitarity is incorporated. There are
a number of qualitative features of t-channel uni-
tarity which are in fact lacking in the previous
models. For instance, without t-channel unitarity,
triple-Pomeron couplings must vanish at I; =0 and
factorization can be only approximately satisfied.

The main problem that must be faced when con-
sidering a program of this kind is the need to keep
the formalism as general as possible so multipar-
ticle unitarity can be imposed at any stage of the
calculations. In other words, one should work
with the S operator rather than with its matrix
elements between definite states. This implies
finding a convenient formalism for the scattering
operator that allows for the simultaneous imposi-
tion of the requirements of unitarity in one channel
and the solution of an operator equation in the
other channel. We will turn for this to the coher-
ent-state representation discussed in Ref. 3. As
we will show, it is possible to express al1. opera-

tors as functional integrals over a complete set
of unitary operators with appropriate weight
functions. It is then possible to insure unitarity
by imposing constraints on these weight functions.
Unfortunately, these constraints are highly non-
linear and we have not yet found a complete solu-
tion. We will, however, illustrate in a few ex-
arnples several aspects of these constraints and
will derive a few general features of the complete
solution.

We begin in Sec. II by introducing the operator
formalism and the coherent-state representation
and discuss the kinematic approximations. Chief
among these is the assumption that only protons
and pions exist and that the protons carry essen-
tially all the energy even when the total energy is
small. This is in the same spirit as in the ear-
lier eikonal models. We then introduce the uni-
tarity relations and derive the conditions on the
weight functions. In Sec. III, some examples are
discussed which illustrate certain aspects of the
constraints and in Sec. IV the full unitarity con-
straints are discussed. Section V contains fur-
ther discussion with examples and conclusions
and finally, the Appendix is devoted to a discus-
sion of functional integration techniques with par-
ticular emphasis on how one defines the measure
of such integrals.

II. FORMALISM

The problem we wish to consider is the con-
struction of a scattering amplitude satisfying full
rnultiparticle s-channel unitarity and, in addition,
some degree of elastic t-channel unitarity. In the
spirit of eikonal-type models we will allow for
two types of particles, namely distinguishable
"protons" and indistinguishable "pions, " neglect-
ing for the most part all internal quantum num-
bers. ' All s-channel states will be assumed to
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s = (p, +p, )' = m'e" (2)

and b is the impact parameter of the two protons.
Again, with our approximation, b is conjugate to
t = (P, -P,'), which is approximately the total mo-
mentum transfer squared between the protons. It

contain two protons and any number of pions with
the protons carrying essentially all the energy.
This might not be a good approximation when
used in the t-channel unitarity equations, because
we need then the amplitude at low energies. How-
ever, we will continue using it since it is the sim-
plest form for which we could find solutions of
the equations.

Let us begin by defining a scattering operator
T which vanishes except between states of the
aforementioned type. By evaluating the matrix
element of this operator between two-proton
states, we obtain an operator in the pion space
T(s, b) where (s, b) are defined by the two protons.
In view of our kinematic assumptions, s is ap-
proximately the total energy squared. In the im-
pact-parameter representation, this T(s, b) is
related to the S matrix by

T(s, b}=2is[1 —S(s, b)], (1)

where

should be pointed out that we do not make these
approximations because we feel that they accur-
ately describe the data, but because they greatly
simplify the calculations. We also define

T(s, t) = b db Jo(bh) T(s, b),
0

where

t=(p;-p, )'=(p.'-p. )'=-&' (4)

With these assumptions, the unitary relation
for the S matrix is diagonal in impact-parameter
space,

S(s, b)S~(s, b)=1 (5)

and hence,

—.[T(s, b} —T~(s, b)] = —T(s, b) T~(s, b) . (6)

s-channel unitarity can be guaranteed by defining
a Hermitian operator y(s, b) such that

S(s b} =e'~t'~l (7)

Turning now to t-channel unitarity, we consider
at fixed t, rather than fixed b, a sum of operator
diagrams (Fig. 1) in the s-channel physical region.
Using the usual Feynman rules, we obtain

T(s t m )=V(s t m ) —i ~ 2 ", '. ' '
2 2 . T(s2 t m', &', m', (b —q)),2m 4 4'-m'+if k-q '-m'+is (8)

P( P)
P(

I

P( P, P(

+0 ~ 0+

P2
Pp

Pp Pp

P, =P, +q

k& 'k-

Pq

FIG. 1. Graph representation of the t-channel unitarity equations.
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where we are ignoring the mass difference be-
tween the protons and pions and we do not allow
for direct coupling between the external pions and
the internal protons. Let us compute the elastic
matrix element of this equation. If we assume,
following Gribov, ' that only small values of k & 0
contribute to the leading behavior, the energy
arguments of V and T in the integral are defined
over nonoverlapping regions of rapidity space.
Thus we find

(OI T(s, t)I 0)

=(os v(s, t)so)

~ ~

d'k &ol v( ~ ~ )lo)&ol T( ~ ~ )lo&

(2s)' (k' -m'+ ie)[(k —q)' -m'+ ie] '

where I 0) denotes a state of 2 protons and no pions.
This is just the Bethe-Salpeter equation which, in
the t-channel physical region, guarantees elastic
t-channel unitarity provided (OI V I 0) is real below
the first inelastic threshold.

