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Model calculations of electroyroduction and inclusive annihilation cross sections~
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We have studied "deep-inelastic electroproduction" and "inclusive e+e annihilation" in massless $'
theory in the ladder approximation. The relevant Bethe-Salpeter-type equations can be completely solved

and the physically important asymptotic limits are studied. The behavior of the moments of the
structure functions is analyzed, and the "anomalous dimensions*' which govern the asymptotic power
behavior of the moments in the two cases are found. The anomalous dimensions are quite different in

general, but are simply related in the weak-coupling limit.

I. INTRODUCTION

In this note we shall record the results of a
ladder-model calculation of electroproduction and
annihilationlike cross sections. Our motivation is
to study the anomalous dimensions which govern
scaling and, in particular, to ask whether their
singularities bear any resemblance to the singu-
larities as revealed by perturbation theory. At
the same time we wish to see whether there is
any simple relation between the anomalous dimen-
sions which govern annihilation and those which
govern electroproduction. Our purpose here is
mainly illustrative: to show in a simple nontrivial
example that the scaling properties of the inclusive
annihilation cross section are perfectly analogous
to those of the electroproduction cross section al-
though governed by a different set of dimensions.
Finally, we shall use the specific model cross
sections we have obtained to test certain proposed'
connections between properties of the anomalous
dimensions and characteristic isolations of scaling
in the asymptotic behavior of the cross sections
themselves. In general, we propose to use this
simple model as a laboratory to examine the
limits of validity of schemes for converting re-
normalization-group information (i.e., properties
of anomalous dimensions) into information about
the directly measurable cross sections.

II. DEEP -INELASTIC SCATTERING

We begin by treating "electropr oduction" but
with all particles being treated as scalars. The
process is, as usual, virtual photon (q) incident
on "nucleon" (P) producing hadrons over which we

sum. The kinematics are shown in Fig. 1, where
we designate the absorptive part of the forward
elastic amplitude by A(q, p}; the kernel in our

model is a simple bubble. Quite generally, for
any two-particle-irreducible kernel, I, we have
the Amati-Bertocchi- Fubini-Stanghellini- Tonin
(ABFST) equation'

~"'((P+ q)', P', q')c... =A(q, P), (2.2)

where A(a, b, c) = a'+ b'+ c' —2ab —2ac —2bc
It is kinematically convenient to imagine that

both q and P' are spacelike. Qf course this is np

hardship as far as q' is concerned. The continua-
tion to p' positive (on shell) presents no problem.
We introduce conventional kinematic variables:

s = (p+ q)',

Lc= -q 2

'V= -P,2

~/ q/2

q'P S+ Q+ V
cosh8=

(

(2.3)

q' p (q' + p)' + u' + v
COsh ' =

(
I )u2 2(ale)1/2

4P. + tt+ V
coshHP

2( )'

Here p, is the mass of the Q field. The kernel I in
our model is easily found to be

A(q, p) = f(q, p)+ (2,), d'q'f(q, q')

x&'(q")A(q, p), (2.l)

where A(q") is the propagator along the ladder.
Our normalization is such that if q and P were on
the mass shell, the total cross section, 0„,, would
be given by
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f((q-q'}', q', q") =
2

Z' 2„'. 2,; 5(q,'- ~')5(q.'- V')5(q-q'- q, -q, )

167t q —q' (2 4)

It is convenient to effect a diagonalization of our
integral equation for the absorptive part by making
what is essentially a Laplace transform. This is
a standard procedure' and we simply quote the re-
sults. We define

(q —q')' and its "ma.sses" q', q" we have the trans-
formed equation

A. , (u, v}= I, (u, v}

A, t, )= J Aee "'"'A), , v), (2.5)
+, , 6fu'f, (u, u') n'(u')A, (u', v).

