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A relation between the algebra of SU(6)+,„„,„„and that of SU{6)~„„„,is given for the quark model
with arbitrary interaction as quantized on a null plane. A unitary transformation is constructed which

connects the generators of the algebras in such a way that the generators W; of SU(6)ii, „„„,classify
states independent of momentum. The W; are shown to have the simple angular momentum properties
expected in the naive quark model. For the free-quark model, the results reduce essentially to those of
Melosh, although no problems involved in the use of wave packets arise here.

I. INTRODUCTION

In the free-quark model with degenerate masses
all 35 null-plane charges F; commute with the
Hamiltonian even though they are not generated
by conserved currents. Although the F& are not
completely Lorentz invariant, they do generate
an SU(6) algebra which is invariant under the sub-
group of the Poincare group' E(2) xD generated by

E~, Z„and K, . As usual, the SU(6}~,„„,„„in-
variance of the Hamiltonian implies that the F&

classify the states into degenerate SU(6) multiplets.
The fact that the stability group of SU(6)~,.„„,„„
is so large implies that the transformation prop-
erties of states with respect to the F& are mo-
mentum independent, since E(2) XD can connect
any two values of momentum of a given particle.
The SU(6)~,„„,„„symmetry is therefore not re-
stricted to rest or collinear states only. In the
free-quark model with nondegenerate masses the
Hamiltonian is no longer SU(6) invariant, but the
F; still classify states into mass-nondegenerate
multiplets of SU(6), and this classification scheme
is still momentum independent. FinaQy, we may
expect this to remain valid in the general inter-
acting-quark model. It is likely, however, that
the physical states —the eigenstates of the Hamil-
tonian —will not transform in any especially sim-
ple form under the action of the F; . This is quite
well known by now, and has been discussed from
a variety of viewpoints. ' '

Historically, a principal reason that we con-
sider an SU(6)& „„,approximate symmetry at
all is because the observed particles and reso-
nances seem to fall into supermultiplets of dif-
ferent spin. ' This may be a dynamical accident.
The actual algebraic framework of the theory of
broken SU(6)~ „„„,symmetry derives by analogy
from that of SU(6)~,„„,„„,whose operators are
well determined in terrr. ~ of physically measur-
able operators in weak and electromagnetic tran-
sitions. The obvious question is whether there is
any relation between the two algebras.

Since commutation of the generators of a "sym-
metry" group with the Hamiltonian is not a suf-
ficient criterion, in the null-plane formalism, "
to imply mass degeneracy (even approximately),
one is forced to search for a means of defining
the generators of SU(6)~ „„„,other than requiring
such commutation. In any event, since SU(6)~ „,.„,
is certainly not an exact symmetry for physical
states, ' such a definition would leave something
to be desired.

It has been a frequently expressed'" hope that
some spin criterion would lead to a unique def-
inition of the 8'&. In the free-quark model Melosh'
has shown that a spin criterion essentially de-
termines the S'&, although it has been an open
question as to whether one can use a similar cri-
terion to define the S'& precisely. For interacting
theories, nothing has been known.

Melosh has speculated that the unitary trans-
formation which relates current and constituent
quarks may have the form of a product of an oper-
ator which satisfies his spin criterion (and is
therefore interaction independent) and a second
operator which commutes with f and which con-
tains all the pair states and exotic representations
resulting from interactions. Unfortunately, he
has no way of determining this second interaction-
dependent factor.

The angular condition is formulated without re-
strictions on the masses of states —in fact without
reference to the presence or nature of any inter-
action —so the obvious question is whether some
(angular?) requirement of similar properties can
be used to define the 8'; unambiguously.

Recall that SU(6)~ „,.„, finds its origins' in the
old nonrelativistic SU(6) and in the attempt to
avoid the inconsistencies that arose when SU(6)
was applied to collinear processes. At first,
therefore, SU(6}~ „„„,was thought of as a collinear
vertex symmetry. However, it was found to be a
broken symmetry even so restricted; the phenom-
enological successes of the work of Melosh' and
his followers" have been in the study of the viola-
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tions of SU(6))r „„symmetry for decay and other
collinear amplitudes. So, in fact, SU(6)~ „„„,is
not a vertex symmetry, but rather a classification
symmetry; but then one has no reason to confine
it to collinear states.

Granting this, we have two possible extreme
positions that may alternatively be adopted: The
symmetry of hadronic states is of the rest type
(only J, leaves the W& algebra exactly invariant),
which is the conclusion of deAlwis and Stern, ' or
the symmetry of hadronic states is momentum in-
dependent, which is the attitude taken in the pres-
ent work. Of course, positions intermediate be-
tween these two may be adopted, but they are more
difficult to express in a precise manner.