Returning to E(I. (8), in order to obtain a man-
ageable equation, we assume that the off-shell
dependence of (OIVIO) and (OIT I0) can be factor-
ized' (or simply neglected)

T(s, t, m', k', m', (k -q)')
= T(s, t, m') fr(m', k', m', (k -q)2).

Using the fact that the dominant contribution will
be from the region s,s, =s, i.e., no rapidity gap
across the propagators, E(I. (8) becomes approxi-
mately

T, (sr, t) =V,r(s, t) —ig(t} dy V,„(e', t) T,„(e" ', t),
0

where

1 d'sf„(m', K m', ((( —Q)')fr(m~, K', m', ((( —tr()')
(2s)' (K m+ 'le-)[(K —Q) m+ -if ]

a(q;)I 11(q,)&= II(q, )l 11(q,)&,

q(=(X(r tli() .

The proton momenta will not be explicitly dis-
played. Introducing the displacement operator

(12)

(13)

is a real function of t for t&4m', The operators
are not translationally invariant in rapidity space;
the subscripts on the operators denote the range
of rapidities over which they are defined. For in-
stance, V„(e', t) creates and annihilates any num-
ber of pions in the rapidity range 0& y~ ~y. The
dependence on the t-channel elastic thresholds is
contained in the factor g(t)

We want first to find the restrictions on V(s, t)
that will guarantee that 1' satisfies full s-channel
unitarity, and second to determine whether Hq.
(10}places any restrictions on the general form
of T.

In order to proceed, we need to express the op-
erators in terms of some set of basic states. We
will choose, as a complete set of states, the co-
herent states discussed in Ref. 3. Briefly, in this
context, a coherent state is a state of two protons
and an arbitrary number of pions defined as an
eigenstate of the pion annihilation operator.

Dt(II) =D '(lI) =D( —II),

where dq-=dyd'q„, we find

I II& =D(II)I 0),

a(q)l o&= o .

(18)

These states are complete but not orthogonal:

n = II dq a~ q a q) II

dq[II q)i'

and the probability density of finding n pions with
momenta q, is

I(ol a(q, ) ~ ~ ~ a(q„)ill&i' = Ill(q, )l'Ill(q, )l' ~ lll(q„)l'e-";

(20)

thus, the probability of finding n pions with any
momenta is

(r( I(r)=rrrrrI- Jdrrf I(I'trrrtl' ~ Irt(rrll'-rrr ~ trlrr(q)l

(18)

The average number of pions in such a state is

{14)

tlnP = —e".
nt

{21)
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In general, the eigenfunctions II(q) can be com-
plex, but as was shown in Ref. 4, complex eigen-
functions lead to ghosts and thus we will assume
II((I) to be real.

Because the states are complete (in fact, over-
complete) we can express any operator in terms
of these

2, (2, t) fr}II=IITII,T)(,ITI, (I,T ,Il t„'I„(22, )

~rl' II' D,„-rl)T„s,~))II' . 24)

The condition under which these relations hold is
that the Hilbert-Schmidt norm of the operator

»(»'I= f»(DI »'Ill)

T „(s,t) = Jt511D (II) 7,„(II,t) (23)

with the inversion

where 5II; denote functional integrals over all
possible functions II, ((I). Equation (22) is the
most general form of the expansion. For a wide
class of operators, however, a simpler expres-
sion results from the completeness of the oper-
ators D(II), namely

(25)

be finite. It seems reasonable to suppose that
this is true for T but it is clear that it is not true
for 8 nor is it necessarily true for g.

We will, for the remainder of this paper, con-
centrate on the representation Eq. (23).

Let us now put Eq. (23) and a similar repres-
entation for V(s, t) into Eq. (10):

drtD, (II}, (tt, t)= fllID, (tl}, (Il, tl —g(tl dr ttl, 'fltI, D,„(II,)D (Il),„(„II,) ,„„(Il,).~

~

0
(28)

Because II, and II, are defined over nonoverlap-
ping regions of y, we have

~rr, ~II, = (27)

and

D„(II,) D,„(II,) =D,„(II), (28}

where

11,(q), o - y'- y
II(q') =

11,(q), y& y'& Y.
(29)

It is apparent that without additional restrictions,
the set of functions II(II') will include arbitrarily
discontinuous as well as continuous functions.
One way to avoid such functions is to impose some

additional boundary conditions on II((I). Since we
know from the kinematics that all functions II((I)
must vanish at y =0, Y, it might be reasonable to
require that II(q) be continuous at any boundary.
Thus in a product of the form v„(11,) v, „(II,), we
would require II, (0) =0, II, (y) =II,(y), and II, (Y) =0.
This actually is reasonable from a dynamical point
of view since from Refs. 3 and 4 we know that the
presence of short-range correlations suppresses
all contributions to the scattering amplitude for
which the derivative of the pion field is not small
or at least finite.

