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It is shown that for all renormalizable field theories, excluding gluon and gauge theories,
the asymptotic behaviors of the on-mass-shell form factors are related to the short-distance
behaviors of the theories. In particular, if the Gell-Mann-Low eigenvalue conditions are
satisfied, the asymptotic behavior of the on-mass-shell electromagnetic form factor is
(m /-q }&, where y is the anomalous dimension of the proton field. We also show that the
form factor of the axial-vector current has the same asymptotic behavior as that of the
vector current.

I. INTRODUCTION

The asymptotic behavior of the electromagnetic
form factor is one of the outstanding problems in
high-energy physics. The experiments' in the
last decade showed a rapidly decreasing elastic
form factor' of the proton of the form ( —q') ~,
with y equal to or slightly larger than 2. The data
can be fitted adequately by the dipole formula'

I
1+ (-q') j0.71 GeV'

over a very wide range of spacelike q'. The suc-
cess of the simple power-law fit leads naturally
to the question of whether there are any deeper
physical implicati. ons of this behavior. Many at-
tempts have been made to understand this. They
are summarized very nicely in a paper by Appel-
quist and Primack. ' Within the general framework
of renormalizable field theory, the problem of the
form factors has been studied using approximate
integral equations, ' a renormalization group, '
leading-logarithmic approximation, ' cluster ex-
pansion, ' and the Callan-Symanzik equation. ' The
conclusions obtained so far using these approaches
are unsatisfactory in one way or another.

The purpose of this paper is to study the problem
of the asymptotic behaviors of the on-mass-shell
form factors, again using the Callan-Symanzik
equation. ' We show that in all renormalizable
field theories, excluding gluon and gauge theories,
the asymptotic behaviors of the on-mass-shell
form factors are controlled by the short-distance
behaviors of the theories. In particular, if the
Gell-Mann-Low eigenvalue conditions' have solu-
tions in these theories, the asymptotic behaviors
can be described by powers of (-q'). Here the ex-
ponents are related to the anomalous dimensions
of the fields. Our conclusion is in agreement with
the long-cherished hope that asymptotic behaviors
of form factors would reveal the deeper structure

of hadrons.
We recall that in the usual applications of the

Callan-Symanzik equation, the mass-insertion
terms are often dropped by letting all external
momenta go to the asymptotic Euclidean region
and by appealing to Weinberg's theorem. " There
are, however, many physically interesting cases
in which only some subset of momenta goes to
infinity and the others remain fixed. These cases
include all on-mass-shell amplitudes as well as
partially on-mass-shell amplitudes as in lepton-
nucleon experiments. Therefore, it would be de-
sirable if we could say something about mass-in-
sertion terms so that the Callan-Synamzik equation
would become solvable and useful. Indeed the
Callan-Symanzik equation with mass-insertion
term has been employed successfully in the dis-
cussion of the low-energy theorem for 7t'- 2y
(Ref. 12) and lepton-nucleon experiments, "as
well as the inclusive annihilation process in Q'
field theory. " There is yet another case: elastic
form factors, where the Callan-Symanzik equation
can yield useful results.

This paper is organized as follows: In Sec. II
we consider the elastic electromagnetic form
factor of the proton in the pseudoscalar theory of
a proton and a neutral pion. As illustrations, we
show how to handle the mass-insertion terms i.n the
Callan-Symanzik equation for some typical low-
order diagrams. We also indicate why the asymp-
totic behaviors of the form factors in gauge theo-
ries and gluon theory are not related to the short-
distance behaviors of the theories. We present the
general treatment of mass-insertion terms in
Sec. III using the Bethe-Salpeter equation. We
show that the mass-insertion terms can be neglect-
ed in the asymptotic limit of -q'»p'"= p" =m'.
The Callan-Symanzik equation for the elastic form
factor is then solved in this limit. It is found that
the asymptotic behavior is related to the short-
distance behavior of the theory, In particular, if
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the Gell-Mann-Low eigenvalue conditions are
satisfied, the asymptotic behavior of the form
factor is (-q') &, where y is the anomalous dimen-
sion of proton field. In Sec. IV, the form factors
of the axial-vector current as well as the vector
current are studied in the 0 model. " We show
that in this model the axial-vector and vector
currents will have the same asymptotic behaviors,
in agreement with the available experimental data.
In the last section we summarize the results we
obtained and compare with the previous work of
Landau et al. ,

' Bogoliubov e~ al. ,
' Appelquist and

Primack, 4 and others.

