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Low-energy Compton scattering: The magnetic polarizability of the nucleon*
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An expression for the magnetic polarizability of the nucleon is derived using gauge and re-
lativistic invariance. Besides the well-known term that contains products of magnetic dipole
transition moments it is shown that there exists a second contribution related to third moments

of the current-charge density commutator. An estimation of the proton magnetic polarizability
leads to a result which is consistent with the available experimental value.

I. INTRODUCTION II. THE SCATTERING AMPLITUDE

Low and Gell-Mann and Goldberger' have de-
rived the Compton scattering amplitude on a spin-
—,
' target up to linear terms in the frequency of
the incident photon. The quadratic terms of the
amplitude have been investigated in the context
of field theory' ' and more recently by using only
on-mass-shell physical helicity amplitudes. ' As
is well known, in addition to the charge, mass,
and anomalous moment, the cross section up to
second order in the frequency of the photon is de-
scribed by two more parameters, n and P, repre-
senting the electric and magnetic polarizabilities
of the system.

Various authors have estimated the electric
polarizabilities of the nucleon, especially the
electric polarizability of the neutron. 4' More re-
cently a dispersive approach has been used for the
electromagnetic polarizabilities. '

In this paper we concentrate on the magnetic
part. We show that a general cl.osed expression
can be obtained for the magnetic polarizability
using gauge and relativistic invariance. A first
term P, which contains products of magnetic dipole
transition matrix elements has been derived by
Petrun'kin, ' but the question of whether there are
additional contributions or not has been open. We
have shown that there is an additional contribution

P, to the magnetic polarizability which is related
to third moments of the current-charge density
commutator.

In Sec. II we give a general discussion of the
scattering amplitude. Section III is devoted to the
calculation of the scattering amplitude to second
order, and the full expression of the magnetic
polarizability is written down. In Sec. IV we esti-
mate the polarizability of the proton and we obtain
a value consistent with recent available data. ' The
results are discussed in Sec. V.

We write the scattering amplitude of light by the
nucleon as

s=(4v cu(d ) E'pTppep

where'

Tv= dxdy e '~ """'p' T J„x}J,y}

(2)

Here k and k' are the incident and outgoing photon
momenta, e and e' are the corresponding polariza-
tions, and P and P' are the initial and final target
momenta. Our metric is defined by k =(k, iko)
= (k, iv)). The term p„„(x) compensates for the

noncovariance of the T product and satisfies the
identities

ppv = pvj pov =0 .

Covariance of T is ensured by the following
equal-time commutation relations for the current
operators J„=(J, , iJ,):

(4}

8
[J,(x), J,(y)]5(x, -y, ) = i —5'(x-y)p, . (x) .

m

Tpv kv —kp Tpv 0

In the transverse gauge, e,'=f4=0, k e =k'c'=0,
the physical amplitude is

S = (4 V'u(d '} 'i'e, '. T, ,e, , (7}

where, extracting a three-momentum & function by
translation invariance, we obtain

This commutation relation ensures the gauge condi-
tions

11
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3

T, = ™k(jl' k' p —k)( k*ky -"""'((''I(r(r;(*i&,(|'))- v;;(*)k'( -i)lli)

As we shall see, the additional contribution to
the nucleon polarizability is given by second mo-
ments of the function p;,.(x), which can afterwards
be expressed in terms of third moments of the com-
mutator [J,(x), J;(0}]by means of Eq. (5).

We shall now use a convenient decomposition of
the electromagnetic current due to Foldy' which

is based on the identity

where

and

I
D, (k, y, ) = ds d y v, d, (y)e"~' )'

0

1

M, (k, y, )= sds dy(yxf(y}), .e'* ')' .
0

(12)

l.- ($. ), ,

'

d ~( . (st(. y)
0

1

s dse" ')'(axk)xy . (9)

For k =0, D, is the electric dipole operator d,
and M, is the magnetic dipole operator m, :

D,.(k = 0) = d, , M,. (k = 0) = ))(,.