The set of functions II(q) is thus all continuous
functions with a piecewise continuous derivative.
One could obviously require continuous deriva-
tives as well if it became necessary. For now,
however, we will just require continuous II(q}.
Equation (26) becomes

Y

drrD„(rr) „(rr, tf)drrD„(rr} „(rr, t) —g(t}j IIID, (II) dt, „(D, t}r„(ll,t),
0

(30}

where it is to be understood that inside the inte-
gral, the functionals v»(II) and 7,„(11)are to be
evaluated for that part of the function II(y)
(0 & y & Y) lying between the limits indicated by
the subscripts. For example, if II(y) =ay

(0 & y & Y), then v„(II, 1) is evaluated for II, (y')
=ay' (0 & y' &y}, and Y,r(II, t) is evaluated for
II, (y')=ay' (y& y' & Y). The integral over y thus
acts as a sum of partitions on the interval
0&y~ Y. Obviously, except for the special case
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that II(y) is constant, the functionals are not trans-
lationally invariant in the subscripts, i.e. , r,„(II)
x T„„„(II).

We now come to an important point. We can
only proceed if the measures defining the three
functional integrals of Eq. (30) are the same.
Since the measure of a functional integral is de-
termined by the functional form of the integrand
this is not a trivial point. Some examples will be
given later to illustrate this property (see Appen-
dix) ~ Assuming that the measures are the same,
we can combine terms to obtain

6II D„(rr) ~,„(II,i) —v,„(rr, i)

+ig(t) dy v„(II, t) 7„~ II, t) =0,
0

which implies, using the completeness of the
D,„(II) or the inversion Eq. (24),

7,r(II, I) = v, r(II, t) —ig(t ) dy v„(II, i) r,„(II,i) .

(32)

This equation is supposed to be satisfied for any
function II(y). There are, in fact, nontrivial solu-
tions to this equation for at least some forms of
v, r(II) as we will show. But first, let us find the
restrictions imposed on r» (II, t) by s-channel uni-
tarity. Equation (6) yields

T(s, I) = —, h

dbms

(b&)(e'"' '- I) .

In order to cast this in the form of Eq. (23), we
write, keeping in mind the restrictions on the
norm of X,

x(, i&)= fan @In lx(n, bI,

where

implies X(II', b) =X*{-H',b)

and thus

S 5 6II, "6II„&(ll„b) ",(ll„, b)
n-I,

x D(II, ) D(ll, )" D(ll„). (37)

Using the reality of the functions II;(q)

D(II, ) D(II } ~ ~ ~ D(II„)= D(Q", , II; }

and Eq. (37) becomes

(38)

—.[v,r(II, b) —v g„(II, b) ]

5II, v, „(ii„b}vg„(II, —II, b) .4s
(33)

Rather than use this equation directly it will often
be more convenient to use a form of T which guar-
antees unitarity, from Eqs. (I), (3), and (7):

n

e'"~'' l-I = 5IID(II) Q —
(

5II, 5II„}((il„b) ' '}((ll„,b)5 (Q";,II, —II),
n=1

which involves functional convolutions of lt(II, , b).
Using the representation, (for real II, )

6,(P", , II, - II) = Tr[D(- II)D(+, II, )]

5II ' exP —2 i (g", , II,. II) Il ~dq {40)

The nth-order convolution becomes

50 5II„X II„b) ' ' 'X II b)
t

r}exp
' —2i dq(+II, —II}q = 5q exp 2i dq II(q}q(q) X"(q, b),

where

X{v),b) = 5II)X(II;, b) exp —2i dqII, (q) q q)

(42)

is the functional Fourier transform of lt(ii„b).
The restriction Eq. (36) implies

X(q, b) =X*{0,b). (43)
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Thus,

—1 = 511DoY II 5q exp 2i II (q) )I(q)

c)c

t, (tt, i)= —. bdbd(bx, ) 5qe p 2(fdelt(q)q(e)
0

y [eex(n b) I] (45a)
y[e'x(n b) I) (44)

Notice that again we have interchanged the order
of sums and functional integrals which can only
be done if the measures of the various terms are
the same.

Combining Eq. (44) with Eqs. (23) and (34), we
can read off the form of 7oY(II t) which guarantees
unitarity:

or, if we define r, r()I, I) as the Fourier transform
of ~,r(ii, I),

2s
)I I) b db Jn(b&)[e

'x t)r'(n..b) I
0

(45b)

Finally, let us return again to Eq. (32) using
Fourier-transform representations for 7 and v,

q exp 2i IIqdq T,Y q, t) = dq exp 2i Dgdq v, Y g, t)
oY oY

Y
—id(t) dy 5q, fbqexp (2i , ttq, dq exp 2i IIq,dq] „(5„I) „(q„!).

0 oy yY

(45)

Again

(47)

exp 2i II@,dq exp 2i IIq2dq =exp 2i IIqdq
oy yY oY

(48}

where

III. TWO EXAMPLES

Before discussing the combined Eqs. (32), (45),
and (50), we will study two models which, while
they do not satisfy the full set of equations, do
illustrate certain features of the problem. First,
let us show that nontrivial solutions of the t-chan-
nel equations do, in fact, exist.

