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We present a formalism for the calculation of scattering amplitudes for electron-laser pulse processes.

Our results make use of standard Feynman-Dyson S-matrix techniques and the

Lehmann-Symanzik-Zimmermann reduction formalism. The laser pulse is described quantum

mechanically as a coherent-state wave packet. The electron is represented by wave-packet solutions of
the Dirac equation in the case of scattering boundary conditions, or by Volkov wave packets when we

desire nonscattering boundary conditions. We demonstrate the existence of new, nonlinear corrections of
a quantum-mechanical nature for the process of stimulated Compton scattering.

I. INTRODUCTION

The problem of the interaction of an electron
with a laser pulse is a difficult one, as evidenced
by the large number of authors who have written
about the subject. '

These authors fall roughly into three groups:
The first group' (classical) calculated the electron
orbit in the laser pulse and evaluated cross sec-
tions using the methods of classical electrodynam-
ics—the electron was treated nonrelativistically
or relativistically, whereas the laser pulse was
taken to be a monochromatic plane wave of infinite
extent or a damped monochromatic plane wave.
The second group' (semiclassical) computed scat-
tering amplitudes via time-dependent perturbation
theory —the electron was described by the Volkov'
wave function and the laser pulse by a plane wave.
The third group' (quantum field-theoretic) used
covariant perturbation theory (conventional or
null-plane) and the adiabatic switch-off' technique
to compute scattering amplitudes. As applied to
the calculation of the stimulated Compton scatter-
ing amplitude, ' "the methods of these groups of
authors gave different results.

The conflicting classical results were due to the
imposition of initial conditions on the electron
while simultaneously demanding that the laser
pulse be described as a monochromatic plane
wave of infinite extent. Eberly and Sleeper, ' how-

ever, calculated an electron orbit in the presence
of a wave-packet laser pulse.

As Fried, Baker, and Korff'pointed out, much

of the disagreement in the semiclassical results
could be traced to the use of Volkov4 wave func-
tions to compute scattering amplitudes for ex-
perimental configurations where the laser pulse
and electron are asymptotically noninteracting.
Thus, we see that the disagreements arising in

the classical and semiclassical results are related.
Much of the disagreement in the field-theoretic

case can be traced to the imposition of disparate
boundary conditions also. Fried and Eberly' in-
voked the adiabatic hypothesis' (incorrectly in this
author's opinion) in their calculations while at the
same time assuming a monochromatic plane-wave
field for laser pulse. They found no intensity-de-
pendent frequency shift (denoted hereafter by
IDFS) in their calculations. Subsequently, Eberly
and Reiss' were able to show that a class of dia-
grams was omitted by Fried and Eberly, ' which,
when properly accounted for, would give rise to an

IDFS.
Dawson and Fried' treated the electron-laser

pulse (henceforth denoted by ELP) process of
stimulated Compton scattering using a model where
a neutral scalar particle (the electron) interacts
with a scalar, massless external field (the laser
pulse). The electron was described by Volkov-
type' solutions, while the laser pulse was given by
a square pulse shape and also by the more realis-
tic Lorentzian shape. They found that the fre-
quency profile of the scattered photon depended
not only on the intensity of the externalfield, but

on the laser pulse shape as well. Neville and
Rohrlich' used the unconventional null-plane for-
mulation of quantum electrodynamics and obtained
an IDFS and a shape-dependent frequency profile
using Volkov' wave packets and a monochromatic
square pulse (pulse and electron were asymptoti-
cally noninteracting). Their method, however, in-
troduced singular electromagnetic field intensities.