(2 'I)

where 8 is defined as above. The inversion for-
mula, using ds = 2(uv)'" d(cosh8) is given by

It is slightly more useful for purely technical rea-
sons to deal with the amplitude a, (u, v), given by

2(uv)' ' sinhOA(s, u, v}
a2(u, v) = A, (u, v)/(uv)" ""', (2 6)

C « ~
e

(i t I)e
1 j t ~

c+f~
. e"' A. , (u, v), (2.6)

c -i 270
and write the integral equation in terms of this
and a similarly reduced kernel i, (u, u'),

and c must lie to the right of singularities of
A, (u, v) in the I plane. With a correspondingly de-
fined transform of I with respect to its subenergy

i, (u, u') = 1, (u, u')/(uu')~" ')" .
Our basic equation then becomes

(2 9)

1
gl (uv v) ~l ( uve) +

1 6 3(I 1)
du'i, (u, u')d, '(u')u+ ")a,(u', v) . (2.10)

The relation between the transforms of A(s, u, v) and the conventionally defined moments of structure
functions can be illustrated by expressing cosh8 in terms of the familiar variables ~ and -q = u. We have

~ = 2P q/(-q') = 2P qlu,
u "'1+ (1 —4v/u~')"'

coshg = —,'~ —,e' = (d—
'U V 2

(2.11)

so that

«g «I 2 l+I
a)(uv V) =

2

2(V/Q) CO)2h eP
(2.12)

which is the usual limit of large (-q') = u becomes
simply 16 (, ,)~', 1, 1 2)'

a, (u, v) = —, d(u)d )A((u, u, v).-1 -I (2.13) (2.16)

a„= de+ " 'A e, u, v.
1

Thus

(2.14)

This is to be contrasted with the ordinary defini-
tion of the moments, call them a„:

where u, (u, ) is the smaller (greater) of u, u'.
With this kernel, the integral equation for A, (u, v)
can be converted into a fourth-order differential
equation with 5-function inhomogeneity which can
be readily solved. It is more useful, however, to

a„(u, v) = u""a„„(u,v}. (2.15}

For purposes of illustration we shall set the
mass p, = 0 as well as all other internal masses
and replace the propagator n(u'} by simply (u') '.
In our bubble model we find for i, (u, u') the result

I
q

FIG. 1. Graphical expression of the integral equation
for the electroproduction cross section.
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b)r, ,v)= I d ' ', ), ),
0

(2.17)

solve the problem by a direct Mellin transform
of the integral equation. We introduce

where we define the various roots to be real and
positive when E is a very large, real, positive
quantity. For orientation we have given the ~; for
small f' or, what is equivalent, large L. To re-
construct a, (u, v) we have

with the inversion

a, (u, v) =
C+$ o

. u'b, (r, v);
27TE

(2.18)

1 ' ""ar 16 vf '(l + 1)(u/u)"
u', , „27)i r(r —1)(l+ r)(l+ r+ 1) f'—'

(2.22)

g' (l + 1)v '

16v r(r —1)(l + r)(l + r + 1)
' (2.19)

In deducing this transform we have required that
-Bel &Rer &0, the tentative strip of analyticity for
b, (r, v). With our approximation, A(u') = (u') ',
the Mellin transform of the integral equation re-
duces it to an algebraic one with the solution

b, (r, v) =
16 vf'( +E1)u '

r(r —1)(r + l)(r + l + 1) f' '—(2.20)

where f' = (g/16v')'.
It is elementary to solve for the roots r„

of the denominator. We find

+ + +f2 4 2 ' 2

l(l+ 1) '

l E}l' l+1 i+1—
]
—+ — + f

l(l+ 1) '

l P L+1——+ —+
I4

+

(2.21)
2 I/2 1/2

+ f2
2

(l+ 1)(l+ 2) '

E ]E' E+1) ' E+1 '
2 ]4 2 2

+ f

the contour is a line parallel to the imaginary axis
lying in a strip in the complex r plane in which
b, (r, v) is analytic. The transform of the kernel
j,(r, v) is simply

