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The realization of supergauge transformations on fields defined over an 8-dimensional space whose

points are labeled by x „and the anticommuting Majorana spinor 8 is described. The covariant

derivative is defined and applied to the problem of decomposing superfields into irreducible (chiral)

parts and to the problem of constructing "supersymmetric" Lagrangians. Further, it is shown how to

build internal symmetries (both global and local) into these Lagrangians. An example is discussed in

which the internal (global) symmetry is spontaneously violated, giving rise to a supermultiplet of
Goldstone particles (including fermions). When a local symmetry is broken the Higgs mechanism (for

bosons and fermions) is shown to be operative. A possible solution to the problem of defining a

conserved fermion number is indicated.

I. INTRODUCTION

The concept of a fundamental symmetry between
fermions and bosons has begun recently to receive
a good deal of attention. This symmetry was for-
mulated first in the context of dual model theory. '

In this 2-dimensional setting it takes the form of

a tacat symmetry and plays a vital role in the
elimination of ghosts. More recently, Wess and
Zumino'" took the decisive step of formulating a
global Fermi-Bose symmetry in 4-dimensional
spac ctime.

An approach to the problem of implementing the
global Fermi-Bose supersymmetry, which is
somewhat different from that of Wess and Zumino,

was proposed by ourselves. " This involved the
consideration of a superfield 4 (x, 6) defined on an

8-dimensional space which is the product of ordin-

ary spacetime with a 4-dimensional space whose

points are labeled by the anticommuting Majorana
spinor 6) .' The purpose of this article is to dis-
cuss in more detail the properties of such super-
fields and their products and to show how it is
possible to set up supersymmetric Lagrangians
which are compatible with local internal sym-
metries. The plan of the article is as follows.

In Sec. II a pseudogeometrical point of view is
introduced and the action of the supersymmetry
group on the space of x„and 6) is defined. This
leads in a natural way to the transformation rules
for scalar, spinor, etc. superfields. The struc-
ture of such representations is discussed briefly.
The important concept of covariant differentiation
is introduced in Sec. III and its use in decomposing
superfields into irreducible pieces is indicated.
Detailed properties of the covariant derivative,
including a number of identities, are set out in

Appendix A. In Sec. IV the Lagrangian for a self-
coupled scalar superfield first exhibited by Wess
and Zumino' is given as an illustration. Section
V is devoted to the problem of incorporating in-
ternal symmetries in a supersymmetric scheme.
Those of the global kind are easily fitted in and

so are mentioned only in passing. The main
problem is to set up local (and particularly non-

Abelian) internal symmetries which are compat-
ible with supersymmetry. This is nontrivial. In

particular, it is found that zero-mass "gauge"
spinors must accompany the usual vector gauge
fields. ' Goldstone and Higgs mechanisms are
discussed in Sec. VI and Goldstone fermions are,
shown to arise when internal symmetry is spon-
taneously broken.

One of the disturbing features of the supersym-
metry scheme is the prevalence of Majorana spin-
ors. On the face of it, in combining fermions and

bosons into a single multiplet it would seem to be
inevitable that quantum numbers such as electric
charge or baryon number must be shared between
the fermions and the bosons in the multiplet, while

neutral bosons would go together with neutral (i.e.,

Majorana) fermions. Fortunately, this difficulty
is not inevitable. A counterexample is given at
the end of Sec. V, where it is shown that if the
system of gauge fields is allowed to interact with

a massless scalar multiplet [belonging to the ad-
joint representation of an internal symmetry, e.g. ,

SU(n)] then a new symmetry appears. The Major-
ana spinors from the gauge system can be com-
bined with the spinors from the matter supermulti-
plets into complex Dirac spinors, with the Lagran-
gian exhibiting a fermion-number conservation.

With the incorporation of local internal sym-
metries into the framework of supersymmetric
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Lagrangians and with fermion-number conserva-
tion implementable, the supersymmetric Lagran-
gian concept is now sufficiently developed to be
considered for use in a realistic unified theory of
weak, electromagnetic, and strong interactions.

6~ 6~ ~ 6
1 2 fl

must be antisymmetric and therefore vanishing
for n) 4. The local function f (&) is fully specified
by 16 elements: the coefficients in its expansion
in powers of 6. Half of these elements are num-
bers of the ordinary sort while the rest are anti-
commuting quantities. One can think of the func-
tion f(&) as a kind of 16-vector. Nevertheless,
it is very useful to view such objects as functions
defined over a 4-space, and this aspect will be
emphasized in the following.