In this paper we will present a general formalism
for calculating scattering amplitudes for ELP
processes. Our results make use of the standard
Feynman-Dyson S-matrix techniques" and the
LSZ formalism, "'"although the Dirac interac-
tion" picture is replaced by the Furry represen-
tation. " The laser pulse is described quantum
mechanically as a coherent-state" wave packet;
the electron, for scattering boundary conditions
(i.e. , the experimental setup is such that the elec-
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tron and laser pulse are asymptotically noninter-
acting), is described by wave-packet solutions to
the Dirac equation. For nonscattering boundary
conditions (i.e. , we imagine the experimental sit-
uation when, for all practical purposes, the elec-
tron and laser pulse are never decoupled}, the
electron is represented by Volkov' wave packets.
Our method is more general and much easier to
utilize than previous quantum field-theoretic
methods, in that it may be applied to situations
where the incident laser pulse has an arbitrary
shape, where we may or may not have scattering
boundary conditions, and where the incident laser
pulse is modified significantly through its interac-
tion with the electron.

As a bonus, we also demonstrate the existence
of new, purely quantum-mechanical, nonlinear
corrections present in any ELP scattering pro-
cess.

In Sec. II we introduce our model for the ELP
interaction using appropriate modifications of a
method due to Zwanziger. "

In Sec. III we define and calculate S-matrix
elements in the Heisenberg picture using the re-
duction technique. "' We make use of Zwanziger's
fundamental formula for the reduction of coherent
states. " We also obtain scattering amplitudes
where vacuum expectation values of the various
operators are to be computed in the Furry picture. "

In Sec. IV we apply our methods to the specific
process of stimulated brompton scattering' "and

explicitly demonstrate the new, nonlinear quantum-
mechanical corrections.

In Sec. V we present a nonrigorous argument for
the existence of an IDFS in any ELP process.

II. ELP SCATTERING MODEL

Our model for the ELP interaction is conceptu-
ally very simple. The initial state consists of an
electron with four-momentum P, an arbitrary
number of photons J(k;(p;)] with four-momentum
k';, and polarization p, ;, and a laser pulse intensity
is determined by the classical field

an arbitrary number of photons (k&(i)&)) with mo-
mentum kf' and polarization p.f', and a laser pulse
with intensity determined by the classical radia-
tion field

where

2„, ,
= ——,'(a"A ')(B„A„),

Z„,„„=——,'y(- i y" s„+m)q

a()()))ky + m0)4 ~

2'(x) = —J"(x)A „(x).

(2.2)

J"(x) is the quantum-mechanical current, J"
= —2e[gy", ())], and 4 "(x) is the interpolating elec-
tromagnetic field operator. No mass counterterm
is present in (2.2) as radiative corrections due to
the quantized fields are expected to be unobserv-
ably small for ELP interactions. ""'

From (2.2) we obtain

Dg = ey"A„g,

&D = eely"A„,

where

D=—{-iy ~ 8+ m}, D:—(iy 8m)+. ~

The canonical commutation relations for the in
and out fields are

[~)",(x)~&U (x)] = l8")l'(x)»U"(y)]

= ig~, c)(x —y).

(2.1)

We see that it is j(x) that can cause the intensity
of the out-laser pulse to be different from that of
the in-laser pulse.

Our Lagrangian is

g(x) = g, „„,.{x)+ Zo„„(x)+ 2'(x),

where

where

n(x) = n"((x) —and"(x},

We also have the usual expansions for the in and
out fields:

QUU((ln)(X ) (2 & )-3/2 [onus(in)(k )e -i))xd'k
2u)

a tnn)()n)(k )e cfnx] (2 3 )

and
where

[
' ""(k), a ' (k')] = —2k' 5(k —k')

Here k" = (k', k) = ((n), k) = ((k~, k)." The final state
consists of an electron with four-momentum p',

We can set up the usual Yang-Feldman formal-
ism" relating the asymptotic quantum fields:
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uk(*)=k, (*) Jo*"t*—y)u„ty)uy,

U, (*)=U'i'(k) fO'"(* y)I„(y-)uy,

DA'q(x) = OA+qx) = 0.
We have similar relations for the asymptotic
classical fields:

(2.4)

and outgoing laser pulses are the same. However,
when they are different, that is, when n'"ca'"t,
the inner product '"'(a'"'la'")'" will depend upon j(x).