(u &/u &)
') (u, /u, }'z

X
V1 V2

{2.23)

Since a) —l/2, a, - {E/2) + 1 as f'-0, it is clear
that a, (u, v}- i, (u, v), as it should. The quantity of
interest in discussing the moments of the structure
functions for large u is easily seen to be the large-u
limit of

u'a - u" 2" = u"'
l

The perturbation expansion of r, + l is f'/l(l+ 1),
but the superficial pole at L = 0 is obviously absurd.
The correct singularity of r2 + L is at L = -1
+ (1+ 4f )"' and is a branch point, not a pole.
This has recently been discussed by Lovelace and
Gross. '

Depending upon what limit of the full amplitude
A{s, u, u} one is interested in studying, it may or
may not be advantageous to have carried out the
r integration explicitly. We can in fact go directly
to the inversion formula

2(uu)'" sinh8A(s, u, v)

dE , , oE'" {uu) ' "."'a (u v)
2WL l r

(2.24)

and we see that if u/u &1, we can close the contour
to the left, and if u/U&1, to the right. Imagining
L to be very large, real, and positive we see that
the strip of analyticity is still roughly -l &Re~. &0,
and v„r, lie to the left and r„r, to the right of
the strip. Writing r, , = - E/2+ v„r, , = -E/2+v„
we find for a, (u, v) the result

16w'f'(E+ 1) 1

4[[-,'(E+ 1)]'+f'j"' (u, u, )"'

(l + 1)(l + 2) ' to obtain

sinh8A(s, u, u) 9 dr u " dl e " (u/v) "
8v'f' a 8 2wi u 2wi r(r —1)(l +r}{l+r + 1) f- (2.25)

Now we carry out the integration over L completing the contour to the left. This is legitimate because
0= 6„where in our zero-mass limit

e o = (u/u))~'

With the trivial replacement r — = o we have
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sinh6A(s, u, v) 6 do e"" "sinh([-, + f'/(o' ——,)]" (6+ 6,)]
gv'f' ae 2vi (c' - l )[l +f'/(c' - -')]'" (2.26)

Although we shall not make much use of it, it
is possible to evaluate this integral in terms of
elementary functions. To do so, expand the hyper-
bolic sine in a power series leading to a series in

[~ +f'/(o' —~)] expand the latter into a series and
then carry out the o integration using

where I„(z) is the usual Bessel function with the
behavior

I„(z)- z "/1"(v + 1), z - 0

- e'!(2//z)"', z - ~ . (2.28)

The double series can be summed into a single one,
with the result

G(x, y) = f'G(x, y); (2.31)

sinh6A(s, u, v) 6
gv'f' "66 "

~ (j'xy)' x y
[f)]2 / +I/2 2 /+l/2

(2.29)

where x= 6 —6» y = 6" 6,. The symmetry in x, y
is not obvious from our original integral represen-
tation although it is expected on general grounds.
The amplitude A is obviously symmetric in u and

v; thus regarded as a function of 6, = —,
' ln(u/v) it

must be an even function of 6„= (y —x)/2. Since
6 = (y+ x)/2, the whole amplitude is thus a sym-
metric function of x and y.

There are two other related observations we
make. Writing

dc e'* sinhg-,'+ f'/(c' — )]"'yJ
(o& ~)[~ + f2/(/J2 2)]&/2

(2.30)

we note that G(x, y) satisfies the differential equa-
tion

but pass on to treat the problem of inclusive an-
nihilation in a very similar manner. We shall
find, in fact, almost identical formal results in
spite of profound differences at intermediate steps.

III. INCLUSIVE ANNIHILATION

The process of interest is a virtual (timelike)
photon (q) decaying into unobserved hadrons and a
distinguished one (P). The kinematics of the pro-
cess are shown in Fig. 2, where we show the gen-
eral structure of the process. In general I is the
absorptive part of a two-particle irreducible ker-
nel; in our model calculation we shall take it to
be a simple bubble as before. We now write
q'= u, p'= v, where u, v are both positive. The
general integral equation takes the form

A(q, p) = f(q, p)

+ (2„), d'q'f(q, q') l&(q') I'A(q', p).