II. LOW-ORDER RESULTS

haviors in renormalizable field theories. We are
interested here in the proper vertex function of
the electromagnetic current, which we denote by
I'". The Callan-Symanzik equation for I'" is

B B B 8
+ &—+P, —+P, ——2y I'"=~1

Bm B p, Bg BA.

(2.5)

where m is the mass of the proton, p, is the mass
of the pion, the tilde is used to denote renormal-
ized quantities, 4I is the mass-insertion term,
and

p, = m +p, —g,

Zx ——-zgo gy, g w —A o (w)
4 . (2.1)

For the sake of simplicity, we consider the as-
ymptotic behavior of the electromagnetic form
factor of the proton in a simple model. The model
consists of a proton field and a neutral-pion field
only and is described by the renormalizable pseu-
doscalar y, interaction:

cf
P, = rn +JL(. —X,

GPPl

d d
2y=Z ' m +p, —Z

dm dp,

=Z2 m + )L( Z
Gm ct p,

(2.6)

d k 2 2

(2w)' k2 —p'g' 5P' —g —m P —g —mg' 5

d'k 1 P' —g+m
(2w)' k' —p.

' '(P' —k)' —m'

P —g+m
( p —k)' —m' (2.2)

which corresponds diagrammatically to Fig. 1.
Using the fact that P' =P"= m' and (P —m)u(P)
=u(P')(P —m)=0, we can rewrite the integral as

(2w)' k' —p,
'

( 2P'k+ k')( 2Pk+k') '

(2.3)

It is very easy to see that when p. =0 and m =0,
the integral in (2.3) has no infrared divergence at
all because of the presence of two g's in the nu-
merator. The result of the calculation" is

The electromagnetic interaction is treated to the
lowest order. For illustration, let us begin with
the lowest nontrivial calculation of the electro-
magnetic form factor of the proton. It is given by

Here P„P„and y are all cutoff-independent, and

Z, is the wave-function renormalization constant
for the proton field. It is understood that, in taking
derivatives in Eq. (2.6), the bare coupling con-
stants gp ~p as well as the cutoff A are held fixed.
In deriving Eq. (2.5) we have made use of the fact
that Z, =Z2 (Ward-Takahashi identity' ).

Our interest is the behavior of the on-mass-
shell vertex I"" in the limit of -q'»p'=P" =m'.
As in other applications of the Callan-Symanzik
equation, we have to know 4I'" in order to obtain
useful information on I'". The analysis of the
large-q' behavior of AI'"(q', P' =P"=m') is com-
plicated by the fact that, in the limit of m = p, =0,
we have the situation of exceptional momenta"
and therefore Weinberg's theorem is no longer
applicable. Instead of presenting the general
method of handling the mass-insertion term 4F",

I'" = y" — '
—, ln

(2 4)

In this example the dominant contribution is from
the ultraviolet region.

We recall that the Callan-Symanzik equation is a
useful tool for investigating the asymptotic be-

I IG. 1. Second-order diagram contributing to the
proton electromagnetic form factor in neutral pseudo-
scalar p5 theory.
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we restrict ourselves in this section to the dis-
cussion of 4I'" for some low-order diagrams.

For the Feynman diagram in Fig. 1, it is easy
to work out the expression for 4I'". One finds that

The precise expression for &I'" is not important
to us. Therefore we find that in this example

~I~=O „-,I~, (2 'f)

i.e., &I" is of the order of y.'/(-q'), m'/(-q') (up
to logarithms) as compared to I'" and therefore
can be neglected in the limit of -q'»nz', p, '.