Contracting this equation with J(y), integrating
over space coordinates, making a space integration
by parts, and using the equation of continuity,

It is easy to see that

d„J„=O,
leads to the following decomposition":

(10)
(15)

r

dye, (y)e' ' = D,.(k, y, )+ie,„,k„M (k, y, ),
ay

where Q = fdy J,(y) is the total charge.
Now we substitute Eq. (11) into Eq. (8}. After

a time integration by parts we can write

3

r, , = kjp' ~ k' —p —k) p' ( f d dy, '""*'r' ( r)r(*)D (k y, l) ~, , k, t))(*)M (ky)))

+ dxdy e 06x -y )J;x) Dky) i dxe p, , x) p

(18)

Next we use the decomposition (11) in the first two terms on the right-hand side of Eq. (16). One ob-
tains, taking the initial nucleon at rest (p = 0, P, = M),

T . = b( '+k'. —k)(T'" + T'")

where

T(i) dx dy e "0 ' ' p' ~~'T D. —k' x )D k, yo) +~ &. 0 T D. -k', x0)IVI k, y, )

+(k)e k' T(M (-k', x )D (k, y, ))+e; „.&, &,
'

&, T{M (-k', x.)M (k, y.)]]I0),

is the part containing T products and

dx dy e' '"- ' '0a x -y )

x p' dxe ' ' " J, x, x,), D,. k, y, ) -i~ D,. —k', x,), D,. k, y, ) -ie,. „k„D,. (-k', x,), M k, y, ) 0

-i p' dxe'" "'"p,, x) 0
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is the part containing equal-time commutators and the function p;,
Using Eqs. (5) and (12), the first equal-time commutator of Eq. (19) gives

~ ~
1

dxe ' ' "[Z((x, x), D (k, x )] =i dxe'( ]'"p,, (x)+ dxe ' ' " sdse" ' "(k xt), —x k )p, (x),

(20)

where use has been made of the identity

1

ds(1+isk y)e" ]' ='e' (21)

Notice that the first term on the right of Eq. (20) will cancel out the last term of Eq. (19).
The second equal-time commutator of Eq. (19) vanishes on account of Eq. (4):

[D,. ( k', x,), D,.(k, x,)]=0 .

The third equal-time commutator of Eq. (19) gives, with the help of Eqs. (5), (12), and (13),

(22)

1 1
-(s, „,[,(-)s', *,), SS (k, *,)]=J d ds' sds " ' ' "p„„t*l(S,— s'k„'*,)(,.S„—)s sp, „) . (2S)

0 0

If we use the identity (21) for the exponential involving k' in this equation, the linear term in k' will
cancel the corresponding one in Eq. (20). If we add Eqs. (20), (22), and (23) only terms at least quadratic
in the momenta will survive. After substitution in Eq. (19), we obtain

T]]d ] = 2si5(PO+(d)' —M —(d])

1

x p' dip „x sds s'ds'e'' ' ' " 0;k"x x&k„-k'x5,„) + 0' x; k x5,.„—x,k„) 0
0 0

(24)

Before we study our decomposition of the ampli-
tude we stop for a few comments: The manipula-
tions leading from Eq. (8) to Eqs. (17), (18), and
(19) seem to be highly formal. Actually they are
based on the identity (11) and common space and
time integrations by parts. We could as well in-
sert a complete set of intermediate states in the
T-product term of Eq. (8) and apply our identity
for the matrix elements of the currents instead of
using them for the current operators themselves.
Contracting Eq. (17) with k,. or k,

' and using Eqs.
(15) and (11}one can check that the gauge condi-
tions (6) are recovered.

III. CALCULATION TO ORDER m2: THE ELECTRIC
AND MAGNETIC POLARIZABILITIES

In this section we shall show that the first term
T(,'] in Eq. (17) contains the known results for the
polarizabilities ' and the remaining part T;;
given in Eq. (24) gives the additional contribution
to the magnetic polarizability that we are looking
for.