The action of the Poincare group on the space of
x and 6 is given by

xp —A~„x„+bp,

6 -a„(A)68,
(2.1)

where a(A) denotes the Dirac spinor representa-
tion of the homogeneous Lorentz transformation A.
In particular, space reflections are associated
with the mapping

&.—i(y, &). . (2.2)

The factor i is necessary here for compatibility
with the Majorana constraint on 6.

The action of a supergauge transformation on
the space of x and 6 is defined by

II. SUPERFIELDS AND THEIR TRANSFORMATIONS

Superfields are defined over the 8-dimensional
space whose points are represented by the pair
(x„, &„), where x„denotes the usual (real) space-
time coordinate and 6 is a Majorana spinor. '
The variables 6 differ radically from coordinates
of the usual sort in that they anticommute,

6 6~+6g6 =Q.

This has the important consequence that any local
function f (&) must be a polynomial. This can be
seen from the fact that the monomials

usually taken to be. These numbers are nilpotent,
(ey„&)'=0. For consistency we should regard the
coordinates x„also as belonging to some non-
trivial algebra. Perhaps it may be possible to
establish a rigorous geometry' on the space of x
and 6.

The scalar superfield is naturally defined as one
which transforms according to

4'(x', 6') =4 (x, &). (2.4}

As remarked above, any local function of 6 must
be a polynomial. To illustrate we give the ex-
pansion of the scalar superfield,

4 (x, &) =A (x) +'Vg{x)+-,' 66F(x)+-,' 6y, &G(x)

+~ &incur, &A. (x)+' &&&X(x)

+ ~~2 (&&)'D(x), (2.5)

where the coefficients A. , +, |",A„D are ordin-
ary Bose fields, and P and g are Fermi fields.
The behavior of these components under the action
of the Poincare group is clear: A, &, and D are
scalars, G is a pseudoscalar, A„ is an axial vec-
tor, g and y. are Dirac spinors. (The intrinsic
parities are reversed in the case of a pseudo-
scalar superfield. ) These components are all
complex in general. However, it is possible to
impose a reality condition on the superfield,

C(x, 6)~=4(x, 6),
n'here the complex conjugation is understood to
reverse tIIe order of antzconzmuting factors. The
real scalar superfield has Bose components which
are real and Fermi components which are Major-
ana spinors.

The behavior of the component fields under the
action of an infinitesimal supergauge transforma-
tion is easily deduced from (2.3} and (2.4),

~C)' s ~C
54(x, &) =e

& + —(y„&)„ (2.6)

by substituting the expansion (2.5). One finds

Generalization to spinor and tensor superfields is
equally natural. For example, the spinor would
transform according to

4„'(x', &') =a 8(A)4'8(x, &).

1
x~ - x„+ ~ icy„6,

6~- 6~+ e~,
(2.3)

where the parameter E must, of course, be an
anticommuting Majorana spinor. The group prop-
erty of the mappings (2.1) and (2.3) is easily ver-
ified. However, it should perhaps be emphasized
that our constructions are purely formal. For
example, the spacetime translation —,'i'„6 is not
a set of four ordinary real numbers such as x„ is

5A =eP,

5g = ,'(F +y, G+ iy„y, A—„i)fA) , e-

5F = —,
' ey--, ze)fg,

5G= ~Rye- ~ieyPg,

~p =
p 6 i y„y X, + -,' i Ey iy„y &

5' = ,'{D if' ipy, G-iy, yi—(fA-„)e,-
5D = iePX. -

(2.7)
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In certain circumstances (which will be discussed
in Sec. III) this representation turns out to be re-
ducible.

A better insight into the structure of representa-
tions of the supersymmetry can be gained from
an examination of the infinitesimal algebra. To
obtain this algebra one represents the action of an
infinitesimal transformation on 4(x, 6) by a com-
mutator,

—.64 (x, 6) = [4 (x, 6), eS ],1
(2.8)

where the components of the generator S„ them-
selves comprise a Majorana spinor,

(eS)t= eS . (2.9)

By considering the action of two infinitesimal
transformations applied in succession and making
use of the Jacobi identity one arrives at the con-
sistency condition

[e,S, e,S]=Z,y„~,P„, (2.10)

where P„ is the generator of space translations.
In fact it is clear from the rules (2.3} that the
commutator of two supergauge transformations is
a translation. At this point it is necessary to as-
sume that the infinitesimal parameters e anti-
commute with the generators S. From (2.10) one
then extracts the anticommutation relation

Sd=-(&j C} BP (2.11)

(where C is the charge-conjugation matrix). Since
the matrices y„C are symmetric' one sees that
the left-hand side of (2.11) must be an anticom-
mutator and hence the necessity of assuming that
e anticommutes with S.