In order to discuss a classification symmetry
such as SU(6))p, without any problems of the exis-
tence of operators when currents are not con-
served or problems raised by theorems of the type
proved by Coleman, " it is best to define all oper-
ators and commutators on a standard null plane.
In this case, the good charges I'

&, as defined by
commutation with the stability group of the null

plane, constructed by integrals of current den-
sities over the null plane, annihilate the vacuum
and obey an SU(6) algebra. ' These current den-
sities are bilinesr forms in good fields, [(),(x),
which are projections of the quark field operators
(()(x) onto the two-dimensional invariant subspace
of the four-dimensional representation space;
the g, (x) then satisfy covariant anticommutation
relations on the null plane. On the null plane, how-
ever, two representations of the anticommutation
relations may be unitarily equivalent and yet they
may have different representations of the Poincare
group associated with them. " This is quite dif-
ferent from the situation in the spacelike formal-
ism. " We thus search for another spinor field,
which we call y, (x; constituent}, which satisfies
the null-plane anticommutation relations, is uni-
tarily related to |[,(x), and for which the resultant

charges S'; obtained by transforming the F; may
be used to classify states according to the SU(6)
algebra that they generate in a momentum-in-
dependent manner, where the states for arbitrary
momentum are obtained from rest states by means
of the traditional Lorentz boosts generated by the
operators K;.

The form of this paper is organized as follows.
In Sec. II we discuss the action of the operators
of the Lorentz group on states and on field oper-
ators, then we define current quark and constit-
uent quark bases, and finally we define good fields

Armed with this formalism, we construct in
Sec. III the transformation which relates to two
quark bases, and in Sec. IV we use this result
to compute the generators W; of SU(6)[p „„„,. Then
we discuss their angular momentum properties
and their behavior under the action of other ele-
ments of the Poincare group. In Sec. V we discuss
some applications to the phenomenology after in-
vestigating the algebraic structure of matrix ele-
ments of integrated currents and their moments;
in particular, we study the magnetic moment
operator for spin-& particles. Finally, in Sec. VI
we give a summary of our results.

II. BASIC FORMALISM

The free-field Fourier expansion for p(x) and
other fields in the theory must be modified in the
presence of their interactions, " since the fields
no longer have the space-time coordinate depen-
dence given by solutions of the free-field equa-
tions. In fact, we do not know in general what
this coordinate dependence will be. Nevertheless,
some definite statements can still be made without
our specifying the interaction. We work in the
Schrodinger picture so we can evaluate all Heisen-
berg picture operators on the standard light plane
x'= O. Making a three-dimensional Fourier ex-
pansion of (()(x}, we have

2(*'=p, x, x )=[2(2 )'] 'i'Jd'P f —"P[0(d, x;0) (P, x)exp(-(P *) de(d, x;0) (-p, —x)e p('0 *)).(2.()

(p- ( ))
0( ) (2.2)

With no interaction, it is straightforward to
show that the above expansion holds for arbitrary
x' and that, moreover,

The development of P(x) in x' is determined by the
generator of x' displacements, P, which takes
the place of the Hamiltonian in the conventional
formalism. Explicitly, we have

b„„,(p, X; x') =exp(-ip x') b(„, (p, A; 0),
d'„„(p, X, x') = exp(- iP x') d'„„(p, Z; 0) .

(2.3)

In the presence of interaction these simple re-
sults no longer obtain; we rather have

b(p, x; x') = e" ' b(p, Z; 0) e " '
d'(P X x') =e'~ ' d'(P, Z; 0) e "', (2.4)

so that these operators are in general no longer
proportional to their values at x+=0. They cannot
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in general be simply interpreted as creation and
destruction operators for single quanta of definite
masses"; nevertheless, they can be considered
as creation and destruction operators in the pres-
ent null-plane formulation. This has to do with

one of the essential differences between null-plane
and spacelike-plane kinematics, namely the trans-
lations which leave the plane invariant. In the
case of the null plane x'=0, these translations are
generated by P', P~, while in the spacelike case
the three translations are generated by Py P2, P3.
The point is that I has a positive spectrum, since
P')

l
P' l, while none of P„P„P, is positive. Re-

ferring back to the expansion of g given above, Eq.
(2.1}, we see that by definition the operator b low-
ers the component P' of the momentum by q, while
the operator d' raises this component by g. Since
the integration is restricted to positive values of

g, and since the momentum component P'of any
physical state is positive (P'= 0 only for the vac-
uum} we must conclude that

b(p ~ o)lo)=o,

d(p 1 o)lo) =o,
(2.5)

In general, the states of a massive particle of
spin S can be labeled by the momentum g, pi of the
particle and some (2S+1)-valued spin index A.

For a state at rest, we define

which enables us to interpret b and d as destruc-
tion operators. We thus postulate the covariant
anticommutation relations

(b(p ~ o) b'(p ~' 0)}=[d(p x. 0) d'(p' ~' 0))
= 6 ~x nb(n' - n) 6'" (pi —pi),

(2.6)

with all other anticommutator s vanishing. Owing
to the relation Eq. (2.4) between these operators
at arbitrary values of x' and their values at x'= 0,
it follows that the anticommutation relations hold
for all x'.