A sufficient condition that s( j) exist is that

li(~) I'- o

faster than

a „(x)=j„(x),

o, (*)= i(k) Jk*"(*-y)t„(y)uy,
where

y&0

(*)= u'i'(*) ' J k"(*-y)i, ty)uy,

Ua'"(x) = d'"'(x) = 0

(2.5) j„(x)= j„(k)e "*dk.

This condition can be obtained by normal ordering
S7

so+( joUt)Ao ills to III ( jollt) Aollt aollt A outf
s' (j }s ' (j'")= s '"'(j'")s'"(j' ) = 1,

(2 8)

(2. I)

a „(x}is the interpolating classical field.
We relate the classical and quantum asymptotic

fields in the following manner"":

s(j) = C(j):s(j):, )2.11)

and then counting powers of ft in C(j)." It turns
out that

(

C(j }= exp u j&(x)Ae(x —y)j" (y)dxdy

and similarly for out-in. From (2.4) and (2.5)
it follows that

gout g in {)f
If s exists at all it is of the form

where
—tP(& -v)~i e

s' (j~) = T exp —i j'~(x') A' (x')dx'

Our basis states are

Ip, {~,),- &-='(j )Ip, {~,»,
IP {QI) aout) Sout(j t)

I

oPul {Qy)&out

Ip, {~),a& =
I p& K~), a&,

(2.8)

(2.9)

(2.10)

III. CALCULATION OF SCATTERING AMPLITUDES

Now that our basis states have been defined and
field equations given, we may proceed with the
calculation of S-matrix elements. For the case
where we have only the laser pulse and an electron
present in the initial state, the S-matrix element
is given by

—out (a Dill {ftI) P I P a

ill�)

III

where polarization indices have been suppressed.
We have immediately that states la )'" and la"u)'"'

are coherent" ":
IA„(x))' 'la'") '"= {a (x)l' 'la'")

and similarly for in- out.
The basis states I p, {k),a) have the same inner

product as the usual Fock states if the incoming

Here, in keeping with the Lehmann-Symanzik-
Zimmermann (LSZ}formalism, "" the electron
and laser pulse do not interact in the remote past
or future and are therefore represented by wave-
packet states. Thus, we assume scattering bound-

ary conditions for the ELP interaction.
Upon reducing out the electrons in the usual

manner we obtain

yo = ( ) f u*uy ~ (*)o '"( '" (k )IT(t)(*()k(y))(y'o (y)o

where ut", (y) is a wave-packet solution of the free Dirac equation. Using Eqs. (2.1), (2.8), (2.9), and (2.10),
we obtain

I'-="'(a', {f)y)I T(4(x)k(y)} la"')'"

= '"'({}tA
I
s'"'(j'"+ j)T(4(x)0(y))s'"(j ) Io&'".

Now

s(jt + j,) = e' s(j, )s(j2},
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where Q is real and j„j,are arbitrary. " It is also true that

~ yl
T exp -i j A'"' 'dx = e' exp -i j.A'"' dx

where

(I)'= 4 j„xj" x' ~ x —x' b x-x' dxdx',

and (I)' is real. That is, time ordering of s contributes only a phase factor. "
At this point, we must use the fundamental reduction formula for coherent states"

(.)exp i j1 A dx T gg exp -i j, A'" dx = T //exp —i J N'1+dx (3.1)

which may be rewritten in the form

exp i A'" BpQ1+d'x T pg exp -i A B,cx,'d'x = T //exp —i J n,'dx

where

and

((*)= f O(* &)fl(f&(t, -

(3.2)

n (x), j, = j'"

n,"(x)= l a'"'(x), j, = j'"'

n'(x)=—a'"' —a, j, = j.
)

The identity also holds if a,' =n, and a,'-n, .
Using the reduction formula we obtain

V=- 0fkf'ks'"(j)TI ge"p ' J a'"dx
f

0

From Eqs. (2.11), (3.1), and (3.2), we find

V=—C*(j) 0 pa~(k )T
~
+exp iJ (a-+ a ")dx

~

0

where the operators a&t(k,') are defined through Eqs. (2.3), (2.6), and (2.9). We changed the index "f"of
the photons to "i" to avoid confusion.