For comparison, let us consider the lowest non-
trivial expression for I'" in the neutral-gluon
model. The second-order expression for I'" is
given by'e

~ ~

~(2 )' k' —p,
' ' P' —g —m P —k -m ' ' (27i)' (k' — i'u)(-2P'k +k')(-2gk+k') '

Here, in contrast with the previous case of Fig. I, the infrared contribution is the dominant one. This
can be seen easily by noting that as p. - 0, the k integration around the origin is logarithmically divergent.
By commuting (P' —ik+m) with Z" and (P —(f+m) with y„, one finds that the contribution from the infrared
region is"

d'k 1fg, '(2q')y"
( )4 (k, ,)(,k k, )( k k, )

+ less important terms

2 2', y" ln' ——,+nonleading terms, (2.9)

while the ultraviolet contribution is of the order of 1n(-q'/A').
One can also work out the expression for 4I"" in the gluoh model. One finds that

~1'~ = O(1)r~.

In other words, AI'" is of the same order as I'" (up to logarithmic factors). The usefulness of the Callan-
Symanzik equation in this case is limited.

The important difference between the second-order expressions of I" in pseudoscalar y, theory and gluon
theory is that the factors (P —k)/(-2Pk+k'), (P' —k)/( 2P'k+ k')-behave effectively as -k/(-2Pk+k'),
-P/(-2P'k+k') in pseudoscalar y, theory, while they behave as P/(-2' +k'), P'/( 2P'k+k') for small k in
the gluon model.

We can use a similar argument to show that the asymptotic behavior of the on-mass-shell I" is not
related to the short-distance behavior in gauge theories.

Let us return to pseudoscalar y, theory. The next diagram we want to discuss is the one with coupling-
constant renormalization subdiagrams. The diagram under discussion is shown in Fig. 2. The vertex
function I " is given by

d4k i d4k, i Z 2

i2vi'0' —y.
' i2m)'0, '-g' ' 'Ii' —ll, —m ' 'P" —ii —ii—m ' '),

Z d k, i Z

(2.10)

Just as before, we have to worry about the effects
of (P' —k+m)/(-2P'k+k2) and (P —k+m)/( 2pk+k')—
in the k integration. At first sight it looks as
though P' and gf in the numerator would cause
troubles when p, -0. Fortunately this is not the
case. The expression

(2.11)

is nothing but the familiar vertex correction for

pl

FIG. 2. A sixth-order diagram.
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the pseudoscalar coupling constant. It behaves as
a constant times y, as k-0. Therefore we can
move p in (p —k+m)/(-2pk+k') through the ex-
pression (2.11) when k-0. Exactly the same rea-
son can be used for p' in (p' —It+m)/(-2p'k+k').
With these in mind, one finds that the k integra-
tion in Eq. (2.10) is free from infrared divergences
when p, -0.

It is also easy to see that the contribution to I"
from the ultraviolet region of the k integration has
a nice zero-mass limit. The contribution can be
written as

tributions, we find

or, equivalently, " that in the limit m-0, p, -0
I'" (q', m', p', g„X„A)—I "(q', 0, 0,g„X„A)

exists.
The last example that we want to discuss here is

represented diagrammatically in Fig. 3. We can
write I'" as

polynomial in ln ——,+ 0
-Q' -g

The contribution to AI'" from the ultraviolet region
of the k integration is, therefore,
O(p, '/(-q'), m'/(-q')). Combining these two con- where

d4k Z Z

(2w), p g m "p g m

(2.12)

(2m) (2m) (2m)' (2w) ' 4 k,' —p,
' k, ' —p,

' k, ' —p,
' k~' —p'

and is represented diagrammatically in Fig. 4.
The detailed analysis of the diagram in Fig. 3

is a long and tedious one. It is best treated by
the general method in the next section. We are
content here with pointing out possible difficulties
and complications in the analysis.