(b(p, X; x'), bt(p' x' x'))
= (d(p, z; x'), d'(p', x'; x')]

=bi~ n6(n'- n) 6"(pi —Pi} . (2 7)

In order to proceed further, we must specify
the meaning of the label X which appears above in
the expression for the field P(x) both in the spinors
u(p, a) and in the operators b(p, W; 0) and d'(p, X; 0).
To do this, it is convenient to begin with a de-
scription of the transformation properties of sin-
gle particle states under the Poincare group and

then continue to a discussion of the field operators

so that X is just the z component of spin for a rest
state. For a moving state, however, this does not
specify X until we have defined how to boost the
rest state to arbitrary momentum. Furthermore,
by saying that the state has angular momentum S
we have still only said something about the rest
state, namely that it transforms according to the
spin-S representation of SU(2):

U[A] lm/W2, (};Af =gD' [A]y elm/1/2, 5;A. ')

(2.9)

for A a pure rotation. The states lr), pi; g of a
particle with arbitrary momentum are defined by
applying a particular Lorentz transformation to
the rest states. We will discuss two different
choices for this Lorentz boost.

In the conventional formalism, one defines'

l g, pi; X; constituent) = e ' 8' "
lm/v 2, (};A),

(2.10)

where

P =Parcsinh(lpl/m), (2.11)

v, = p, /ri and e = v 2 q/m, (2.15)

and we have added the notation "current" in anal-
ogy with the "constituent" notation above. Further-
more, if we define

~ +-i V~ Ei +-EQJI(,'3 J kQJg3 +)Viif&
3 3

-fVg Ei J ~SV1 'E j
3

and we have added the notation "constituent" to
the state vector to emphasize the dependence of
the construction on the choice of the boosting oper-
ation. If we define

~-&8'K J ~&8 K (2.12)

then

y, l 0, p; x; constituent) = A l g, p; x; constituent),

(2.13)

and it is easy to verify that the states transform
simply under 4 rotations and K boosts.

On the other hand, we might choose to define
our states so that they transform simply under
the Poincare generators J„E~, and K3 which
leave the plane x'=0 invariant. These states have
arisen naturally recently in discussions of field
theories in the infinite-momentum frame. They
are defined by

jr', pi; X; current) =e '"i' i e '~x&lm/W2, 5; A),

(2.14)

where

(2.8)
1=J ——(Exxpi),
q

(2.16)
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then

j, ( g, p~; X; current) = X( q, p~; A.; current),
(2.1V)

and the states ( rl, p~; A.; current) can be shown to
transform simply under j, rotations, E~ boosts,
and E, boosts. These states are eigenstates of
the ordinary helicity operator, but with respect
to a reference frame moving with infinite velocity
in the —z direction.

It will be clear later why we have used the terms
"constituent" and "current" to distinguish these
alternatives to the construction of moving states.

Now we will apply these results to a discussion
of field operators. If the field g(x} transforms
according to the (S, 0}8(0, S) representation of the
Lorentz group, then

U[A]g (x) U '[A]=QSPs'[A ']ps(Ax), (2.18)

juncture. There is another inherent kinematic
aspect of the null-plane formalism which differs
from that of the spacelike plane which we must
use here. The stability group of a spacelike plane
has the structure SO, x T(3), while that of a null
plane is of the form [E(2)x D] x T(3). The group
T(3} is the translation group generated by P„P„P,
in the spacelike case and by I,P„P, in the null-
plane case. The group SQ, is the rotation group
generated by J„J„J„while the group E(2) x D
is the group generated by E„E„K„J,and is iso-
morphic to the direct product of dilatations and
the Euclidean group in two dimensions. The sym-
bol && denotes a direct product, x a semidirect
one. In terms of the covering group of the homo-
geneous Lorentz group, SL(2, C), the factor E(2)
x D, which leaves the null plane x'= 0 invariant,
consists of matrices of the form"

where
(2.21)

D(s) [A]

(2.19)

and D~s', B~s' are the usual (2S+ 1)-dimensional
matrices representing the Lorentz transformation
A in the (S, 0) and (0, S) representations, respec-
tively. Weinberg" has shown that the spinors
which appear in the Fourier expansion of g(x) are
simply proportional to these matrices. In par-
ticular, referring back to our expansion Eq. (2.1)
for the four-component quark field operator we
have

u~(P, +s}=ND~' ~[A(P)] ~ „ys for a =1, 2

= ND ' ' [A(p)] „„~,for o = 3, 4,
(2.20)

where N is a normalization constant to be fixed
below. But what is A(P}? For the conventional
formalism which is that treated by Weinberg, A(p)
is just the K boost we used to define "constituent"
basis states; on the other hand, the "current"
basis states are defined in terms of E~, K, boosts,
and it is this Lorentz transformation which must
be used to define spinors in that context. In sum,
we are led to define two sets of spinors (and as-
sociated creation and destruction operators) cor-
responding respectively to our two choices of
boosting rest states; these will be written u„(P, A.;
constituent), &(P, X; x', constituent), and so on.