(3.1)

It is necessary to write the absolute square of the
propagators because, in contrast to the electro-
production case, they are complex.

Because we are dealing essentially with a decay
process, the kinematics here are really dramatic-
ally different from the spacelike case. For ex-
ample, the virtual photon q decays into unobserved
hadrons of mass (q —q')' and the observed hadron
P. Hence q, & q,

' P„and the integration over q'
in our equation is over a finite timelike region. If
we call s, = (q —q')', s' = (q' —p)', s = (q —p)',
q" = u', and the threshold values of s, and s'
= m ~', one easily deduces the further kinematic
restrictions v'" + m r ~ (u')"'"~ u"' -mr and
(s 1)1/2 + (e )1/2 ( e?/2 ( ul/2 I/2

To proceed with the diagonalization in this case
we introduce hyperbolic angles $, („and E' de-
fined by

and by taking a Laplace transform with respect to
Y of the integral representation of C and writing
a formal inversion of it, we have

q'

(2.32)

which makes the symmetry in x and y manifest.
We shall not stop to discuss these results further,

FIG. 2. Graphical expression of the integral equation
for the annihilation cross section.
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q'P u+ v —s their E's from getting to large, we can diagonalize
the equation by defining a transform'

q ~ q' u+ u' —s,cosh( = (uu')'" 2(uu'}'" A„(u, v) = d( sinhg sinhN)A(s, u, v) (3 4)

'P u +v —s
cosh&' =

(
s V)1/2 2(usV)1/2 s

u+ v —'fpg~
2

Coshkm 2(uv)1/2

(3.2)
and recognizing that the step-function restriction
in the variable change above is tantamount to the
restriction ~$, —$'

~

~ t' ~ (, + $'. We find then

A/s/(us v) = I//(u, v)
where f evidently is the maximum value of g

corresponding to the produced particle carrying
off its greatest amount of energy. Introducing
these variables into the integral equation we have
the Jacobian

1
4m'N

du'u' ~t1(u') ~2 l„(u, u')A„(u', v),

(3 &)

d P' = . d(cosh)o)d(cosh)')8(X),
sinh8,

X= 1+ 2 cosh' cosh)' coshE,

—cosh'$ —cosh'$' —cosh'$2. (3.3)

The step function 8(X) implies limits on the vari-
ables $' and (, aside from the limitations on u'

noted above. With the understanding that the ker-
nel I and the amplitude 8 have their own secret
understanding of threshold 8 functions that prevent

I

where I~ is defined precisely the same way as
A„as an integral over I(s, u, v).

In order to show the relation between A~ and
the conventionally defined moments of structure
functions, we remark that

Pq, u'"
cosh( =

cl2(uv)'" -'
v

(3.6)

where w—= 2P ~ q/q'. Introducing /d as a variable in
place of g, recalling that the upper limit on $ is

, we find'

2(v/ssI cosh 2m ( ///2 I + (1 4 /u1V2 }1/2 I//

X d(d', (d
2(vl@) V

„u " 1+ (1 —4v/used)"'—(d
V 2

A(1s/, u, v) .

(3.7)

In the usually considered limit of large q' = u

we have

u (/+i)l2
A„(u, v) =- d1d &s/sA(1d, u, v). (3.8)4 v 0

This says that the quantity a„(u, v), defined by

a„(u, v) = (v/u)'"'"/2As(u, v), (3.9)

is directly the usually defined Nth moment of the
structure function.