Using the reduction formula"

-'(Ol "'(O, )t'(OOO) IO) = (f f'. ;,(ul «'( tl t(A"O'(*f, )OO&l &, Of0' ( )= (2 )
'" e

and Eqs. (2.3) and (2.6), and upon dropping disconnected photon momenta, we obtain

8 n

o II "'(k )T(4(()J) o =(')" ?Id' 'f*;( )&., '"'(0IT(l&"'(,)- "'(,)1.. .[&'"(.)- ""(.)j()le)I0) .
i= 1

Thus, the scattering amplitude is

out(nout {k&}Pi ~P nm)m

n

( )""c*(j) —.l'"(.)II d', f.*;(., )D.o.,)=1

( m

0 T~ IA'((x;) —a'((x, )]()&(x)())(y)exp —i J (a + a")dx'
~

0

x D„u'& &(y )dx dy . (3.3)

If we make the polarization four-vector explicit, we obtain
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sy' = (i) C*(j) u (x)II dx, g}, q~f (x )e (p }} )D Cl WD u~ }(y)dxdy
i=1

where

W=- 0 Tl [A"'(x ) —n" (x )]})(x)g(y)exp —i J (n'"+ n")dx'
I

0i i

The presence of the factors [A"'(x,) —a"'(x;)]
indicates that the use of the Furry picture" may
be judicious. We therefore define a new interpolat-
ing field

A'=A —a.
Thus we obtain

Equations (2.2), in terms of A', give rise to the

interaction Lagrangian

Z' = —(J —j) (A'+ n) = -X'
We note that the term j„(x)n"(x) may be neglected. "

The relationship between the Heisenberg repre-
sentation and the Furry picture is given by the
following equations":

i = Z,'(x)U[o, o ],.&U[o]

O,[a] = U[a, a,]OU'[o, a,],
lg, [o]& = U[a, a.] I q[a, o.]&,

i = J,(x) n(x)V[o],. ~v[1

o,[a] = v '[a]o,[o]v[a],

ly, [ ]) = v-'[ ] l|c, l ]&,

where 0 and a, are spacelike surfaces, a, fixed.
The subscript I denotes the interaction picture,
while F denotes the Furry picture. No subscript
denotes the Heisenberg representation. 0 is an
arbitrary operator while If[a,]) is a state vector
of the physical system.

From these equations we may obtain the field
equations for A „'(x) and g(x) in the Furry picture":

A'= I-A,'= 0,

DyF= ey n

A~ = V 'A'»V=A»,

4= V '4» V.

The S matrix is

s= Tl exp —i (J» —j) A' dx

Dropping the prime on A„', we obtain for 8' the
expression

(0 IT( ~ Aj", &(x; ) ~ ~ }I'»(x)}I}»(y)exp[- if (J» —j} (A» + n'" + a '('})dx]}IO)

(0 Is [0&

where I0) is the Furry vacuum. We note that

J»(x) = (0IJ»(x) I0) does not vanish for an arbitrary
field a„(x)."'"" In fact this term gives use to

all the vacuum polarization phenomena one en-
counters and contains a logarithmically divergent

part which effects a charge renormalization. "'""
This means that in our expression for 8' one must

acknowledge that J»(x) is not a normally ordered
operator, and therefore it is necessary to include

any Wick contractions of Jgx} that might occur in

the expansion of a time-ordered product for a
particular process. "