We would like to know whether the unrenormal-
ized vertex function I'"(q', m', g', g„X„A) corre-
sponding to Fig. 3 has a nice zero-mass limit.
One contribution to K is from the region where
k, and k~ are of the order of k. This contribution
is of the order of 1/O'. At first sight, one assumes
that this would cause infrared divergence in I'"

because (P' —k)/( —2P'k+ k') —1/k,
(P —P)/(-2Pk k+')- I/k as k-0. In the two pre
vious examples, we have shown that we can move

P and P' outside to operate on the spinors so that
effectively (P —g) (/- 2Pk+k)- g (/-2 Pk+k) and
(P' —g)/(-2Pk+k')- -k/( —2P'k+k') . Here we also
have to show that, in fact, the P and P' in the nu-
merators of (P —g)/(-2Pk+k'), (P' —jV)/( 2P'k+k')-
will not cause infrared divergence in I'". We
postpone this until the next section.

In the next section, we will present a general
argument that, indeed, I'"(q', m', p, ', g„XO, A) has
a nice zero-mass limit, i.e., I'"(q', 0 0 go ADA)

exists. In other words, the mass-insertion term

\ kI

d

FIG. 3. A eighth-order diagram. FIG. 4. Diagram for the kernel X in Eq. (2.13).



168 SUN-SHENG SHEI

&I'" is negligible as compared to I'" in the asymp-
totic limit -q'»m', p, '. (I )( ) (r )( )($ )( )($ )( )It( ) (3.4)

III. ASYMPTOTIC BEHAVIOR OF ELECTROMAGNETIC
FORM FACTOR

I.~ = y~ I.~S,'S,'Z . (3.1)

Diagrammatically, this is represented in Fig. 5.
In Eq. (3.1) all quantities are unrenormalized
quantities and therefore depend on the cutoff A; K
is the two-particle-irreducible kernel in the q
channel.

In this section we discuss the behavior of AI'"
in the asymptotic limit using the Bethe-Salpeter
equation [Eq. (3.1)]as our starting point. We will
show that

(3.2)

or, equivalently& that in the limits 0 p, 0

r"(q', m', ( ', g„)„A)- r "(q', O, o, g„)„A) (3.3)

exists, in the pseudoscalar y, theory described by

Eq. (2.1).
The Bethe-Salpeter equation tells us that, to the

nth order in the coupling constant, the vertex
function I""is given by

The Callan-Symanzik equation for the vertex
function I " was introduced in the previous section.
We have emphasized the importance of knowing
the behavior of the mass-insertion term in deter-
mining the asymptotic behavior of the vertex
function I ". Several examples were discussed in
See. II. In two cases where the analysis can be
easily carried out, we find that
Ar('= O(p, '/(-q'), m'/(-q'))I"", i.e., the mass in-
sertion term is negligible as compared to I'" in
the asymptotic region. It is easy to see that the
difficulties of analyzing &I'" increase as the order
of the diagram increases. Any attempts to study
~I'" order by order in perturbation would be a
hopeless task. We need some better way to study
hI"". Fortunately, for the vertex function I'" we

have a well-known iterative equation: the Bethe-
Salpeter equation

where the superscripts n, n„n„n„n4 refer to the
order in perturbation and n =n, +n, +n, +n4. Here
n, and n, are all larger than or equal to zero and

n, is larger than or equal to 2. Therefore we only
need (I"")"i for n, =0 to n, =n —2 in order to de-
termine I'" to nth order.

Our aim is to prove that Eqs. (3.2) and (3.3) are
valid in each order of perturbation in neutral
pseudoscalar y, theory. The proof is based on
mathematical induction. We assume that Eq. (3.3)
is true to order n =N —2. We then use the Bethe-
Salpeter equation [Eqs. (3.1), (3.4)] to establish
that Eq. (3.3) is true for n=N.

First let us restrict ourselves to diagrams with-
out self-energy corrections. For such diagrams,
we can replace the full propagators S~ and ~~ by
the bare propagators S~ and &~. In determining
(I'")(" through Eq. (3.4), one has to know some
general properties of the two-particle-irreducible
kernel K. We recall that K involves many internal
integrations. For convenience, let us separate
each pion line into two parts. We call the region
of pion momentum around the origin 0-0 soft;
otherwise it is called hard. "

The contributions from internal integrations of
K can be divided into two classes.