The rest of the infinitesimal algebra is deduced
in the same way. In addition to the usual rules for
the commutators among generators of Poincare
transformations one finds

[S., P„]=0,

[S„,J„„]=-,'(o„„S)„,
(2.12)

indicating that S„ transforms like a Dirac spinor.
The rules (2.11) and (2.12}are fundamental. The

construction of irreducible representations of this
"algebra" and the development of rules for de-
composing their products are the central problems
of supersymmetry theory. We have chosen to re-
gard this system as the infinitesimal algebra of a
continuous group of point transformations in a
space, some of whose coordinates are anticom-
muting c numbers. However, in the absence of a
rigorous geometry in the space of x and 6 this
point of view is no more than a suggestive guide

for one's intuition.

We shall treat S„(or S„') as "raising operators"
and S„(or S„)as "lowering operators. " Let the
lowest component U(x} belong to some finite-di-
mensional representation D(j „j,) of the proper
Lorentz group. Successive applications of S„
generate two new sets of components in the mul-
tiplet,

s„U(x) = ~„(~),
s„s,U(x) = ~ v(x)

(2.14)

(where e~ denotes the permutation symbol in two

dimensions) and no more since the product of
three undotted operators must vanish by (2.13).
The complete table is then easily obtained:

The construction of representations begins with
the observation that supergauge transformations
must leave invariant the manifold of states with
fixed 4-momentum since S commutes with P&.
On such a manifold the anticommutator (2.11) be-
comes a fixed set of numbers and we see that the
operators S generate a Clifford algebra. Since
this algebra has just 16 independent members,
its one and only finite-dimensional irreducible
representation is in terms of 4& 4 matrices. "
(There must exist infinite-dimensional represen-
tations as well, but we shall not consider them
here. ) The manifold of states with fixed 4-momen-
tum is therefore reduced by the action of super-
gauge transformations into 4-dimensional invariant
subspaces. However, these subspaces are not in
general left invariant by the Wigner rotations.
These transformations reduce the manifold into
(28+1)-dimensional invariant subspaces. The sub-
spaces which are invariant with respect to both

supergauge and Wigner transformations are
4(2g + l)-dimensional.

The construction of unitary irreducible repre-
sentations of the algebra (2.11) and (2.12) by
Wigner's method has been treated elsewhere. '
These representations are characterized by a
mass, a spin {8), and an intrinsic parity (q). In-
cluded in one of these representations are four
irreducible representations of the Poincare group.
The (spin)~""' content is {8--,')", 8'", 8 '", {8+-,')",
where q takes one of the values ai (for integer 8)
or + 1 (for half-integer 8). The rest mass is com-
mon. [The lightlike representations are 4-dimen-
sional with helicity content s X and s(A+2) with
fixed X.]

We sketch very briefly a method for constructing
irreducible multiplets of fields (nonunitary rep-
resentations). In a basis where y, is diagonal the
generators S become a pair of chiral spinors S„
and S„' (A=1, 2) which satisfy the algebra

].S~ Sa)=0, ].S~ ~ Ss]=0,
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S„U{x)= M„(x), Sg U(x) =0,

S„M (x) =e V(x), SgM (x}=-is~U(x), (2.15)

S~V(x) = 0, S~ V(x) = is~-Ms(x) .
A similar table [the parity transform of (2.15)] is
obtained by treating Sg as the raising operator.
Space reflections are incorporated by combining
the two multiplets. "

Representations of the type (2.15}which have
dimensionality 4(2j,+1) (2j,+1) are in general re-
ducible. Thus, if j,~ j, one can reduce the lowest
component U(x) to a tensor in D(j, j„0)-by con-
traction with 2j, powers of the operator 8/ex„. On

this component one then constructs a representa-
tion of 4[2(j,-j,)+1] dhnensions. This contrac-
tion is nothing more than the supersymmetry
analog of, say, separating the longitudinal part
~„V„ from a vector V„. In setting up a local action
principle, one usually finds it necessary to employ
fields which are reducible in this sense.

To conclude this section, it may be worth point-
ing out that the Majorana constraint is very potent
in limiting the size of multiplets. If one were
to treat 8 and P' as independent generators, for
example, and replace (2.11) by the set

&S., S,}=0, &P", Z'}=0, (S„,P'}=(y„).'P„,
then the fundamental representation would have
16 rather than 4 dimensions. Et would include
vector as well as scalar and spinor components.
The same thi5g happens when the generators are
generalized so as to carry an internal quantum
number such as isospin. This type of generaliza-
tion was discussed in Ref. 5.