One further comment on the Lorentz transforma-
tion properties of spinors is appropriate at this

g(x) = g, (x) +(i (x), (2.23)

then when )C (x) is Lorentz transformed by oper-
ators leaving the x'=0 null plane invariant, it
cannot be expressed solely in terms of g but must
involve g as well.

Recall now the Fourier expansion of (l(x).
Clearly, since the projection operator G is linear
we may write an expansion for g, (x) where the
only difference is that we must use projected spin-
ors

u, (p, X) =—Gu(p, X) . (2.24)

Now we shall choose the normalization of the spin-
ors so that

p u', (p, Z) u„(p, z) = &2qG, . (2.25)

Having done this, we may return to the anticom-
mutation relation Egs. (2.7) and transform back
to configuration space; we find"

rather than of unitary matrices as in the spacelike
case. This implies that the representation D [A]
is reducible if A is restricted to E(2) x D. For
the four-component quark spinors, the matrix
G =-,'(1+y,y, ) projects onto a two-dimensional in-
variant subspace spanned by spinors of the form

(2.22)

The projected spinor has two linearly independent
components for each kind of quark. The spinor
representation does not decompose, however;
i.e., the subspace orthogonal to that spanned by

P, is not invariant. In other words, if we define
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(0,(»', x, X.), 0', (»', y, y.) I

=(G/~~) 6(» y-)6"'( X. y-.},
of spinors describing rest states (p =0)

u 8(p, 1) = Q S 8 u„(rest, X) . (3.3)

f(c&,(x', x, x ), g, (x', y, y ))=0,
[(F&,(x', x, xj },(8t (x', y, y~) )= 0 .

(2.26}

Note that these relations have no analog for the
"bad" components, g . This is because, as we
have noted above, the subspace spanned by g is
not invariant under the stability group of the null

plane. Therefore, anticommutation relations for
analogous to those for g, could not possibly be

covariant.

III. CONSTRUCTION OF THE TRANSFORMATIONio

For the quark field, transforming as spin &, the
action of an arbitrary Lorentz transformation is
usually written"

xu„(rest, X), (3.4)

u8(p, 1.; current) =QS8„[A„„.„]u„(rest, X),

(3.5)

where A„„„„„,„, and A,„„,„, are the Lorentz boosts
appropriate to the constituent and current bases
described above.

Next, we project the "good" spinors and write

Actually, since we have defined two sets of spin-
ors we must be more explicit; that is, we must
Gay how the boost is to be effected. In other words,
we write

u8(p, A; constituent) = g S8 [A,,„„;,„,„,]

U[A]g (x) U '[A]= gS '„8[A](C&8(A»), (3.1)
u, 8(p, X) = g S,8 u (rest, A.),

where of course we have defined the matrix

(3 6)

where S is a 4x4 matrix which operates on the
four-component column vector P(x}. For spatial
rotations, S is unitary, but this does not hold true
for Lorentz boosts; in general,

S '=r,S'r, . (3.2)

The important attribute of the matrix S[A] that we
need now is that it may be used to express the
spinors u(P, X) for arbitrary momentum in terms

S,[A] =GS[A] . (3.7)

&[A]=
~& ) &, fAj, (3 6)

and note that

Although S, is not a unitary matrix, we may con-
struct a unitary matrix from it by multiplication
by a simple factor; to this end, we define

Q Q+8(f& ~) @+8(p& 1 } 2 Q u (rest, A) S»8 +By 1cy(les tA. )'
8 a, 8, y

+a rest, X 8 aQ ~

Byway

rest, A
mm

a, s, y

g u (rest, A} u (rest, X'),
2m

(3 9)

since+ u (rest, a)u„(rest, a) =2m&»&. Therefore, we conclude that, 6[A] is aunitary matrix; that is
to say, S [A,.„„;,„,„,] and I [A ..„,„, ] are unitary matrices when acting on constituent and current basis spin-
ors, respectively. It is then natural to use the matrices 3 [A] in the Fourier expansions of y, (x} to define
new functions y(x; constituent) and y(x; current):

i(&, „(x)= 8 „8(constituent) rp 8(x; constituent),

y 8(x; constituent) = [2(28)']

x[q' 'f&(p, x; constituent) w8(x) e '~*+@'~'dt(p, P.; constituent) w 8(- A) ~*]e,

w8(X) =2 '~'m '~'u8(rest, X) (3.10)
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and analogous expressions for the current-quark
basis. The operators 4 are defined in terms of the
Fourier expansion of the y fields: One multiplies
the integrand by the appropriate unitary matrix
8[A] constructed above. We now will discuss the
two cases separately.

For the current quark basis, we recall that the
appropriate boost is one which involves Ej and
K,. These operators, however, are contained in
the set of generators of the stability group of the
null plane. This implies then that the matrix
S[A,„„,„,] transforms good fields only into good
fields. In fact, one may see from the work of
Kogut and Soper" that the operator $(current)
is a trivial one and that

~+ Ippl —iy p
[2m (m+ I p, I

}]'~' '

From S we form

p. +p, ~

(3.15)

m+ jpp/+i@ p
[2m(m+ IP, I)] ~' (3.16)

(Pp. iy. p--m) 0=o . (3.17)

which is the operator that acts on good spinors
u, (P, X) appearing in the expansion of IIt, (x).

