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High-energy potential scattering of Dirac particles
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A general method for studying the high-energy potential scattering of Dirac particles is presented. The
failure of the usual eikonal picture for a pseudoscalar potential is attributed to competing pair-

production processes.

The study of the motion of ultrarelativistic
particles in an external field has been of great
interest owing to the recent development of in-
texl.se electromagnetic fields in lasers and the
availability of energetic electrons in accelerators.
With the aid of functional methods, the problems
of high-energy potential scattering also serve as
a first step in understanding high-energy quantum
field theories. In nonrelativistic quantum mech-
anics, this subject had been well analyzed many
years ago. ' Since the physical concept of rel-
ativistic wave functions is different from that of
single-particle wave functions, a direct general-
ization of the Glauber approximation to relativistic
quantum mechanics must be looked at with certain
reservations. In the search for a high-energy so-
lution, one is, however, guided by the following
empirical fact: Longitudinal velocities of the
colliding particles seem to be separately con-
served. Moreover, a very fast particle behaves
like a classical particle because its de Broglie
wavelength is small. Thus, at extremely high
energies, the single-particle wave function P(x, t)
has a narrow spread in the longitudinal velocity

P~H 'P(x, f )= (P3H ') g(x, t)

y(x, f),
where P, (H) denotes the longitudinal momentum

(energy) operator and (P,H ') the classical value
of the longitudinal velocity which is practically
equal to unity (k =c = 1) along the entire trajectory.
Equation (1) cannot be made use of automatically
in relativistic physics. Because of the possibility
of real and/or virtual pair production from the
potential, the single-particle interpretation of
relativistic wave functions runs into theoretical
difficulties. It is a well-established fact' that a
Dirac particle with positive frequency before scat-
tering can go over, after scattering, into a super-
position of states of positive and of negative fre-
quency. For a Klein-Gordon wave function, the
situation is even more complicated. Here one

may be faced with the occurrence of complex
frequencies. '

i —-H. P{x, t'I=/V/(x, tI,8

Ho=—e'P + Prn,

where V(x, t;E'j is a 4&&4 matrix function of space-
time coordinates and possibly of the energy E of
the incoming particle. In the general case, the
solution of (2), which contains only positive fre-
quency at t= —~, involves both signs of the fre-
quency as t-+ ~. %'e write

pos & neg

i(~3~3 @'t) M + «(~3~3+ + t) W=—e +++ e

where the 4-component spinors Q, are functions
of space-time coordinates, of the parameters of
the incoming particle (p, H, m), and of the param-
eters characterizing the potential (coupling con-
stant, eff ective range). The boundary conditions
are

@ (f=- )=o,

p, (t = —~) =e'~~*' u, ,

(4ap

{4b)

where the 4-spinor u, describes the spin state of
the incoming particle. The scattering amplitude

In this paper, we wish to derive the high-energy
Dirac solution4 in an arbitrary, time-dependent
potential. Although the method is applicable to
all types of potentials, we shall give explicit re-
sults concerning the cases of vector coupling
(electromagnetic interaction) and of pseudoscalar
coupling only. For the vector coupling, pair pro-
duction amplitudes vanish at high energies. Thus
one is essentially dealing with the single-particle
problem. The high-energy approximation assumes
the familiar eikonal form. For the pseudoscalar
coupling, virtual pair production amplitudes can-
not be neglected in the computation of the scatter-
ing amplitude. Consequently, the high-energy
approximation is no 'onger eikonal, but the ex-
ponentiation' still holds. The Dirac equation in a
potential can be written
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of the single-particle problem is determined by

P, (t=+ ~) and the amplitude for pair production'
is related to Q (t=+ ~). Thus the high-energy
approximation previously discussed for the single-
particle wave function should apply only to (I'

We are only interested in those potentials such
that the longitudinal motion of the particle (g „)
is uniform and rectilinear as I'-~. It is not dif-
ficult to find that this is indeed the case if

(
( +03q(,

where g, are the 2-component spinors (appro-
priately normalized) and o, (i =1,2, 3) are the
usual Pauli matrices. The Dirac equation (2} de-
termines P, in terms of the input parameters.
Substituting (3) and (11) into the left-hand side of
(2) we get

V—«1 for E-~.
jV

We have

ix, =[x„HJ = io.„
iri, =[a„H] =2o. H —2P, —Ju„P Vj, .

(6)

~ ( ...-~) A e~( ...+~)~r
8

at

where

[ia, —(crx V), -mJ P,

,,[;a, , (jrxvI, ]&.) '

(12)

As the longitudinal motion becomes extremely
fast, both H and P, of (}(}„„,are approximately con-
served quantities,

H=0, P,=O. (7

The anticommutator (o.„PVJ, is clearly of the
same magnitude as V. Hence, with the aid of (5)
and (7), Eq. (6) becomes

[ta + (ox V), -m]q
8=

o,[-ia + (o x v), —m] p

8 8
8

~X3

(ox V) = o,a, —o a, .
Sn3= 2n3H Ci = Q. 'e ""'

where

6,'=-6, (t = 0) .

From (6) and (7} we obtain

(6)
The right-hand side of (2) depends on the potential.
Let us first consider the case of vector coupling
where

PV = —Py"A~ =——PA.

and

n =PH '=1
3 3

The right-hand side of (2) becomes

f(P3x3-E t) C f(P3X3 +E t) DV+ e V~

x =PH t+x
which is precisely what we set out to establish. It
is important to remember that the high-energy
condition (9) applies only to P,„„i.e.,

o,i „,. = (P,H ')y

&'POS &

where

A, =A, aA, .