In Eq. (18}we insert a complete set of inter-
mediate states, perform the time integration,
and separate out the nucleon intermediate state.
The excited-states contribution is certainly of or-
der co', and to that order we can put inside the sum

over these intermediate excited states all space
momenta equal to zero. One obtains

T;,'] = —, t)(P0+(()' -M —(()[(2;,"]+(d)(d)'u5, ,

and

(0(m;(n, 0}(n, 0(m, )0)
i sd

—
@ (1))

(26)

(27)

The excited-states contribution coming from the
second and third crossed terms of Eq. (18) van-
ishes, due to the opposite parities of the electric
and magnetic dipole moments.

This part of the calculation reproduces the known
results. " The quantity n is the electric polariza-
bility of the nucleon in the conventional sense and
the quantity P, gives a first contribution to the
magnetic polar iz ability. '

+(k k'5, , —k, k,'. )P,],
(25)

where a;," contains the nucleon contribution,

(O(d, )n, 0}(n, 0(d, (0) . .
)
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En the term a';,". one includes" not only the sin-
gle-nucleon intermediate state but also the one
containing a nucleon pair (zigzag diagrams). The
prime in Eqs. (26) and (2 I}indicates that they con-
tain all but these nucleon intermediate states,

We come now to the part T',.' of the scattering

amplitude.
From Eq. (24} we see that B;, is at least of order

To that order the exponentials can be set equal
to unity, p'=k —k' can be set equal to zero, and
one can write

T!,'~ = —, i !0!~ ',' .M !-,'k„'!.„ ll f d*[ Pt* *!*.—!;., ' —P„;;*.+P .. ;*;1 o (28}

Consider for instance the first integral of Eq. (28}. Since it is symmetric in i,j and m, n its value be-
tween spin--,'- states at rest is of the form

dxpij )xnsxn ~i j~mn+ ~in ~jm+~im~jn)+ c irm r ~jn+ irn~r ~jm+ ~ (29}

Substitution of this form in Eq. (28) leads to

T;~,'i = —. 6(P,'+ &u' -M —~)(k k'6;, —k; k,')P, ,

From Eq. (29) we can express the constants &

and 6 in terms of the second moment of the func-
tion p;, . From Eq. (31) one obtains

where

P, =-,'(a —b) .

(30)

(31)

p, =,—', (6;,6 „—6; 6,„) 0 dx p, „x x„0
(32 }

The term proportional to c in Eq. (29), which does
not appear in the final result, is actually not
present if one invokes time-reversal invariance.

By adding Eqs. (25) and (30) we immediately
recognize P, as an additional term to the magnetic

polariz ability.

It only remains now to express the second mo-
ment of p; j in terms of the current-charge density
commutator.

First of all, applying similar considerations to
the case of the moments of the usual currents" we
can write

0 dxp;, x x„0 =(-I)'(2v}'lim —p, ,
(.-o ~Q

(33)

From Eq. (5) we have

dxe' ' ' @ [J,(x), J;(0)] —— =k, —p, , (34)

Inserting a complete set of intermediate states on the left-hand side of this equation we obtain from Eqs.
(32)-(35)

xP —J, n, k ——I Q - Q

n
o

2 2 o, k ——J ——— —J n, ——k n, ——k J. ——I. (35)Q Q Q Q - Q - Qi)

P =P, +P2, (36}

where P, is given by Eq. (27} and P, is given by
Eq. (35).

In the next section we shall estimate P and we
shall get a negative contribution from P2. Of
course, P, as given in Eq. (28) is a. paramagnetic
contribution. Although we have not been able to

Equation (35) is our main result. It gives the ad-
ditional contribution that we were looking for.
The total magnetic polarizability is

prove in general that P, constitutes a diamagnetic
contribution, we can expect it to be so. To support
this conjecture we resort to the old model of the
scattering of light by a nucleon locally coupled to
a pseudoscalar-meson field, ' which in turn will
give a qualitative picture of our result. In this
case the function p; j is given by

pi j(x) = -2e'y*(x)y(x)5, ,
(we neglect possible difficulties involved in the
construction of products of field operators at the
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same space-time point). In this model, we have
from Eq. (32)

For the contribution of N*' we use

e2
p = —— 0 dr(t*y(r)r' 02 3 (38)

&p'l~ »*)= —
( )l (p')r, (r q. —q'rd .} (p} .