In general, the equation of motion for g(x) may
be written

g, (x) = p, (x; current), (3.11)
Using the relation

where rp, (x) is the good component of y(x).
In the constituent quark basis, on the other hand,

the appropriate boost involves the operators K„
K„K,which are not contained in the null-plane
stability group. This implies that the matrix
S[A„„„,,„.„,] mixes good and bad fields, and o for
tiori so does S(constituent). Nevertheless, 3 is
a unitary operator, so we may invert the equation
relating y and g„

y=- iPZ

we have

(m+ iy~ p~) g = (p, + a, p, ) pp,

(3.18)

(3.19)

so that the nontrivial part of the matrix S ' sat-
isfies

(m+ Ip. l+iy p) g=(m+ Ip. l+iyi pi) 0- a, pg

= (m+ I PI+ iiyp ) 0 (3.2o)

q&(x; current) = & g, (x), (3.12} But for the good component g, we have @3=1;
therefore,

y, (x; constituent) = Tf, (x),
V'= 7-',

where T is obtained from 8 by expressing all
operators in terms of good ones. %e will com-
pute T explicitly below, so that this rather ab-
stract description of it may be made more con-
crete.

This is the natural place, however, to point out
that it follows from Eq. (3.11) and Eq. (3.13}that
T is a unitary transformation which relates the
current and constitutent quark basis fields q„

(3.13)

p, (x; constituent) = T y, (x; current), (3.14)

and that the y, (x) fields satisfy the usual anticom-
mutation relations on the null plane.

In the absence of interaction, the matrix S is
weD known and may be found in standard texts on
relativistic quantum mechanics

and the action of 8 on g+ may be computed by
multiplying the integrand in the Fourier expansion
of IIt, (x) by the matrix 3 [A„„„,,„,„,]. Furthermore,
even though & mixed good and bad components of
P, if we use the equations of motion to express the
dependent field g (x) in terms of the independent
one g, (x) then it follows that y, (x) may be
expressed entirely in terms of f, (x):

p, +p, '~' m ~' m+Ip, l+iy p
p, p, [2m(m+lp, l}] ~ &

, rq'+ lP. +P, l+iyi p.
'[[m+ IP. +P, l)'+P']"' '

= CXp C CCRC
~ ) Ij'

x~'p j.
t?l + PP +P3

(3.22}

which displays cp, (x) in terms of g, (x). It is im-
portant to realize that the matrix S[A, „„.„,] is
the appropriate one for the canonical signer spin
basis, which we are calling the "constituent"
basis, while it is not appropriate for the infinite
momentum helicity basis, which we are calling the
"current" basis. The explicit form given in Eq.
(3.15) is correct for the case of no interaction,
while in the general case S[A„„„;,„,„,] will depend
on interaction since it is defined in terms of the
K boosts; these boosts are interaction dependent
in null-plane dynamics, in contrast with the E~
boosts which are interaction-free in this formal-
ism.

( mIp+. l iy+p)0, = ' (m+lp, + p, l+iy, p, )g+ .
pp +p3

(3.21)

After some algebra we find
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E"; = ~ d'x6(x') g+(x) I' "-,'A.; P+(x), (4 1)

where X; is an SU(3} matrix and I'"=(2, po', p&',
po ). The SU(6) generators are defined analo-
gously

Ql 1
W, = ~ d'x6(x') y, (x; constituent}

x I —,'X, y+(x; constituent) . (4.2)

IVe THE GENERATORS OF SU(6)~ 31Io n g

The generators F, of SU(6)v,„„,„„canbe de-
fined in terms of bilinear products of g„ in the
free-quark model, and we will assume the same
form for them in general. If further (good) fields
are found to be necessarily included in F"; then the
discussion can be suitably extended. Therefore,
we will define

As Melosh has noted, the structure of the F
&

is
rather complicated under rotations; they are not
scalars and components of vectors but rather con-
tain components of all angular momenta. Thus
states which transform irreducibly under
SU(6}~,„„,„„cannot have definite spin. We claim
that the charges W; defined above do not suffer
from this drawback, and so the resulting
SU(6}~ „„„,may be used to classify hadron states.
This will be shown in this section.

First we note that the W; as defined above do
indeed generate an SU(6) algebra, since y, and

g, are unitarily related by the operator T, and
so the structure of the algebra generated by the
F; is preserved.

Next we make use of the Fourier expansion of
rp, (x) as derived in the preceding section, Eq.
(3.10), to obtain the Fock space form of W;

d'pdgW";=+ [& (p, A.; constituent) 2&~&(p, A. '; constituent)w, (A) I w, (A')

+ dt (p, X; constituent) —,
'

&~ d(p, A '; constituent) wt (- X) I"w, (- A. ')] . (4.3)

(4.4)

Although this expression for W& has essentially
the same appearance as that of Melosh, we have
shown a bit more, even disregarding the fact that
our work is not restricted to the free-quark mod-
el. There are two points relevant here: One in-
volves the transformation properties of S'& under
rotations while the other concerns the behavior
of W& under Lorentz boosts.