For any given v, , (II, t}, one can construct the
series

n, (q), o-y'-y
)I(q) =

n, ( q, }y-y'-y

and thus

(49)
Y

v,„—ig(t) dy v„v,„

~ (-td(i)(*f "»dy .. ", . ', .+ ", (5«)

Y

T»()), t) = v,„()I,i) —ig(t) dy vnp()I, t) r»()}, I) .

(50)

Equations (45) and (50) [or (32)] will be the basis
for the remainder of our discussion.

Finally, we will make one further approxima-
tion; namely, we will henceforth neglect the trans-
verse-momentum q~ dependence in II(q}. This is
not a serious approximation since we have already
e1iminated the dependence on q~ from the overall
ener gy-momentum conservation. The only place
this dependence occurs is in integrals of the form
Jnrdq f»[II(q)) which will now become J,"dy f,„[II(y)].
Clearly, one cannot learn much about the q~ de-
pendence using the approximations of eikonal-type
models.

which, if it converges, is the solution of Eq. (32).
For this to be an acceptable solution, however,
we must impose the further restriction that when
this series appears in a functional integral, the
measu"e of each term is the same. Thus
v, , (II, t) is not totally arbitrary even without

imposing s-channel unitarity. In the same ~ar-
mer, one can construct the series for v» (q, t):

1 2

Y

v()p ig(I) dy v()p vpr

+[- ig(t)]' dy, dy, v,„v, , v„„+, (5lb)

which is the solution of Eq. (50) again if it con-
verges and if each term has the same measure.

To show that closed form solutions exist, sup-
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pose v„„(II,t) has the property

V V = V
Vg 3t2

Vy y
=1.

1 1

(52)

(53)

5q exp 2i
I

x exp

Y

IIqdy

[G (r), y, t) + ig(t)] dy

(58)
It easily follows that v can be written in the
form

To see what effect this has on the amplitudes,
from Eqs. (23) and (55) we find

v» (II, t) =exp E(II, y, t) dy (54} T,r = 611D,„(II)exp — (E+ ig) dy
'

where F(II, y, t) is an arbitrary functional of II
which does not depend explicitly on y, or y, . This
v, , is of interest because it has been shown in&z3'2

Refs. 3 and 4 that arbitrary short-range correla-
tion models can be written in this form. From
Eq. (51), we find

Y

[}(I(, }',(}~ }'(t}]d}'I (55)

v» v» = v, , = exp — G (q, y, t) dy

{v, , =1}, (56)

then

Notice that the measure of each term is con-
trolled by the same function, namely vo„(II, t),
and hence the subsidiary condition is satisfied.

Another solution for v0Y can obviously be found
by imposing the combination property on v, „(}},t)
rather than v, , (II, t). Thus if

=e ""'" 5IID,„(II)exp
~

— F[II, y, t)dy
0

X(s, b) = [D(IIO) + D( IIO)], -A(b)
(60)

where II,(y) is an arbitrary, but fixed, function of
y. In Ref. 3 it wa, s shown that this model was in-
teresting because it yields constant total and elas-
tic cross sections, bootstraps the input pole, and
produces only long-range correlations. Suppose
that we assume

(59)

Thus, all amplitudes are multiplied by a common
phase but are otherwise unchanged. In particular,
the positions of Regge poles generated by the
functional integration (Refs. 3 and 4) and the as-
ymptotic behavior of the various cross section) are
unaffected. The question of whether or not this
T can satisfy full s-channel unitarity will be taken
up later.

As a second example, let us consider a model
in which the asymptotic behavior is affected by
the t-channel sum. In Ref. 3, a simple model
was discussed which satisfies full s-channel uni-
tarity. (Later it will be shown that a necessary
condition on v, Y is that it satisfy full s-channel
unitarity. ) For this model

~,r(q, t) = exp

with

0

Y

[G(}I,y, I}+ig(t)1dy
V(s, t) = —. b db Jo{b&)(e ~(' }-1)~

2s i s~
0

then from Eq. (10}

(61)

c}o

T(s, t) = —. b db J (bh)(e'" —1) —ig(t)l .2 b, db, Jo(b,b) b, db, JO(b, t} ) dy(e'"e(~~}- I)(e'"»( &}-I) + ~

0

(62)

The first term is just the amplitude discussed in
Ref. 3. The elastic amplitude is

b db J,(bt})(ol e'"(' —ll0)

The Born term is

2e(~-~t'»Y y dye (yg) A(y) (64)

=2$ b db J(b&)[ {oll}(o)+ 2 t{ol}('1o)+ ]

(63)

where we have assumed that II,(y}, while not nec-
essa, rily constant, is such that to leading order in
Y
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IIO~(y) dy = AY . (65)

Thus this term which is purely real has a pole at
l = 1 —Aj2. The next order is

ity is still at /= I with daughters at /= I -n'A/2.
Notice that the poles' positions are all fixed (in-
dependent of t) and that the residues no longer
factorize.