CV =- [A, + t(ox A), ] p,
)

[o A+ Ao,]g„

[A —i(ox A), ] g

[o A o,AOJ P-

or equivalently from (3),

Q3$+ Q+ ~ (10a)

As for p„,„, we have no knowledge of what its high-
energy approximation should be except that pp. ,
+ P„,„ is a solution of (2}. Substituting (3}into (2)
and taking account of (5) and (10a) we obtain

Equating (12) with (13) we get

(ia, +A, )p, =exp(2iEt)[m —t(ox w), ] p, (14)

(ia +A )g =exp(-2iEt)[m+i(o Tr),x]p, , (15)

where

~=--iV-A.

In the representation

both {10a)and {10b) lead to

(10b) From the boundary condition {4a), the solution of
(15}can be formally written

y =(ia + A ) 'exp(2iEt)[m+i(ox@},]g,
=exp(2iEt)(ia +A + 2E) '[m+i(ox n),Jp, ,

'

and Eq. (14) becomes
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(is, + A, -[m-i(vxw), ](i& + A + 2E) "[m+i(v&&w), ])p, =0.

As E-~, the last term of the above equation can
be approximated by

(2E) '[m- i(vx v), ] [m+ i(v&& s},] = (2E) '[s, ' —E„v,]
= 0(1/E),

I", —B,A, —82A, .

Thus neglecting terms of the order 1/E means
excluding virtual-pair-production amplitudes
from the potential. We have instead of (14}

The solution of (16) which satisfies the boundary
condition (4b) is

0

g, =exp i ds e A(x„+ e„s} e' p&*&(„,

~u=(0, 0, 1, 1)

or, in the 4-component covariant form,

y...=exp i dsP A x„-P„s}e"'"u, ,

(iB, + A, )(I), =0. (16} which yields the scattering amplitude'

+ CO

tz, = -iE d'x, dx e'*' ' ~'I exp i dsP A(x„-P„s) —1

and the Green's function G„(P, x) in an external electromagnetic field

G„tp, eI=G(p)e p ep fekpfeIe 1
(17}

where G(P) is the free Green's function. Comparing (17) with the exact expression
j oo

G„(P, x)= G(P) 1++ dk, ~ dk„A(k, )G(P+ k, )' ' 'A(k„)G(P+ k, + + k„) exp[i(k, + ~ + k„) x]

one easily sees that the high-energy approxima-
tion (17) is indeed the familiar Levy-Sucher
eikonal approximation.

We now proceed to study the case of pseudo-
scalar coupling where

P~-=dr, U.

The right-hand side of (2) becomes

Py y
ef(P3x, -E~) C + &i{P,x, +E~) DP P)

and Eq. (20) becomes

ia, q, = (2E) '[m' —V,' —iv, e, —U']P, . (22)

The right-hand side of (22) can be simplified if we
limit ourselves to the following configuration:

U Pj

P~ U
(& —.

D =— 19)

Then (20) becomes

is, q, = -(2E) 'U'g, .

Equating (19) with (12) we have

is, p, =e"s'[m —v, U-(o&& V),] P

is t) =e "sp[m+ v, U+(vxi), ]|},.
(20)

(21)

The above derivation shows clearly that one cannot
neglect g in the determination of P, . Since g
has no counterpart in nonrelativistic physics, one
expects that the usual eikonal approximation should
fail as a high-energy approximation.

From (23) we have

The solution of (21) which satisfies (4a) can be
formally written epos xp ds U {x~—c~ s) e D]

=e " (i& + 2E) '[m+ v, U+ (vx V),]gp

= e "s'(2E) '[m+ v, U+ (vx V), J g, ,

which yields the high-energy Green's function GU

in a pseudoscalar potential
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Gp ( P~ x) G(P)exp 1 dk dk' U(k) U(k ')e'
l 2p (k+ k') (24)

Comparing (24) with the exact expression of
G„(p, x) which is obtained from (18) by replacing
A by y, U, we easily see that (24) is not the usual
eikonal Green's function. As to the scattering
amplitude, we shall show that exponentiation'
still holds. Starting from

(m+y P+y, U)G =1 (25)

and multiplying both sides with m-y I' —y, U, we

get

[m'+ P'+ y, (y PU) —U']G~ = m —y ~ P —y, U,

which becomes

(m'+ P' —U')G~=m —y P,
or equivalently,

[m+ y P -(m —y P) 'U'] G= 1,

[m+ y P —P(2E} 'U'] G= 1 .

The last equation was obtained by limiting our-
selves to the scattering problem. Comparing (25}
with (26) we have

Py'U ~ -(2E) 'U'

which immediately leads to the high-energy scat-
tering amplitude'

+ OO

t&»
-—i E d'x dx e"' ~» ~ exp — ds U' x —E„s)

Thus exponentiation still holds even though the
eikonal approximation fails.

Although the results obtained in this work are
not new, "our method of approximation is general
and simple enough to justify yet another paper on
high-energy potential scattering. The infinite-
momentum variables are not introduced' ad hoc,

but make their appearance as a result of the
straight-line approximation on the single-particle
component of the relativistic wave function. It is
with this method that one is able to see clearly
the relativistic role of particle production in high-
energy potential scattering.
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