It is important to remark that for finite u, the
quantity A„(u, v) is an entire function of IV, since
the defining integral extends over only a finite in-
terval and the integrand is an entire function of N.
This is to be contrasted with the function A, (u, v}
introduced in the spacelike regime which has
branch points in the l plane. The inversion formu-
la expression A(s, u, v) in terms of A„(u, v) is
easily found to be (for $& $ )

A(g, u, v) = — diy . A„(u, v), (3.10)
i "'" sinhN(

C $~ sinh $

We now specialize the kernel I to the (It}' bubble
model considered in connection with "electro-
production. " We again set all internal masses
equal to zero and replace n(u') by (u') '. The max-
imum value of $ becomes $„=—,

' ln(u/v). We have

2 4fft

I„(u, u') = d $ sinh $ sinhiVE
W o

(E+ 1)gf'ft -(E~ y)g '

64m N+1

e(~-i)C' -9 -i)C'm

N —1

with $' = —,
' ln(u/u'). In terms of

(3.12)

and the contour is any line parallel to the imaginary
axis and might just as well be the imaginary axis.
In the large-u limit, in terms of the auxiliary
quantity a„(u, v) we have

C+5'o

A(1d, u, v)= 4 . 1s/
" 'a„(u, v). (3.11)

C 4~ Fi
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it to an algebraic one for b„(r), with the solution

our integral equation becomes

4v2f 2N

r(r+ 1)(N+ r)(N+ r + 1)-f' ' (3.18)

1
a„(u, v) = 2„(u, v} + 4,4~'N

where

dg
2„(u, u')a„(u', v),

(3.13)

with f' = (g/16'')'.
The inversion to recover a„(w) is easily done

since we can recognize the roots of our quartic
equation as those obtained in the spacelike case
with r--r, N--E —1. We find

f „(u, u') = (u'/u)~""~" I~(u, u')

i z+x-
1 ——

64w }N+ 1 u

N —1 u u )
(3.14)

(w g (N 1) /2

4v f2'

sinh(o, lnw ) sinh(v2 1nw )
(N'/4+ f')'" c, c,

(3.19)
Evidently a„(u, v) is a function of the ratio u/v,
and we introduce as new variables w = u/v, w'
= u'/v. To solve the integral equation for a„(w)
we use again a Mellin transform defined now as

where

(3.20)

bN(r) = dw w
" 'a„(w), (3.15)

X'+ 1
4 4

+f2

with the inversion
C+1 o

a„(w)=,w" b~(r).
C 4~ 27TZ

(3.16)

The quantity b„(r) is analytic in a half plane this
time rather than a strip. We find

t N
64w r(r + 1)(N+ r)(N + r + 1) 'dww " 'f„(w) =

(3.1t)
and the transform of the integral equation reduces

One can be utterly cavalier about how the square
roots are defined since there are, in fact, no
branch points involved, as is easily seen. This
may be inserted into the inversion formula to re-
cover A. ((, u, v), but it is not particularly illuminat-
ing or useful. Rather, we formally represent
A„(w) as an inverse Mellin transform (that is, as
an integral over the transform variable called ~)
and use this representation to carry out the inte-
gration over S. With a trivial translation r-0 ——,

we find, recalling that w = exp(2$ },

sfnh(A((, ] ) 8 '"" de e "~-" i s(n[h-,'+ f2/(~'-!)]'"((„+ t')j
8x'f 2 8(, ,„2wf (o' ——', )[—', + f'/((r' —-)] ~

(3.21)

We have used the fact that the above integral is
actually an even function of E.

Our result for inclusive annihilation is essential-
ly identical to that obtained in the electroproduction
region, which perhaps comes as somewhat of a
suprise because the singularity structure of the
moments is so different. Because of the formal
identity in the two cases we can discuss various
mathematical limits simultaneously, although the
physical interpretations are quite different. For
example, in the spacelike region the limit v-~,
q' fixed corresponds to both x= 8 —8, and y = 8+ 8,
becoming large or, stated otherwise, ,'-(y —x) = 8O

= —,
' ln(q'/p') fixed, but —,'(y + x) = 8 = in' + —,

' ln(q'/p')
growing. Another limit of interest is (d fixed,
-q -~, corresponding to x fixed, y-~. The
physically interesting limits in the annihilation