Let us now consider the second term of Eq. (62).
The elastic matrix element is—(1+e '~") b db Jo(b&}A'(b),

which yields a pole at L= 1 with a daughter at
l=1 —2A. . One can sum this to all orders with
the result that

(66)
ig(t) 4s b, db, Jo(b, &) b, db, J,(b~&)

Y

x dy(ol e'"o~,—ll 0)(ol e'"~r —ll) . (68)
0

(0l Vo„l 0)= —. b db Jo(b&} J 0(A) —12s
1

2 g in J (A)e-n kY/2

(67)

and thus in the full amplitude, the leading singular-

From this term, we can isolate, for example, the
bare triple-Pomeron coupling. As we just ob-
served, the bare Pomeron results from terms of
order X'. Thus, let us consider the product of
the second-order factor in one term and the
fourth-order factor in the other term inside the
inte grand:

= ~w ~ . . .(, ) . ~ .(.~~ J ~
0

(69}

dy(ol [D„(rl,) +D„(-11,)]'I o&(ol [D„„(11,) +D,„(-II,}]4lo)

X bl dbl JO b + A bl) b2db2 0 b2~ A b2) ' (70)

The term of O(y') was discussed above. The lead-
ing contribution is just (ol2D(0}lo)=2. The term
of O(y') can be similarly evaluated and to leading
order, (ol [D,„(II,)+D,r( II,)]'l 0)= 6-.

Notice that there are contributions which re-
semble the usual sort of picture in which the Pom-
erons are created one at a time [Fig. 2(a}] plus
terms in which the intermediate states of the two
Pomerons are simultaneously on-shell [Fig. 2(b),
2(c)]. In this way, we account for the complete
discontinuity of the two-Pomeron contributions.

The triple-Pomeron contribution is thus

OO

0

In the next order, we can, for example, calcu-
late the two-Pomeron bubble graph (Fig. 3):

2 — 0

x bdb J0 b&)A4 b) .
0

(72)

T„=[- ig(t)]"
Y

dy, dy, ~ ~ ~ dy„(ol Vo„ l 0)

x(olV, „ l0) ~ ~ ~ (OlV, „lo) . (73)

Let us now compute the complete t-channel sum.
The nth term in the sum has the form

x b, db, J, b2& A b, ).
0

(71)

An extra factor of 2 results from adding the con-
tribution with the two expansions in powers of X

interchanged. We obtain the usual s lns behavior
associated with the triple-Pomeron coupling. No-
tice that this term is pure imaginary with a neg-
ative sign. '-' Notice also that all terms of O(g(t))
behave as s lns to leading order so that the triple-
Pomeron cannot be isolated by its asymptotic be-
havior alone.

+ 0 ~ ~ ~

(c)

FIG. 2. g contributions to the triple-Pomeron vertex.
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From E(I. (67) we observe that because we have
computed the elastic matrix elements before sum-
ming, (0] V, , (s, t)~ 0) is a function only of y, —y,
rather than y; and y, separately. Because of this,
we can use the convolution theorem. Defining +

I t

+ — -I + ..
f(j )

= -dy e '"&0I I'(y, t)l 0) (74)

then

b db J,(bA)
2 0 j —1

i"J„(A(b))
j —(1 ——,

' n'z)

(75)

(a) (b)

FIG. 3. g4 contributions to the bvo-Pomeron bubble
graph.

(76)

+4

(Oi T(s, t) i 0) =
7T 2 f oo

d, , r f(j)
1+ig(t)f(j)&

'

(77)

fl
C+foo

T„=[- ig(t)]" . dj e' f""(3),
(2vi)

and finally,

Previously, the poles appeared as singularities
in f(j ) [E(I. (75)] but after performing the t-chan-
nel sum, these poles no longer are present be-
cause of a cancellation between the numerator
and denominator. The singularities that are pres-
ent appear as zeros of the denominator

j -1-2g(t)
4)O ( oo i"J' (A(b))

b db J0(bt4)
' 1'- Jo(A(b))-2( j —1)Q (78)

or

bdb Jo(b&)[I -JQ(A(b)) ]
/=1+

1+4g(t) b db J,(bb) P [i"J„(A(b))/[j —(1 —,n'A)]]—.
0 n=j.

(79)

This latter expression is still an equation for j. We see now that the positions of the singularities are
functions of t both as a result of g(t) and the dependence on J,(bA). In general, we cannot explicitly solve
this expression but we can get an approximation to the amplitude by setting j =1 in the denominator of
E(I. (79). %hen

(0[ T(s, t)(0) =2i exp Y 1+

( eo

2g(t) b db J,(bA}[1 —J,(A(b))]
"0

1+4g(t) b db J,(b A}(2/a) g [i"J„(A(b))/n']

db cJ0 b& 1 J0 A 6)
X

(,4g(4) I 4444, (44)(2/4)Z( /. (A(b))/ '(
0

(80)

Unless eitherg(0) =0 or f bdb[1 —J,(A(b))] =0,
this amplitude will obviously violate s-channel
unitarity because the leading singularity will lie
to the right of j=1. The latter condition is ruled
out because the entire amplitude vanishes at t =0
if this is true. The former is not ruled out but
there does not appear to be any particular reason

why g(0) should vanish. If, however, it did vanish,
from Eq. (71) we see that it implies a vanishing
triple-Pomeron coupling. In fact, it says that all
renormalization contributions vanish at t = 0. Of
course g(0) = 0 by itself does not guarantee s-chan-
nel unitarity since the unitarity condition is a con-
straint on T(s, b) which involves all values of t.
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This is not a simple matter to check. Computing
even just the elastic amplitude (0~ T(s, t)~0) is ob-
viously difficult.