However, it is well known that the polarization
induced in the vacuum due to a plane wave whose
field strength tensor is F„,(T) = f„„(T},where
r = }}"x„,}}"}}„=0, q"f„, = 0, F is an arbitrary
function of 7, and f„, is a constant tensor, is

zero." We shall therefore consider for simplicity
z'„"(x) to be a plane-wave packet. This then implies
that the vacuum polarization of our ELP process
is due only to the potential

n»" (x) =(a "(x)—n "(x))

a"'(x —y)j'(y)dy

If we assume that the intense laser pulse incident
on one or more electrons will not be appreciak ly
changed by the interaction, then we can consider
that j„(x)= 0 and a~ = a'"'. If we further assume
that Ci j„=0, then J~(x) can also be neglected. '
The expression for W becomes
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(0]T( Ag&(x, ) ~ ~ ~ Pe(x)4r(y)exp[- ifJe (Ae + a'" }dx'])~0&

(0
~
T(exp[- ijJe .Aedx'] ~0&

(2 4)

where now Jz(x) can be considered a normally ordered operator.
As usual the denominator (0~s ~0& represents the vacuum Feynman graphs and eliminates all disconnected

graphs in the expansion of W."-' "
We note that the more realistic case where j„c0and a&ca"'„"' can also be handled by our formalism.

IV. STIMULATED COMPTON SCATTERING

We now apply the results of the previous sections to the process of stimulated Compton scattering (we
assume j„=0, i.e. , pulse depletion is neglected) where the scattering amplitude is given by

out(aout 1 i(yl) ei
~
e a&n&m

For 5', we obtain

~ (Ol»'(z)4 (x)k{y)exp[-ifJ,(u) [A (u)+ a'(u)]duj)lo&
(ops/0&

The zeroth-order term vanishes. The first-order term gives (connected graphs only)

lt'(1) = (ie) du[- kg"'Dz(z - u)][- 2S,'(»)] y [- -.'S"(u y)] (4 1)

where

(0 IT(Ag(x)A~(x')) [0& = —,'D~(x —x')g—"",

(OIT(y, (x)g, (y))IO& = ——,' S,"(x,y).

Here

D,S~'(x, y) = 2i5(x —y) + ey "a~(x)Se'(x y},

Se (x, y)D, = -2i5(x —y}+ ese'(x, y)y"a„(y),

„De(x—x') = —2i5{x—x'),

S&;(1)= (i)3 dxdydzgz &, f~~(z)e„(k', A')uI; (x)[D, CI,W(1)D,]u&'(y),

(4.2)

(4.3)

(4 4)

(4.5)

where

f, .(z) = (2v) '~'e '

We obtain

D, ,W(1)D„= o{x—z)(-ey")5(z —y)+ —'i(y ~ [-ea (x))S~~(x, y)[-ey'] 5(z —y))

+ (- .!i}([-ey']SF'(z, y)y [-ea'"(y)]5(x —z))

+ —,'(y [-ea'"(x)]se~(x, z)[ —ey']Se'(z, y)y [-ea'"(y)]).

The first term does not contribute because the
electrons (in and out) and the scattered photon are
on their respective mass shells.

We can elucidate the structure of the remaining
terms by utilizing the Fourier transform of
S~g'(x, y) and a'"(x):

s "t., ,)= f dp, Sp,.- . **s (p p)

a„(x)= dqa„(q) e '"

dq u"' q, A. &„(q, A)e '" .



EL ECTRON-LASER PULSE SCATTERING

We find that the second term in Eq. (4.1) con-
tributes to

Si'(1}= -'(2w)"' e'a~ ~ u(p', s'}M"'u(p, s),
where u and u are Dirac spinors such that

Sg;(1) = S~'; (1)+ S~'(~(1) + Sy',~(l) + S~';~(1),

Sy';(1) = 0 (4.6}

the expression
and

U(", (x}= f~(x}u(p, s)

m'*'= Ef ~ (q&( '"(a&)s' ((' —a(-()~ ~((", &'Ms.

From the third term, we obtain

S~' (1) = ——,'(2w)"' e'g .~ u(p, s)Ijf "u(p, s),
where

M"' = g dqy e(k', X')Sw'(p'+ k', p+ q)y e(q, X)n'"(q, Z) .