(timelike) region are the following: (1) x= $
= jn(1/u) fixed and q'-~ or y = g + g-~ (this is
mathematically identical with the fixed-(d large-
(-q') limit just discussed), and (2) fixed $,

$ -~, which means both x and y become large
with y —x fixed and, of course, Y+ x growing.
This is the counterpart of the large-a fixed-(-q')
limit of electroproduction. Here, however, it
has the interpretation of fixed energy of the pro-
duced, distinguished hadron, in the center-of-
mass system [where q = (q„6)] in the limit where
the photon energy is very large. It is evident then
that in our model similar features of the anomalous
dimensions that determine what is usually called
the Regge limit in electroproduction, namely,

q fixed, simultaneously describe the be-
havior of the inclusive annihilation cross sef'
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corresponding to a fixed energy of the produced
hadron.

produced hadron in the timelike case (T). The
two cases can be treated together.

We recall
IV. ASYMPTOTIC BEHAVIOR OF ELECTROPRODUCTION

AND INCLUSIVE ANNIHILATION

We conclude our formal discussion of the model
by considering the interesting physical limits.
The more complicated one is the large-e fixed-
q' limit in the spacelike region (S) and the mathe-
matically equivalent large-q' fixed-energy limit of

sinh8A(8, 8,) 8

8 3f2 88
8l 0

sinh(A(E„)„) 8

Qw3f 2 8] llll

where

(4.1)

G n, P =
'+' dv e'~ @si~[1+f2/(g2 —1)]I/2(n+ p))

(g' —-')[-'+ f'/(g' —-')l'" (4.2)

What we require is the limit of G(n, P) for large n, fixed P. This can be treated by the method of steep-
est descents. In the desired limit, it is only the positive exponent in the hyperbolic sine that is important.
We have then

G(n, P)
C+loo f2 1/2 1 f2 1/2 -

1 f2
dge /'~, 4(g) = a g+ —+» —P g — —+» —ln(g' ——,') ——', ln —+

4 cr -4 4 cr' —4
4 2 4 2 l

(4.2)

2(1+ 1/2f )
0 g0 (4.5)

g. = (-'+f }'/',
and b, is a constant involving f that is not needed
for the moment. The fact that only even powers of
P occur is a consequence of previously noted sym-
metries. The factor exp(-2P2/b, n) should really
properly be regarded as (1 —2p2/b, n ) to the order
calculated.

It is now a simple matter to compute the am-
plitude A for the two cases:

sinh8 A(8, 8,) exp(2g, 8 —28,'/b, 8)
Sw'f' f (2wb 8)'"

It is easy to see that the coefficient of n has min-
ima on the real v axis at the points g = (-,' +f)'/';
since we are interested in large a we concentrate
our attention on that saddle point that is near 0,
= (-,' +f )'" and pass the contour through that point.
The calculation is straightforward, standard, and
tedious. We find, keeping only terms of leading
and next-to-leading order in the small quantity
a ', the result

exp(2g, n —2P'/b, n ) ~b

2fg3(2wb 3n )"' n

where

where

1
b, =b, —

0

29f'+ 21f + 4

32f'(1+ 1/2f )'v, ' (4.7)

dg e'* sinh([-,' + f'/(g' ——,')J'" yj
( l y)

2w2 (g2 1)[1 +f2/(g2 1 )]1 /12

(4.8)

Befor discussing these results let us consider the
other interesting limit, namely, fixed e and large
q' in both the (S) and (T) cases.

This large-q' fixed-e limit is much simpler
technically than the one just considered. In addi-
tion, as we have discussed in a previous paper,
this limit depends essentially only on the behavior
of the anomalous dimensions for large n. The
limit of interest requires a study of the quantity
G(n, l8} for n —p = x fixed, n + p = y large. We
note that for the spacelike case, a —P = x = 8 —6,
=—inn, n + P = y = 8+ 8, =—ln1e+ ln(q'/P'); and for
the timelike case, n —P = $ —g-=in(1/&g), and
n + P = g + t' —= ln(q'/P') - ln(l/1d).