It should be noticed that in this particular ex-
ample, we avoided the use of functional integrals
by dealing directly with the operator x(s, b). It is

X(II, b) = —A(b)[5 (II —II,)+6 (II+II,}]

and thus

(81)

instructive, however, to redo some of the pre-
vious calculations using the functional techniques
discussed earlier. From Eq. (60)

Y

2(e, 2) = 2)I 2 —2
'

etldy1 x(rl, 2)
0

= —,A(e) exp —2I ett, dy exp (2i
p

Y

qIIpdy (82)

From Eqs. (3), (44), a.nd (82),

Y

(0I T(s, b)10) = —. 611 exp —2 dy II'(y)
p

Y

5g exp 2p

grady

p

2s Y

q exp —2 q'(y) dy [et«& "& I]
p

(83)

Now, expanding the exponential

Y ~ )+nt

(0( T(s, b}(0)= —, bq exp —2 q'dy g, [~A(b)]' ' exp 2i(l -m)
'E

0 l fmf

Y

qIIpdy —1 . (84)

We observe that every term in the series has the
same measure since in each case, the most rapid-
ly decreasing factor is the Gaussian factor which
multiplies each term (see Appendix). Using the
fact that

Y Y

bq exp —2 q'dy exp 2 i(i -m) qiiody
p 0

(I -m)'
= exp — II 'dy, (85)

2 p

it is easy to show that the resulting amplitude
agrees with the result quoted in Ref. 3.

Having examined two simple models, let us
now continue with the formal development.

Clearly, X(q, b) must depend ong(t) although be-
cause of the integral transform, it will manifest
itself as some dependence on b. In order to study
this dependence, let us introduce a coupling A.

g(t) —xg(t) (87)

(88)

(89)

and consider an expansion of the left-hand side of
Eq. (86) in powers of X. Since v, , is, by assump-
tion, independent of g(t), the right-hand side is
already such an expansion. Defining

IV. COMBINED UNITARITY EQUATIONS

Having established that solutions to the t-chan-
nel equation do exist, let us now compare Eq.
(51) with the form required by s-channel unitarity.
We shall show explicitly that V(s, t) itself must
satisfy full s -channel unitarity. Considering fir st
Eqs. (45) and (51b) we have

b db j (bA)[e'"or " —1]
z

p

Y
= vo„—ig(t) dy v„v,„+~ ~ ' . (86)

the left-hand side becomes

2s
b db Jo(bty)(e'" (1+X(iX( )), -(p)

p

Unitarity requires that X(q, b; X) be real. Suppose
that the various X

" were complex. Then for a
given function q(y}, one could presumably find
some value of x =x, such that the sum Eq. (88)
was rea.l. For some different function q, (y), an-



s- AND t-CHANNEL UNITARITY EQUATIONS IN THE. . . 1683

2s (o)
b db J(bb)(e' x —1) = var(q, t), (9la)

2s (o)
bdb J(bb, ) e'x (i}t&")= —ig(t) dy v„vx„,

(91b)

other value of A, =A would be required. We know,
however, that Eq. (86) must hold for any function

q(y) for a single value of a; hence we conclude
that all }t "~(q, b) must be real.

By comparing powers of A. we find

2s
b db J.(b~}"" -'[iX"'-(X"'}'l

0
Y

=[ ig-(t)]'f dy, dy, P„v„,. v, r (9lc)

etc. We are supposing that at least for some val-
ues of A. , the two series converge so that we can
compare coefficients.

From (9la) we obtain the necessary but insuffi-
cient constraint that v« itself must satisfy full
s-channel unitarity if this whole scheme is to be
consistent. From (91b) and (9lc}

—i}(t"(q, b) = —e x & d& Jo(bg) g(t) Voy Vyy

CO Y

& dh Jo(b4) g(t) dy v„v„„

hdtxJ (be) v, r+2s/i

(92a}

(o& F l

}it'~(q, b) = —i (}it'~)' ——e '" &d&Jo(b&)g'(t) dy, dy, vo, v, , v, r (92b)

etc.
This infinite set of relations with the constraints

constitutes a set of necessary and suffi-
cient conditions to yield amplitudes satisfying full
s -channel and elastic t-channel unitarity.

The solution of this set of constraints appears
formidable. For instance, from the form of these
equations, it does not appear likely that these con-
straints will close, meaning that g~") being real
for 0 & n &N will be sufficient to guarantee that
X~" be real for n&N.

It is a simple matter to formulate the corre-
sponding set of relations for v» . We leave it

Yj Vg

as an exercise for the interested reader.

V. DISCUSSION AND CONCLUSIONS

In the previous section, we have given a set of
relations which will yield amplitudes satisfying
full s -channel and elastic t-channel unitarity. Un-
fortunately, we have not yet been able to find a
solution to these equations. We have, however,
learned something about possible solutions by
considering examples which do not have both pro-
perties.