Class 2: A.ll pion lines from the p line to p' line
are soft. This class can be further divided into
two subclasses.

(la): There is no hard integration along P and P'
li~es. In this subclass, all pion lines are soft
inside K. For the pion line closest to u(P) and
u(p'), respectively, we can replace
(8 —((t&)/(-2ph&+ h, ') by tt, /( 2ph, +—h, ') a—nd
(t)' —p2)/(-2p'h~+h2 ) by -gi/(-2p'hi+h~'), where
both 0, and 0, are of the order of k. Therefore the
0 integration in I' will be infrared-divergence-
free.

(1b): The~e axe &md integxations along the P
line and the P' line. In this subclass, we follow the

P line and the P' line separately. Consider first
the P line (Fig. 6). As we have mentioned before,

p- ski
soft

SF SF

sof t-pion
lines

FIG. 5. Bethe-Salpeter equation for the vertex func-
tion I'l".

p

FIG. 6. Diagram with P line and soft-pion lines.
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we have to check whether the P and P' in the nu-
merators of (p —k)/(-2pk+ k'), ( p' —g)/( —2pk +k')
can cause infrared divergences in I'".

The integrand that we have to worry about is of
the form

&& (product of hard-pion propagators) . (3.5)

This has to be integrated over hard regions. Since
the integrand transforms as either a scalar or a
pseudoscalar [depending on the number of y, 's in
the integrand in (3.5)], the result of the ha, rd inte-
gration is

A. l+ By5+ C~y" +Dpy" y5+E~ v" (3.5)

Here &, 8, C„, D„, and E„,are all constructed
out of P and soft k's (and are at least linear in P")
times a function of a, where a is used to distin-
guish between soft and hard pions. " Since P'=0,
the only terms among A, B, C„, D„, and E&,
that may approach a constant as 0- 0 are C„and
D„. They may be proportional to P„. Fortunately,
the terms C„y" and D„y"y, will not contribute to
the on-mass-shell vertex I'~ because ))tu(p) = 0.
The final result is therefore at least linear in k'.

The same conclusion can be reached for the P'
line.

From the usual dimensional consideration, the
kernel K is of the order of the inverse square of
the mass. Thus,

dim(a ").soft contribution) = -2 (3.7)

or +y++2 2, where r, is related to the dimension
of the soft contribution. As we have mentioned

before, we restrict ourselves to I'" with no self-
energy subdiagrams (we postpone the discussion
for I'~ with self-energy subdiagrams until later).
Since &, ~ 0 for any diagrams of K without self-
energy subdiagrams, we conclude that K is at
most O(l/k') as k-0. When we put this informa-
tion into the Bethe-Salpeter equation, together
with the fact that t( and P' in (P —)li)/(-2Pk+k')
and (ti' —k)/(-2P'k +k') do not contribute in the in-

fraredd

region, we find that the contribution of this
class to (I'~)i"'(q', m', t).', g„X„A)has a nice zero-
mass limit, i.e. , (I')')~s~(q', 0, 0,go, X„A) exists.

Class 2: Some pions from the p line to the p'
line axe ha~d. In this case, when we perform hard
integrations, we find that the result is

—,f(, ) as 0-0. (3.8)

For this class of contributions, it is easy to see
that r, is always greater than or equal to 2. Thus,

dim[a "~f(pp'/a') soft contributions]=-2 (3.9)

implies that the contributions from this class to
K behave like O(1) when k- 0. When this kernel
K is substituted into the Bethe-Salpeter equation,
we find that there is no divergence in the k inte-
gration around the origin. The ultraviolet contri-
bution in the k integration also causes no problem,
for there are no infrared divergences from the
internal integrations inside K because of the two-
particle irreducibility of the kernel K.

Combining classes 1 and 2, we find that for dia-
grams without self-energy subdiagrams the vertex
function (I'~)i"' has a nice zero-mass limit.