Both the F
&

and the 8'& are lightlike charges,
and though they all preserve g, lightlike charges
do change P' when they connect states of different
mass. It is necessary, therefore, to be careful
about what one means by spin: It is the angular
momentum of a state in its rest frame. The ap-
propriate operators for states definecPwith re-
spect to the constituent quark basis were defined
earlier as

-&8 KJ'g$8 ~ K

Acting on states with p~ = 0 these reduce to

J)P +K2P
M

J2 P E~P
82= (4.5}

So, acting on a state with spin j, for example,

which are exactly those used by Melosh. The J;
in general form an SU(2) algebra and have matrix
elements equal to those of J; in the rest frame of
a state,

~
W

J~p, A; constituents) =pe 's' ~rest, A; constituents)

= e ' s J ( rest, X; constituents)

(4.6)

(4, +i J,)~p, X; constituents) =e 'e' [(j—X)(j+X+I)]'~'~rest, X+I; constituents)

= [(j —X) (j + X + 1)] '~'
~ p, X + 1; constituents) (4.7)

with the usual conventions for S.
Note that g as defined above commutes with

K boosts but does not commute with E~, E, boosts
which are the appropriate ones for current quark
basis states. Therefore, our angular momentum
operators J are not the same as those used by
Osborn, "since his are constructed so as to com-
mute with E~ and X,. For states with p~=0, how-
ever, the angular momentum operators of Melosh,

of Osborn, and of the present work become iden-
tical. Nevertheless, it should not be surprising
that our conclusions will differ somewhat from
those of Osborn. In particular, his chief result
that no constituent current quark transformation
fully satisfies the angular constraints if it is gen-
erated by single quark operators, even for the
case of free quarks, will not obtain in the present
work.
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The expression for W; shows that it has
~
A8

~

~ 1,
since all it does is change one (constituent) quark
from one type to another (e.g. , change its isospin
projection) and possibly rotate its spin. This is
just the behavior that one expects for SU(6)~, „„„
generators in naive quark models.

We now turn to an examination of the behavior of
the Wp under boosts F.rom Eq. (4.3), we ses that
8'& is built out of terms bilinear in constituent
quark creation and destruction operators. Let
us write b (p, X; n) for a creation operator, for the
moment, where the extra index n serves to label
the SU(3) properties of the quark that is to be
created. Furthermore, write U[P, nJ to denote
the standard K boost which takes a quark of type
n at rest to momentum P. Then

U [p, n] b'(q, x; n) b(q X' n')

= b" (p+q, A; n} b(q, X'; n')

= bt(p+ q, A.; n) b(p+q, X'; n') U [P, n ']

(4.8)

But 8'; is a covariant integral over such terms.
Therefore, matrix elements of the form

(g, p~; X; constituent( W";
~ q, p~; A', constituent) (4.9)

are independent of g and p~. In other words, the
W'; may be used to classify states in a momentum-
independent manner. We emphasize that this does
not mean that the S'; commute with K„since the
states are defined in the constituent quark basis
to be boosted by exp(- iP K). Only in the special
case that p~ =0 does K, commute with the S';:
(rl', P,'; g =e "'~e "'~q, p„~)

we ' ~e'8 ~~@,iP„A.)unlessp~=p' =0.

(4.10)

It is worthwhile understanding why commutation
with K, has been demanded by other workers and
how the present approach relates to theirs insofar
as this question of boost invariance is concerned.

As Mel. osh points out quite correctly, "one
striking feature of SU(6)~ „,.„, is the fact that the
SU(6)N „,.„, classification of a particle appears to
be independent of its momentum in the z direction.
The validity of the Johnson- Treiman relations"
over a wide range of particle momenta is evidence
for this momentum independence of transformation
properties.

The generators of SU(6}N, ,„„,„„,F,", are invar-
iant under finite boosts along the z direction

[F,",Z, ] =0, (4.1 1)

but they are not invariant under transverse K~
boosts. This has as a consequence that a state

with a given g, value and transverse momentum

p, o 0 does not have the same SU(6)l, ,„„,„„classi-
fication as one with the same g, value and different
p~. On the other hand, since

[F,",E~]=0, (4.12)

s tates with transverse mome nta p~ generated by E~
can be classified in the same SU(6}~,„„,„„representa-
tion independent of p~. These states so defined are
of course the ones we have called ~ri, P; X; current).
These current quark basis states can be related
to a certain mixture of constituent quark basis
states (which are eigenstates of g,). However,
the quark content need not be the same if there
is interaction since quark number will most likely
not be conserved;" in the free-quark model the
quark content must be the same, so the current
constituent quark transformation is just a change
of spin basis, as Eichten et al. ' have shown. We
will return to this point in the next section.