We require

(4.6)

sinh(A(], g ) exp(2g, t' —2)2/b, )„}
8w'f' fg3(2nb, ] )'/ b, E

for large y, fixed x. This can be discussed in a
variety of ways. For example, we have seen that
G can be evaluated exactly in terms of a sum over
a product of Bessel functions. Starting from this
we can use the asymptotic form of I„„,(y/2) and
sum the resultant series to obtain
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�

e+4~ d
eXP CX+ 2 1

f y
a 1

G(x, y) = e"2

Calling f'y = z we must evaluate, for large z,

(4 9)

C+1 oo
8

g(x, z) = . exp ax+
C 42o (T

(4.10)

there is obviously a term 5(x) in this integral
which we ignore since we shall ultimately take a
derivative with respect to z. Clearly the quantity

4(a}=ox+ (4.11)

o —= a+ 1/6cT, (4.12)

has a minimum on the real axis for some large o.
The actual location is at a point

It is straightforward to show that the large-y
limit of the exact G(x, y) from which we started
leads, by saddle-point integration, to the same
result again to within terms of order y

' '. This
is an illustration of the general feature, discussed
in I, that the large-q' fixed-(d limit depends only
on the behavior of the anomalous dimensions for
large n. We have tested this principle with a num-
ber of examples, and there is little doubt that,
barring pathologies, it is a theorem. We mention
one example:

f
C+k o

. exp[ax+ y[o —(a' —a')'"]}

( )
I,(a(x'+ 2yx)"'

(e+ 2yx)"'

If me replace the integrand by its large v value,
we expect that we will get the correct large-y
limit, and we find

r
C + C c22

. exp(ax+ ya'/2o)
C

where

cr = (2z/x)"' . (4.13}

g2 1/2
= 5(x) + I,((2a'yx)'i'), (4.21)

If z is sufficiently large that c~r» —,
' wa may approx-

imate (I) by

4(a}—= ox+ z/a'. (4.14)

The error made thereby is controllably small and
we will quote it below. Keeping only leading terms,
we have from the standard steepest-descent pro-
cedure,

which is, in fact, the same as the large-y limit
of the exact answer. It is, of course, no accident
that the large-o limit of the anomalous dimen-
sions corresponds to the perturbation theoretic
expansion: Large "angular momentum" is tanta-
mount to meak coupling.

We now write explicitly the large-q' fixed-e
limits of the two cases (S) and (T}.

and

4 (cT) = 3(-,'x'z)"' (4.15}
&(8 82) -(e-e,) g2

167t3f

f2
12vz(8, 82)

1/2
3~ (~, 00)

~ ~(&)

g( 1 } [2 4 It(—)] / 712

where

4 "((r) = 6z/c7' = 3x"'/(2z)"' .

We have then quite explicitly

(4.16)

(4.17)

cc -c)n
162c2f2

where

f2

122cz(g, t')

(4.22)
1/2

3z(a~, ()
7

exp[3(—,'x z)'"] 1/3

[6 '/(2 )' ']ci2 [1+O(1/z )].

(4.18)

„, exp3(2f2x y)"'
(12 f'y)'" (4.19)

We have indicated here the next correction terms
in the steepest-descent procedure. It is easy to
show that the errors associated with our approxi-
mation of 4(a) are also of order z "'; these are
both easily computed, but are not very interesting.
We have finally

z(a, P)= [9"(a P)'(a+ 8)]-"'. (4.23)

Now we note that for large q', 6) —6, =ln~ and
—t'=in(1/~). Hence to the extent that 8+ 8,

=28, [=ln(q'/p')] and $ + (=2( [= ln(q'/p')], we
see that the above expressions satisfy the Gribov-
Lipatov' relation