Similarly, for the fourth term, we obtain

S~(';~(1) = —,
' i(2w)'"' e'g~. ~. u(P', s')M'" u(P, s),

where

M' = g y e(q, &)n'"(q, &)Sz(p' —q, p, )y ~ e(k', &')S„'(p, + k', p+ q, }y ~ e(q„A., }n (q„X,)dp, dq dq, .
X Xi

If we write the Furry picture propagator in terms of free propagators using the expression"

S(w'(p„p, ) = SF(p, )5(p, p, )+ [(2 )w'/( 2i)]Sw(p, }ey n'"(p, —p, )Sw(p, )

+ [(2w)~/(-2i )]'Sz(p, ) dq dq, ey ~ n'"(q)S j,(p, —q, p, + q, )ey ~ n'"(q, ) Sz(p, ), (4.7)

where

-2i 1
S, )=

(2w)' y p-m '

we immediately see that I " represents the sum

of all Feynman diagrams where the scattered
photon k' is emitted "first" (see Fig. 1), M " rep-
resents the sum of all the diagrams where the

scattered photon is emitted "last*' (see Fig. 2),
M~4~ represents the sum of all diagrams where the

scattered photon is emitted "somewhere in be-
tween" (see Fig. 3)."

Thus Sz;(1) is the total, nonlinear amplitude for
stimulated Compton scattering, assuming that

j&(x)= 0 and J~(x}=0 and ignoring the fact that the
laser pulse is actually a Bose-Einstein system.
Substituting Eq. (4.7) into Eq. (4.6) and considering
terms of order e' only, we obtain what is essen-
tially the Klein-Nishina scattering amplitude. "
The terms in Sz, (1) of order higher than e' give
rise to nonlinear effects. Upon computing Sf' to
higher order in the Furry picture, that is, Sz;(2),
S&, (3), . . . , we find new nonlinear corrections
not previously given in the literature. It appears
that these new corrections originate in our use
of a full quantum-mechanical description of the

Y

K j

+
/

+ t ~ ~

/ +
~4A~+

~A~+
/ +

FIG. 1. Diagram in the Furry picutre which represents
the sum of all Feynman diagrams where the scattered
photon 0' is emitted "first. "

FIG. 2. Diagram in the Furry picture which represents
the sum of all Feynman diagrams where the scattered
photon 4' is emitted "last."
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laser pulse as a Bose-Einstein system via the
coherent-state formalism. They involve the
dimensionless parameter (eA/m) (A characterizes
the amplitude of the laser pulse), which is of the

order of 10 ' for present high-intensity optical
lasers. As an example of the new nonlinear cor-
rections, we illustrate the computation of Sf, {2).
Considering connected graphs only,

ey(2)= (—if(-e)' f 2, detu- ) D-', ('* —,)[2,"(x, ,)yd,"( „,)y «'"( .ld ( ., 2)

+ S'r'(x, u, )y a'"(u, )S~r'(u„u, )y"S( f(u„y)]

and

D, ,W(2)D„= —,'(e5—(x—z)y'Se)(z, y)[- ey a'"(y)] —,'ie5—(z—y)[- ey ~ a'"(x)]Sr'(x, z)y"

+ le[ ey -a'"(x)]S"(x, )y'S'"(z y)[ ey -a'"(y)]

.'el.- -ey -a'"(x)]&g'(x, z)y'Se'(x, y)[—ey a'"(y)]

——,'ee(* —e)f duy'2'(, u, )I —ey 2 (u)12'(u„y)l- y '"(y)1

——,'e5(z -y) du [—ey. a'"(x)]Se)(x, u, )[—ey a'"(u )]Sf", (u„z)y'

ie du, [-ey a '"(x)]S„'(x,z)y" Sf,'(z, u, )[-ey n'"(u, )]Sr'(u„y)[- ey a'"((y)]

—a&8 d+ —8P'Q x p. x, + —8) 'Q Q y Q, z P y +, P —eg'Qm

Thus,

2„(2)= (')'u((y, ') Jd*dyd f;(*)f(y)d, ,f;()(2 ee)(e.yl)x, tu'(2,$,1(2,.).