The powerful result that the FP classify states
independently of momentum has led to the search
for WP generators of SU(6)~ „,.„,which satisfy
similar boost invariance properties to those of the
I"& and to the assumption that states of arbitrary
momentum are to be defined in terms of E~,K,
boosts; apparently, the motivation for this last
(sometimes implicit) assumption is the fact that
the 8', are also expressible as null-plane integrals
(albeit over nonlocal operators even in the free-
quark model). In any event, the W, have tradi-
tionally' been required to commute with K, . In
the free-quark model, Melosh constructed such
W, , although with considerable difficulty in satis-
fying the K,-boost invariance (somewhat awkward-
ly); however, the W, was found to be noninvariant
under E boosts, so that the SU(6)I, „„„,classifica-
tion of a state was dependent upon its transverse
momentum in a quite complicated manner. This,
then led to trouble in the treatment of matrix el-
ements of the magnetic moment operator since
states with transverse momentum must enter into
consideration here. We will. discuss this further
in the next section.

In the present context, where conventional K
boosts are used for constituent quark basis states,
we have shown that the 8'; may classify states
independently of momentum. We note in passing
that there exist proofs (deAlwis and Stern') and
suggestions (Bell20) in the literature that this in

inherently impossible; such conclusions usually
depend on either the assumption of F- boosts for
hadronic states (as criticized above) and/or the
assumption that the W& are integrals of local op-
.rators (which does not even hold in the free-
quark model}.
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V. APPLICATION TO CURRENT MATRIX ELEMENTS

Now that we have constructed the generators of
SU(6}' „„„,and have given a prescription for com-
puting the field operators y, (x;constituent) in
terms of the field operators qr„(x; current) we pro-
ceed to the consideration of hadronic matrix ele-
ments of currents and their various moments.
The goal is to determine the algebraic structure
of such matrix elements, assuming that hadronic
states transform simply under SU(6)~ „„„~;this
will then lead to the predictions of relations be-
tween various matrix elements.

The essential problem here is the determination
of the transformation properties of currents and

their moments under the hadronic classification
symmetry group SU(6)~ „„„,[or, in more detail,
the subgroup SU(3}~SU(3)]. Before attacking this

problem, however, we must add an element to
our classification of states. Since p3 commutes
with the 5', , we define a quark "orbital angular
momentum" component

L3 =~3- SO (5.1)

to obtain a SU(6$ XO(2) „,.„, classification. The
low-lying hadronic states are classified as usual
as 56, L, =O (for the baryons) and 35, I, =O.(for
the mesons).

Recall now that Eq. (3.23) gives an expression
for y+(x; constituent) in terms of g, (x)
=y, (x; current). In principle, this relation can be
inverted (since the operator transforming g, into

y, is unitary) to give us g, (x) in terms of q&, and
whatever other good fields occur in the theory.
In practice this may be quite difficult; however,
we may w'rite in general

p,(st=~2e p(-ta cta, O, ts; co sdtue tt+i te attica%epode t tec s.
wc+ p+p, i

(5 2)

The field g, (x) may be written as the sum of two

terms; the first one is independent of interaction
and has exactly the form derived by Melosh for
the free-quark model, while the second one de-
pends on the interaction and vanishes when the
interaction vanishes.

For the free-quark model, then, we recover the
striking results previously obtained; namely, that
operators bilinear in g, are also bilinear in cp,.
It then follows that such operators can transform
according to SU(6)~„„„,as (1,8)(8, 1) and (3, 3)
+ (3, 3) and nothing else."

For the interacting quark model, this simple
result will not obtain in general, since the inter-
action dependent terms will contribute pieces to
y, which will not always be linear in y, . The
nature of the transformation properties of g,
under SU(6)~ &0(2),„,~will depend on the corre-
sponding properties of these terms and they will
vary with the choice of interaction. It is an inter-
esting question whether the choice of an

SU(6)~,„„,„„invariant interaction will guarantee
that P, transforms as a 6, L, =0; in fact, the
whole problem of how the transformation proper-
ties of g, depend on interaction is worth investi-
gating fully.

We would like to make a general observation on
the present theoretical framework and how it con-
trasts with the approach generally found in the
literature insofar as the determination of the alge-
braic structure of the matrix elements of currents
and their moments is concerned. This, after all,
is at the heart of any phenomenological application
of the theory.

We remark that the low-lying baryons and me-
sons may be assumed to transform simply under
SU(6)~xO(2) „„„,in a momentum-independent
fashion, but that one must remember to use the
appropriate K boosts to relate states of different
momenta.