F(ce, ln(q'/P )) = (1/ce)F(l/ce, ln(q'/P )), (4.24)

where I' is the annihilation structure function, and
F is the deep-inelastic (spacelike) one. Quite
generally we note that if [writing X = ln(q'/p )]
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(O+ i) 111 urF(2), )() = . e"" '" g(o, X),

P(~ ~) (a+ I) )n(I/~) g(o g)
Ct'

2m'
'

(4.25)
(q 2/p2)(1/2 +/)

( tl km) [ln( 2/p2)] 2/2

ln[E/m + (E'/m' —1)'"]
(E2/m 2 I )

I/2

and g(o, )I) = g(o —1, )(). Then indeed

P ((d, )I}= —F(1/(d, )() .1
(4.26)

This relation does not hold for our model exactly,
as we will see later on more explicitly, but only
in this extreme large-ln(q'/p') limit.

There are no particular surprises in the large-
q' fixed-u& limit we have just discussed. The
cross sections grow as q' increases, faster than
any power of lnq'. Note, incidentally, that we can-
not trust these formulas for x-0 or (d near unity
(i.e. , threshold) in either the (S } or (T) case;
our steepest-descent method is simply inadequate
in this case. In fact, we must re(luire that (x'y)I/2
be large compared to unity, or ~ln(l)t ~ (lnq')

What we have found in the other interesting
physical limits, i.e. , large ~, fixed q' in the
spacelike case (what is sometimes called the
Regge limit) and the large-q' fixed-energy limit
of produced particle in the timelike case are rather
more striking. We see that

0 =— ~(d 40 A. (d g P
I

= c,(p )(q ) (4.31)

and y„ is the anomalous dimension associated with
the nth moment. Our model then tells us that

n+ 1 (n+ 2}'+ 1
2 4

+ f2
J

For fixed E the cross section increases with q'
(which is the general trend of the current SPEAR
data}. Again we emphasize that the results we
have just recorded are strongly dependent on the
details of the theory for their precise form, but
that the behavior reflecting a singularity in what
is essentially the anomalous dimension at some
small o (in this case near o = —,') is (Iuite general.

Finally, we record for completeness the precise
connection between the conventionally defined
anomalous dimensions and the quantities entering
our model. For the spacelike case, as -q'- ~,

exp[[2(-,' +f )"' —1]g]
0 0 1/3 (4.27) (n + 1)(n + 2) ' (4.32)

as () =- In&a + —,
' ln(q'/p')- ~, (), = —,

' ln(q'/p') fixed,
which means

A —(d /(in~)I/2, (S) (4.28)

where P is the positive power 2( + f)"' —1. This
is no cause for alarm, because we are not putting
in any s-channel unitarity constraints. The pos-
sible violation of the Froissart bound (which would
be the case if P& 1) cannot be taken seriously.
We note that we have to do with a branch point in
the "/ plane, " not a pole, reminiscent of the work
of Cheng and Wu. ' In the timelike region we have

A(( g )
p[ (4 f } till] k (T) (4 29)m ( 3/& sinhE '

where we recall that in the center-of-mass system,
q= (q, 0, 0, 0). cosh)'=E/m, with E (m) the energy
(mass) of the distinguished hadron and 2E,
= ln(q'/p'). Thus we have

where

= C (p')(q') "&, (4.33)

X+1 X'+1 X'+1~yg 2 4
+ + +f'

4

N(N+ 1) (4.34)

We see that in the small-f' limit y„and y„are
related by simple translation by one unit (this is
the origin of the Gribov-Lipatov relation as we have
noted) and possess simple poles in N. Neither
feature survives in the exact expression: The pole
singularities are converted to simple branch-
point singularities, and there ceases to be any
simple relation between y„and y„.

for small f' or large n Simi. larly, in the annihila-
tion case, we write

1

d&u ~"A((d, q', p')
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