Let us first reconsider the solution to the t-chan-
nel equation discussed in Sec. III, namely Eq. (57).
The set of relations Eq. (91) then implies that a
G(q, y, t) must be found such that the equality

exp — G (q, y, t) dy
0

b db J,(bh}(e'x t" ~ I)-
o

e' '~"" b db J,(b&)(e'x "~"-1) (93b)
2s

0

is satisfied for arbitrary A. with y
' and g real.

It is easy to show that no solution exists for the
one-dimensional problem in which the distinction
between t and b is neglected. A proof in the gen-
eral case is less obvious because of the integra-
tions and the fact that the Bessel function does
not have a definite sign. We feel, however, that
no solution is possible for models of this type be-
cause of the lack of long-range correlations.

In order to correct for the lack of long-range
correlations, it is natural to try a model in which
we first introduce short-range correlations in )(,
for example,

}t(r}, b) = exp I— [a(b) q'+ c(b) j'] dy

and then long-range correlations by exponentiating

x
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7(~ b)- s (e~x(n5)
2

(95)

Unfortunately, while this model seems intuitively
correct, it is shown in the Appendix that it does
not survive the functional integrations. The prob-
lem is that the measure of the functional integra-
tion is coupled to the number of chains, i.e., the
powers of lt in the expansion of (e'"—I). What is
needed is to couple the measure to something that
is independent of the number of chains. A hint
towards a possible resolution of this difficulty was
provided by Sugar' by showing that, within the con-
text of a unitary multiperipheral model, a satura-
tion of forces can be achieved by coupling the
pions to the isospin carried by the chains. Since
the total isospin exchanged is independent of the
number of chains, this suggests that the correct
procedure would be to construct a model in which
the measure is controlled by the isospin rather
than by the number of chains. Since the short-
range correlations are introduced via the same
factors which control the measure, namely the
derivatives of II(y), it further suggests that the
existence of short-range correlations is strongly
connected with the existence of particles carrying
isospin.

A third type of model we have not discussed
here but we shall consider in the future is the
case of "black-disk models. " Part of the prob-
lem here arises from the fact that the operator
X in these models is an unbounded operator and
therefore cannot be simply represented in the
form of Eq. (23) but as in Eq. (22) increasing the
difficulties in finding solutions to the t-channel
unitarity equations.

to a discrete sum. These points can best be illus-
trated by considering some examples.

Let us first consider the Gaussian integral,

I, = 6II exp —a II'(y) dy (A1)

(A2)

where

(AS)

By allowing for arbitrary n„, a wide class of func-
tions can be characterized.

Let us now consider the integral (Al). Using
the first type of representation,

exp -a
F N

II2(y) dy = lim exp —any g II'(y;)
g -woo i=1

(A4)

where &y = Y/N. The differential 5II becomes

%'e will consider II to be a function of only one
variable, namely y. %'e now need to characterize
the space of functions II(y). There are two con-
venient methods for doing this. The first involves
dividing the interval 0, Yinto N subintervals and
setting II(y) = II(y;) within each subinterval. A par-
ticular function is thus represented by the set of
points II(y&) which as fq-~ should more and more
closely describe the particular function. By allow-
ing for arbitrary values of II(y&), we can allow for
arbitrary functions II(y). The second type of rep-
resentation is the familiar normal-mode expan-
sion
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APPENDIX

where by integrating over all possible values of
II(y;), we sum over all possible functions II(y).
M„ the measure associated with each II(y;), will
be determined by requiring the integral to be fi-
nite.

In this appendix, we will discuss some proper-
ties of functional integrals pertinent to this work. '
The general idea of such an integral is to compute
the sum of a given functional E[II(q}]over all pos-
sible functions II(q). Thus the two principal prob-
lems in defining such an integral are first to char-
acterize all possible functions Il(q) in some man-
ner and second, to specify the measure of the in-
tegral for a given representation of the functions
ll(q). The measure can be thought of as the vol-
ume of functional space one is to associate with a
given II(q} when going from a continuous integral

6II exp —a J Il'(y) dy
0

= lim M; dII; exp —any II'

(A5)

(A6)
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If this product is to be finite it is necessary that
[M;(w/u&y)'~'] approach unity as N-~. This re-
quires

where II(v) =—(d/dy)II(y). Introducing the normal-
mode representation, we find

a~y '/'
(A8) f

Y OO

[oil'(y) +»'(y)] dy = g («.'+ bk.'~.'),
p n=p

(A18)
Actually, there is an arbitrariness in this defini-
tion because a finite number of the Mi's can differ
from the above value by a finite factor without
affecting the boundedness of the infinite product.
Since the points y; are arbitrary and equivalent,
however, it does not seem proper to change the
M; except perhaps at the end points. We will re-
quire Eq. (A8) for allM; with the knowledge that
in so doing, we are making a particular choice
concerning the boundary conditions at y =0, Y.