It is a simple task to include diagrams of I"
with self-energy-correction subdiagrams. All we
have to do is first sum over all such self-energy-
correction subdiagrams. Instead of the bare prop-
agators ~~ and S~, we have to use the full prop-
agator s

(3.10)

8 8 8 8
m + t). —+)8,—+P,——2y I'"(asy) =0.

~m ~ p, g

(3.11)

It is convenient to express I'" in terms of form
factors I", and F„"

I')'=
y "F,+iv"'q, (~/2 m)F, . (3.12)

Since F, = O(p, '/( —q'), m'/( —q'))F, in each order in

perturbation theory, the form factor I", is negli-
gible as compared to F, . Equation (3.11) deter-
mines the asymptotic expression for the form
factor I'",. One finds t;hat

f, (g(t), att)—)sap -2~ f dt') (j7', ,P)
0

(3.13)

where t = 2ln(-q /m ) and

Since m(k') = O(k') and Z(ti) = O(k), all of our pre-
vious conclusions remain the same even for I'"
with self-energy-correction subdiagrams. We also
know that the lowest-order result (I'") ' =y" has a
nice zero-mass limit. This completes our induc-
tive proof that Eqs. (3.2) and (3.3) are true, in
each order in perturbation theory, in the pseudo-
scalar y, theory containing a neutral pion and a
proton.

With the aid of this new information [Eqs. (3.2),
(3.3)], we can neglect b, I'" as compared to I'" in

the asymptotic limit -q'»m', p.'. The asymptotic
expression of I" satisfies the partial differential
equation
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= p,(g(t), ~(t)&,
(3.14)

mass m, and the pion mass p, . The Green's func-
tions are renormalized according to

=p,(g(t), X(t)),
r=z,r. (4.2)

with the initial condition g(t) =g, A(t) = X at t = 0.
It is easy to see that the asymptotic behavior of
the form factor I', is related to the short-distance
behavior of the neutral pseudoscalar y, theory.

In the special case that P, and P, have zeros at
g gf ~ ~f and g-g&, X —~& as t - ~, the asymp-
totic behavior of the form factor is"

F, = c,(m2/-q2) &o, (3.15)

where yo=y(g&, A&) is the anomalous dimension of
the proton field. Our method here tells us nothing
about E, because in every order in perturbation
theory I', is of the same order as the neglected
mass-insertion term &r in the asymptotic limit.

We have shown in this section that is possible to
obtain power-law behavior for the asymptotic be-
havior of the electromagnetic form factor in the
neutral pseudoscalar y, theory. The determination
of the exponent yp is, however, a very complicated
dynamical problem.

d dZrrZr m
d

-+ V,
ddeal

+Zr m +p. —r. 43d
dm dp,

This can be rewritten as

8 8 8 8
m +v —+p, —+p.—-rr r=&r,Bm 8 p, Bg BX

where

(4.4)

p, = m — +ILL, —g,

The Callan-Symanzik equation can be derived as
follows. Let us vary the proton mass m and pion
mass p. :

IV. FORM FACTOR OF THE AXIAL-VECTOR CURRENT P = m +p, —A. ,
(4.5)

Up to now, we have restricted ourselves to the
electromagnetic form factor. However, it is very
easy to see that the same technique can be used to
study the asymptotic behavior of other on-mass-
shell form factors. One such form factor is the
form factor of the axial-vector current. Since the
vector current and the axial-vector currents play
similar roles in hadron physics, both are measur-
able quantities in lepton-hadron scattering. We
will study the asymptotic behavior of both form
factors together in this section.