D„-[D —ey ~ a (x)]—= D», , (4.8)

D, -[D, -ey a'"(x)]-=D„„.

In that case, we find that

(4.9)

ue,.(1)= (()' J dxeh d U !'1(x)fdf(*)e„(2',1')), . , ,

Further evaluation of Sf;(2) is not very illuminat-
ing.

It is interesting to note that for the spinor elec-
tron, with nonscattering boundary conditions
(i.e. , the electron and laser pulse are never de-
coupled) and using Volkov wave packets, the am-
plitude for stimulated Compton scattering can be
obtained by making the following replacements in
E(l. (4.5):

de;(1)= )u Jd ' ' (f ' ( )1 ~ (2' 1')

x U,""(x)(fx. (4.13)

X

Presumably, this is the stimulated Compton scat-
tering amplitude for the experimental configura-
tion where one observes the scattered photon k'
while the laser pulse and electron are still inter-
acting.

It should be noted that because the ELP inter-
action is intrinsically nonlinear, one cannot con-
struct the scattering amplitude for an arbitrary
pulse in terms of scattering amplitudes using
monochromatic fields. One must, in general,

xD„~,W (1)D,„U","&(y),

where U" and U now satisfy the equations

U"'"(x)D = 0

D,U.""(y)= 0.

{4.10)

(4.11)

(4.12)

~/j
//

+ & +"

r
Using E(ls. (4.1)-(4.4) and the replacements, we

obtain

FIG. 3. Diagram in the Furry picture which represents
the sum of a11 Feynman diagrams where the scattered
photon k'' is emitted "somewhere in between. "
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construct amplitudes using normalizable three-
dimensional wave packet for the laser pulse. "

Our method for computing ELP scattering am-
plitudes uses only the familiar Feynman-Dyson
S-matrix theory and the LSZ formalism and thus
is much easier to utilize than previous field-
theoretic techniques —although first the Furry
propagator must be known or approximated and
then nontrivial integrations be performed for any
calculation. It should also be noted that the ex-
tension of our method to situations where an
arbitrary number of electrons and/or positrons
are in the "in" or the "out" state is straightfor-
ward. One simply applies the reduction technique
as many times as needed.

V. IDFS

Although the intent of this paper is to present a
quantum field-theoretic formalism for handling
ELP processes, we comment briefly on the sub-
ject of the existence of the IDFS for stimulated
Compton scattering. For scattering or nonscat-
tering boundary conditions, the amplitude depends
on W(1) and therefore on the propagator for the
electron in the laser pulse. Because of the inti-
mate relationship between the poles of the propa-
gator and the IDFS, to make a statement about
existence of the IDFS is tantamount to making a

statement about the pole behavior of the propa-
gator S~. For the monochromatic plane-wave
case, the work of a number of authors" has
shown that the electron will experience a mass
shift 6m' ~A' (A is the plane-wave amplitude)
given by the poles of the propagator. More gener-
ally, Dittrich" has shown that for any plane-
wave field, the electron will experience a, mass
shift 5m' = 5m'(o. "(x)). Thus, one can reasonably
conclude —at least for the plane-wave case —that
the IDFS exists.

For the more realistic situation where the laser
pulse is a normalizable three-dimensional wave
packet, not much is known about the propagator
Sz'. However, one expects the pole behavior of
the propagator to differ considerably from that of
a free-particle propagator. Indirect evidence
attesting to this is the quantum field-theoretic
results of Neville and Rohrlich" and Dawson and
Fried" and the semiclassical results of Reiss, "'"
where wave-packet descriptions were used for the
electron and laser pulse (Neville and Rohrlich
used a monochromatic square pulse).
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