(46)

IV. CALCULATION OF THE PROTON
MAGNETIC POLARIZAB ILITY

In this section we shall estimate the magnetic
polarizability of the proton. From Eq. (27) the
paramagnetic part is given by

~, /&0[m, fn, 0&/'

E„(|))-m (39)

Here we recognize P, as diamagnetic. We see
that in the model P, is given by the mean square
radius of the pion cloud distribution.

One obta, ins again a diamagnetic contribution,

1 eC, -'

1
~* 5M 2

P, ( *')=—
8

Using" C, = 2.14 BeV ' one gets

P, (lV* ) = 1.7x10 4' cm'.

With Eq. (45) we obtain the diamagnetic value

(48)

For the contribution of the first nucleon reso-
nance we have E„(5)=M*=1238 MeV, and for the
magnetic dipole transition moment we use the ex-
perimental value'-'

p, = -4.7 x 10 ' cm' . (49)

Adding to Eq. (41) we then estimate for the proton
magnet ic polarizabil ity

&Pl .I&*') =1.28 (40)
P=74x10 "cm'. (50}

With M =938 MeV and JU. &
=0.13 BeV ' it follows

that

This value is somewhat larger than the experi-
mental result of Goldanski et al. ,

"
p, =12.1x10 "cm' . (41) p=(2y 2)x10 "cm', (51)

Other contributions are positive but expected to
be small due to larger mass differences and ex-
pected smaller couplings.

We now saturate the right-hand side of Eq. (35)
with the nucleon and X*(1238). For the proton
intermediate state we have

F(')
&p'l~gltp}=

2 ), ~(p') F,(q')r„—
2M olvqu &(p),

(42 }

where q =p'-p, F, (0) =1, and F,(0) =lb. is the
anomalous moment of the proton.

From Eq. (35) we have for the proton inter-
mediate state the diamagnetic contribution

2 e2
p (p ) = —

& r'),„-,(1 + 3A + 3X), (43)

where

&r'),„=&r,2) +
2M

P, (P) =-3.0x10 " cm' . (45)

is the Sachs mean square charge radius of the
proton. It is interesting to note that the first
term on the right-hand side of Eq. (43) is exactly
the value that one ha.s for spin-zero S-wave atoms
where &r') is the mean square charge radius of
the atom.

Using X = 1.79 and &r')d, /8 =2.82 BeV ' one gets

but it is consistent with the more recent value
quoted by Bernabeu e«~. ,

' who have reanalyzed
the data of Ref. 14 and obtained

p = [(4+ 2)+5J x10 "cm',

where the first error (+2) is statistical and the
second one (+5) is systematic. The authors of
Ref. 14, in a dispersive approach, give the the-
oretical prediction

p =10x10 ' cm' .

A better experimental determina. tion of j3 is
needed.

V. DISCUSSION

A closed expression for the magnetic polariza-
bility of the nucleon has been obtained using gauge
and relativistic invariance. We have shown that in
addition to the well-known paramagnetic term con-
taining products of magnetic dipole transition mo-
ments there exists a second term which is related
to third moments of the current-charge density
commutator.

We have not been able to show that this second
term is diamagnetic, but we conjecture it to be so.
This conjecture was supported by resorting to the
old pseudoscalar-meson theory and also by direct
calculation of some of the expected most important
contributions, given in Eq. (49). The estimated
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magnetic polarizability of the proton is consistent
with present experimental data, although a better
experimental determination of P is needed.

Our approach is quite general and can be applied

to targets of arbitrary spin S. The results (2'7)
and (35) also hold for the spin-zero case. For
higher-spin states S) 1 one has to disentangle
symmetric terms of the form (S, , S,.).
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