We assume as usual that the axial-vector current
is partially conserved (PCAC assumption). One
model which incorporates both PCAC and current
algebra is the well-known renormalizable o mod-
el." For the sake of simplicity, we consider here
only the truncated version'4 of the a model which
contains a proton, a neutral pion, and a neutral
scalar meson. The problem of renormalization of
the 0 model has been discussed by Lee,"Gervais
and Lee,"and Symanzik. ~ We refer to them for
details. The unrenormalized Lagrangian is

tt'otA'o+ 2t.(s~o) +(s+o) I 2Po (vo ++o )

go|tIo(oo+t~oyo)fo &xo (vo +mo ) —coco ~

(4.1)

The model after renormalization is character-
ized by the coupling constants g, ~, the proton

pr=Zr m -+ p, —Zr,dm

0~0 (4.6)

Preparata and Weisberger" have shown that in a
theory with the PCAC condition the vertex func-
tion of the axial-vector current is multiplicatively
renormalizable. Furthermore, the cutoff-depen-
dent factor needed to renormalize I ", is Z„ i.e. ,

ru=z ru.
2 5' (4.7)

The Callan-Symanzik equations for the vector
and axial-vector currents are

8 9 8 8
m +p — +P, —+P, ——2y I'"=AI'",

Bm ~p 8g BA

(4.8)
8 8 9 8

m + p. +p —+p g& tu ~r
gm g p

& ()g 2()g

We wish to show that

d+r=Zr m +P, —
dm d p.

It is understood that in taking total derivatives
with respect to m and p. , the bare coupling con-
stants gp ~p as well as the cutoff A are fixed.

Let us concentrate on the proper vertex func-
tions of the vector current and the axial-vector
currents. In the o model, the PCAC condition is



ASYMP TOTIC BEHAVIOR OF FORM FACTORS IN A C LASS. . .

(4.9) t
~f, (l7(t)t(t, l—,) eett —t dt't (d', e')

0

or, equivalently, that
(4.13)

I'2(q2, m2, t(, 2, g„X„A) a,nd I',"(q', m', g2, g„Xo, A)

exist in the limit of m-0, p. -0. (4.10) =f, (2(t), X(t)—) ex),t —2 dt'y(g', P)

From the work of Gervais and Lee" one learns
that m = 0, tj. = 0 implies c, = 0 and (o',) = v, =0.
Therefore the problem reduces to showing the ex-
istence of I"",I'," in the zero-mass symmetric the-
ory. In other words, the only interaction terms
that we have to take into account are

where

t = —,
' ln(-q'/m'),

dg
pl(gt

dA, = p2(g, X) with g=g, X = A. when t =0.

(4.14)

-goT(o(co+ "Dy~)()'0 —'~0'(&0'+ &o')'

We do not have to worry about tadpole terms or
interactions cubic in the meson fields.

The argument we used in Sec. III for the neutral
pseudoscalar y, theory can be readily adapted to
our a model. The same conclusion can be reached
as before as long as the meson-fermion vertex is
either a scalar or a pseudoscalar interaction.
Fortunately, this is the case for the 0 model.

Therefore we conclude that Eqs. (4.9) and (4.10)
are valid. The asymptotic behaviors of I'" and I'",

satisfy the partial differential equations

8 8 8 8
m + p +P, —+P,——2y I"(asy) =0,

8pn 8 p, '8g '8X
(4.11)

8 8 8 8
m + p, —+ P, —+ P, ——2y I'2 (asy) = 0 .8' 8 p. 8g

In the ease that the Gell-Mann-Low eigenvalue
conditions are satisfied,

p, (@,&y) =o, p, (gg, ~g) ='o

g~gy ~
A. ~ Xg as

the asymptotic behaviors of F, and E", are"

E, - c,(m2/-q2)»,

E", - c2(m2/-q2)~o,
(4.15)

where y, =—y(g&, Xz) is the anomalous dimension of
the proton field, and c„c,are functions of t(, /m.
We conclude that the on-mass-shell axial-vector
form factor has the same asymptotic behavior as
the vector form factor. The experimental data
from high-energy lepton-hadron scatterings seem
to be consistent with this result.

It is worth emphasizing that the asymptotic forms
of 1""and I"," satisfy the same partial differential
equation. The on-mass-shell vertices I'", I'," can
be expressed in terms of the form factors:

f'=y"E, +is"'q, (~/2 m)F, ,

I )'=y)"y, F", + (q"/m)EP,
(4.12)

where F is the induced pseudoscalar term. [The
axial-vector current considered in this paper is
the first-class current. Therefore the term
ic"'y, (q, /m)E"2 will not be present in Eq. (4.12).22]

Since E, =O(p'/ —q', m'/ q')E, and-
F = O(p. '/-q', m'/ q')E", , in each —order in pertur-
bation, they are negligible as compared to +, and

F, in the asymptotic limit. Equation (4.11) de-
termines E„E, in this limit. One finds that

V. SUMMARY AND DISCUSSION

In this section we want to summarize the re-
sults we obtained and make comparison with pre-
vious work.