With this choice,

where k„=wn/Y. The integral becomes

e-[a+ bki" i+i (A17)

II ' ( ~ bk. ')
i=p

(A18}

yy 2 1/2
M;= ', i40. (A19)

In this case, because 0; —~ as i - ~, we do not
set M,. = [(a+ bk, ')/v]'", rather

bliexp -a 11'(y)dy =1. (A 9)
Then

Next, let us compute the same integral using
the normal-mode representation. In this case 7r 1I =M

a && (1+a/bk '}'" (A20)

and

Y

II'(y) dy= Q o,„'
n=p

(A10)
1/2 a 1/4

a b ]sinh[(a/b)'"Y]j'"'

Thus

5II = M;
i=o

(Al 1)
Again the inevitable arbitrariness appears as a
result of M, not being fixed. If we choose M,
such that the integral over dip is unity, then
M, = 1/y'" and

i=p
(A12)

1 77
1/2

(ab)'" sinh[(a/b)'" Y]
(A22)

(A13)

In this case, I, finite requires

(A14)

for all but a finite number of M s. Again, choos-
ing (A14) for all i, we find I, =1 as before. In
this case the arbitrariness is associated with a
finite number of normal modes. By redefining
the appropriate M s, we can lump all the arbi-
trary factors into M„ for instance ~ Again, we
see that the arbitrariness is somehow connected
with boundary conditions. Notice that in both
cases, we were unable to specify the measure un-
til after we had performed the integral.

As a second example, consider the integral

The evaluation of this integral using the other rep-
resentation for II(y) is given in Ref. 11 and will
not be repeated here. The same result is obtained
with a particular choice concerning the boundary
conditions.

Notice that in this case, the measure with the
exception of Mp is determined by that part of the
integrand which involves the derivative. We can,
in fact, determine the measure by requiring

(A23)

It seems to be a general property of these integrals
that the measure, with the exception of M„can
always be determined by requiring the functional
integral of the most rapidly decreasing factor to
be unity. In the first example, this is just the
requirement

6II exp -a II'dy = 1, (A24)
Y 0

l
I, = 5II exp ] — [aII'(y)+biI'(y)]dy [,

(A15)
which agrees with what we found. Another example
1s
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v

51Iexp dy aII' y +bH' y)+cII' y
0

~ ~

~

1
5II exp -c II'(y)dy = 1. (A26)

(A25)

In this case, the correct measure is found by re-
quiring

Let us now turn to a somewhat different type of
problem, namely, the Fourier transform. Con-
sider

I fq(w&I= frnexp 2i) tlf7)&llldY p — f B'(yldy
0 0

511exp -a Y Y
(II —iq/a)' dy exp -(I/a) g'dy

0 0
(A27)

Changing variables to II' =ll —iq/a, we find

I.].n(y)] = exp -(I/&) a'( y)dy 511' exp -a II"(y)dy

=exp -(I/a) (A28)

Similarly
Y

q{y)11( y}dy exp
0

[all '( y) + bil'( y) ]dy

oo I.(2 Q 2
'lT +I'

s a+ by. ~ P 4 a+ bk.
f=0 5

(A29)

where

n(y) = g (3.f.(y)
f=o

In this case, the most rapidly decreasing factor
involves the derivative so that M; should be given
by (A19}. From (A27), it is clear that this choice
leads to a finite result. Again, we have remaining
the arbitrariness associated with ~0.

Finally, let us consider a third type of problem,

namely the functional integral of a sum of terms.
As an example, consider the integral

M exp a H'dy + exp —b H'dy; b &a .

(A3O)

%e require a single measure for the complete in-
tegrand. Thus

(A32)

(A33)

(A34)
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Clearly we must choose M, = (a/w) ' and since
lim„„(a/b)" '=0, I,=1. Hence we find that in gen-
eral,

(A35)

In fact, (A33) becomes an equality only if the mea-
sures of the two terms are equal. In the example
just discussed, we see that the integral is con-
trolled by the least rapidly decreasing term.

As a second example, let us consider the inte-
gral

&(aIP+5 IP )if' (A36)

u'a

, n!,., n(a+be, ') (A38)

This integral is of interest because it is the type
that results from assuming )('„ to be a short-range
correlation chain. Again expanding in normal
modes and using a ser ies expansion for the expo-
nential,

N oo OO

I, = lim II M, du, Q —,exp nQ(a-+bb, ')o, '
N~~ f =0 —~ n=l +'

L =0

(A37)

M =
1T

(A40)

in order that the integral be finite and in addition,
only the first term in the series survives in the
limit N- ~. Thus we find

I, = i Mexp (all ' + bll ') dy
0

(A41)

u'2

(ab)"' sinh[(a/b)~'y] (A42)

Again, it is the least rapidly decreasing term in
the series which controls the integral. The im-
portant conclusion to be drawn from this example
is that since s-channel unitarity requires contribu-
tions from all terms of the series, only those y's
will be acceptable for which X" has the same mea-
sure for all n. This is the case for the unitary
model of Sec. III in which )( does not have short-
range correlations and is apparently not the case
for the type of short-range correlations discussed
in Ref. 3.

One might like to introduce a convergence factor
in order to be able to perform the integral in Eq.
(A36), for example

1= byexp — dy[y(y) -II(y)]'~.

(A39)

The measure must be independent of n since the
value of the integral cannot depend on our decision
to expand the exponential. Ne see then that

By reversing the order of functional integrations a
finite result, including contributions from all
terms in the series, is obtained for the II integra-
tion, but on performing the y integration one again
obtains the result stated below Eq. (A40).
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