To illustrate this, we consider the total mag-
netic moment for a spin- & particle 4,

, rest;X=-2 d'x5(x')xS', (x) A, rest;X=+-,', (5.3)

where F," is the good component of the electro-
magnetic current density. This identification can
be verified by expanding out the matrix element in

the conventional invariants. The evaluation must
be performed in terms of symmetric wave packets,
rather than plane-wave states. The algebraic
structure of the operator, in the free-quark model,
is easily determined; the results have been given
by Melosh and include the famous ratio

yr(proton)/pr {neutron) =--', . (5 4)

In the conventional framework as developed by
Melosh, this gives rise to a puzzle. Since the
discussion requires the use of wave packets whose
momentum spread is small but essential, there
is an implicit assumption that moving particles
transform in the same way as stationary parti-
cles. But the W, do not commute with E and K3,
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so using these boosts to obtain moving particles
the SU(6)I XO(2)„„„,properties appear to be mo-
mentum dependent. In fact, deAlwis and Stern
find that no definite value for (ur(proton)/
pr(neutron) is obtained unless arbitrary additional
assumptions are made.

On the other hand, in the present work we have
momentum- independent transformation proper-
ties so there is no objection to the use of wave
packets.

A related point is worth mentioning here. Re-
call that because of his requirement that [W, , K,]
=0, Melosh was forced to modify his transforma-
tion so that the ~PD+P, ~

term should not violate
this condition; he did this by introducing a factor
of M/~ P, +P, ~, where M, P„are the mass and
four-momentum of the state acted on (not of
individual quarks). In the rest frame M/~ P, +P, ~

=l, whereas the ratio (P, +P, (/[P, +P, ( is in-
variant ' under boosts along z.

As he remarks, this factor leads to a puzzle in
the following way. The free-quark model gives
the algebraic structure of the first moments of the
electromagnetic current, as we noted above;
this has been applied successfully to electromag-
netic decays of higher resonances and to photo-
production. This is puzzling, since matrix ele-
ments such as

where A and B have different masses, give rise
to multilinear products of quark fields with co-

efficientss

proportional to (M„-M s)/( P, + P, ~, so
that use of the free-quark model where transitions
between states with very different masses are in-
volved seems unwarranted.

On the other hand, in the present work there is
no need t' or the M/~ Pa+ P, ~

factor since the W,
are boost invariant (in our sense) without any ad-
ditional modification, and the free-quark model
relation between current- and constituent-quark
basis fields is the same as that of Melosh if no
such factor is introduced. Therefore, we feel
this puzzle is resolved. There still remains,
however, the question as to why the free-quark
model works so well. On this we have no com-
ment.

VI, SUMMARY

We have investigated the possible relation be-
tween the algebra of SU(6)((, ,„„,„„,whose genera-
tors E& are integrals of the local currents which
describe the electromagnetic and weak interactions

of hadrons, and the algebra of SU(6)(( „„„„whose
generators W& are supposed to classify hadrons
into approximately degenerate multiplets. The
generators E, are bilinear forms in field opera-
tors ((((,(x; current), while the W,

" are bilinear
forms in field operators y, (x; constituent). These
fields separately satisfy canonical anticommuta-
tion relations on the null plane and are unitarily
equivalent. We constructed a unitary transforma-
tion relating them in such a way that the W& clas-
sify states in a momentum independent manner
when the states for arbitrary momentum are ob-
tained from rest states by means of K boosts,
while the E; classify states in a momentum inde-
pendent manner when the states for arbitrary mo-
mentum are obtained from rest states by means
of E boosts. We then found that the 8'& have sim-
ple angular momentum properties, so that their
action on hadronic states is just that expected in
the naive quark model. Furthermore, in phenom-
enological application of the formalism to matrix
elements of integrated currents and their mo-
ments we found no inconsistency in the use of
wave packets. The results of this paper are not
restricted, in general, to a specific choice of
interaction, and in that regard we are optimistic
that further work along these lines may answer
some of the questions we have dodged: Why does
the free-quark structure abstracted from the
model work so well for matrix elements of E'; and
moments of the electromagnetic current, but not
for the bilocal current operators 7 Why do the
physical hadrons lie in approximately degenerate
SU(6) multiplets?

Finally, we note that we have provided a pre-
cise formulation of the notion of an approximate
symmetry.

Even though neither of the groups SU(6)I,„„,„„
and SU(6)(N „„„,are symmetry groups for the phys-
ical states (except for the special case of the
mass-degenerate free-quark model) we have a
mell-defined prescription for constructing them.
The generators of SU(6)v,„„,„, are obtained by
null-plane integration of local currents, which
may in turn be defined in terms of gauge invari-
ance of the second kind for the Lagrangian. On
the other hand, these operators, E&", may then
be modified by means of the procedures described
in this paper so as to provide a classification sym-
metry group, called SU(6)((, „„„„for physical
states. The generators of this group, 8'&", are
not constrained to commute with the Hamiltonian,
in fact, after the construction of the S'& is per-
formed one may comPute the commutators
[W(, P j in order to find out how the Hamiltonian
transforms. Thus a definite SU(6)~ „„„,symme-
try breaking follows.
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erators which occur often in the null-plane formalism
are
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p, = (P~, P2), E~ ——K, + J2, E2 ——K2 —Jg,

x'= (xp~x')/vK, x, = (x, , x,).
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