We have shown that in the renormalizable pseu-
doscalar field theory with a proton and a neutral
pion the asymptotic behavior of the on-mass-shell
electromagnetic form factor is governed by the
short-distance behavior of the theory. In particu-
lar, if the strong interaction has a nontrivial fixed
point at g& and A&, the asymptotic behavior is
(m2/ q2) g(gf, X f)

We have also shown that in the truncated 0 model
with a proton, a neutral pion, and neutral scalar
meson, the asymptotic behavior of the vector-
current and axial-vector-current form factors
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is governed by the short-distance behavior of
the theory. They will have the same asymptotic
behavior if the truncated 0 model has a fixed point.
Experimental data obtained so far seem to support
this result.

Although we restrict our discussion to the neu-
tral pseudoscalar field theory and the truncated
0 model, it is easy to convince ourselves that the
arguments and discussions can be readily extended
to any renormalizable field theory (with or without
internal symmetry) with Yukawa-type interactions
and quartic interactions. These include all re-
normalizable field theories except gluon theories
and gauge theories. We leave the generalizations
to the interested readers.

It would be useful to compare our results with
the results of previous work on the asymptotic
behavior of form factors in field theory, especial-
ly the work of Landau et al. ,

' Bogoliubov et al. ,
'

and Appelquist and Primack. ' We recall that
Landau and collaborators obtained the asymptotic
behavior of the form factor, in neutral pseudo-
scalar theory, when all the squared momenta are
asymptotic, by solving a set of approximate inte-
gral equations. The result is

I "=r" & -32,, »

'The same result was obtained by Bogoliubov and
collaborators using the renormalization group.
The more interesting case of the asymptotic be-
havior of the on-mass-shell form factor was ob-
tained by Appelquist and Primack using the leading-
logarithmic approximation. Their result is exactly
the same as that of Landau et al. ' and Bogoliubov
et al. ' There is one very serious difficulty in their
result. For large spacelike q', the vertex function
I"" becomes complex, which violates unitary and
analyticity. Therefore the result they obtained is
not physically meaningful. Appelquist and Pri-
mack tried to include the term of next to leading
order in the logarithm. The similar unreasonable
properties of the result persisted.

It is shown in this paper that for general renor-
malizable field theories, excluding gluon and gauge
theories, the asymptotic behaviors of the on-mass-
shell form factors can be treated by the renormali-
zation group (or the Callan-Symanzik equation).
The renormalization-group equation and the Callan-
Symanzik equation provide us with a powerful
method for summing up all logarithmic contribu-
tions (leading as well as nonleading). We find that
for this class of field theories the asymptotic be-
haviors of the form factors are governed by the
short-distance behaviors of the theories. The
asymptotic behaviors of the form factors have the
right unitarity and analyticity properties.

Recently, Marques' applied the Callan-Symanzik
equation technique to the asymptotic behavior of
form factors. He shows that AI'" can be neglected
for some restricted set of diagrams (ladder dia-
grams and fourth-order diagrams). No general
discussion for AI'" was given. His results in
pseudoscala. r y, theories did not go beyond those
of Appelquist and Primack.

Our last comment is that if all three squared
momenta are large the vertex functions will satisfy
the same equation as the on-mass-shell vertex
functions for the class of theories we discussed
in this paper. The asymptotic behavior, in the
case that the Gell-Mann-Low eigenvalue condi-
tions are satisfied, will be
[~'I(-e')]"'f(t '/~', f "(v').

added note. In this paper we have not touched
upon the problem of form factors of bound states.
Much work has been done in this direction, includ-
ing the recent work of Appelquist and Poggio. "
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