III. THE COVARIANT DERIVATIVE

Although it is not easy to define an integral over
8 space, there is certainly no problem with dif-
ferentiation. The ordinary derivative is defined
by

f(8+58) =f(8)+5TP

ties of a differential operator with two significant
exceptions. Firstly, when applied to the product
of two superfields its effects are distributed ac-
cording to the rule

D~ (4P, ) = (D„4,)4,+ 4, (D„4,),
where the + (-) sign applies when 4, is bosonic
(fermionic}, i.e., when 58 commutes (anticom-
mutes) with 4, . Secondly, the covariant deriva-
tives neither commute nor anticommute. Their
anticommutator is given by

c}
jD„,D,}= -(y„c).,i,

~X}f
(3.2)

The operator D is basically a Majorana spinor.
For this reason it is useful to define another form

D"= {c-')"D„ (3.3)

which is nothing more than a relabeling of com-
ponents. The basic anticommutator can then be
given in three equivalent forms:

(3.4)

ax D 8}= (C
-1j()cps

It is often more convenient to work in momentum
space. ) The operators D„clearly generate a
Clifford algebra which is isomorphic to the super-
algebra (2.11).

In view of the algebraic structure (3.4), only
16 independent operators can be made from prod-
ucts of the D . The most useful set is

1, D, DD, Dy,D, Diy„y,D, DDD, (DD) .
A product containing five or more factors must
inevitably reduce. For example,

(DD) D~ = -2DD( AD)„.

Two other important identities are

Dyu D 2Pv

and (3.5)
where the infinitesimal 6$ stands to the left of
sf/8'8 (since these quantities may anticommute it
is important to fix their order).

An important role is played in the following by
the differential operator

= a i aD-= sr -2 ("8}-s
Xp

(3.1)

which we shall call the covariant derivative. This
operator is covariant in the sense that it trans-
forms as a Dirac spinor under Lorentz transfor-
mations and as an invariant with respect to the
supergauge transformations (2.6).

The covariant derivative has the usual proper-

(~(I+iy, )D)„4=D~~4 =0. - (3.6}

These linear differential equations are manifestly
covariant (excluding space reflections). The gen-
eral solution of (3.6) involves eight independent
(real} components in contrast to the 16of a general
scalar superfield. This solution can be expressed

Derv D=O

A number of useful identities and multiplication
rules are given in Appendix A.

It was mentioned before that the scalar super-
field (2.5) is, in a sense, reducible. A reduction
can be effected by imposing the condition



SUPEHFIELDS AND FERMI-BOSE SYMMETRY 1525

in the form

4 (x, 8)=exp(-,' HP'y, &}

A x +6/ x)+~6) ' 6E x), (3.'7)

where A and F are complex boson fields and P
is a right-handed Dirac spinor, iy, $ =-g . Like-
wise, the differential equations

D„~4 = (~(1—iy, )D-)~4= 0

serve to define a left-handed superfield,

4+ (x, 6) = exp(-4 &P'y, &)

(3.6')

x A, (x)+6t), (x)+-,'6 ' &F, (x}
2

5k~ = &|I)~,

' (F.-i)A, )e, (3.9)

5F, = tigP, . -

These representations are irreducible.
A general scalar superfield contains another

(nonchiral) piece 4, which is singled out by means
of nonlinear differential conditions

(3.7')

It is possible (although not necessary} to identify
4 with the complex conjugate of 4„ i.e.,

yC

(Thus (I), and g are identified as the left- and
right-handed components, respectively, of a
Majorana spinor. )

The components of the chiral superfields behave
under an infinitesimal supergauge transformation
according to

and (3.14)

This remarkable property is very important in the
construction of Lagrangians. The mixed product
4,+4,. —, on the other hand, is a general superfield,
one which is not locally reducible. Details are
given in Appendix B.

The spinor superfield O'„=D 4, is left-handed
with respect to the spinor index n, but is of the
nonchiral (4,) type in the complexion of its com-
ponent fields. Conversely, the spinor 4 = D„4,
is a mixture of left- and right-handed chiral super-
fields (see Appendix B).

IV. A SIMPLE LAGRANGIAN

A=A, +A +A, ,

4=4++ 0 + 0„
F =E++ F,
G =iE, —iE,
A„=i~&A, -i~vA +A

x=-ill+-iN'4 +ill, ,

D= -~'A, -~'A + ~2A, ,

where A» is transverse, ~uA» 0 T"xs dec mp
sition is useful in constructing local field theories
if the resulting components are local fields. Such
is the case only when the original components g
and D in (2.5}are themselves first and second
derivatives, respectively, of local fields. If this
is so we may say that the superfield is "locally
reducible. " Otherwise, it is not.

Because of their being defined by a linear dif-
ferential condition, (3.6) or (3.6'), the chiral
superfields are closed under multiplication. That
is, we have

4,+4,+ =43+

D y'D4 =0.I

The resolution

is effected by the projection operators

1 —l-iy, —1+iy,
a' 2 2

1 —1+ iy, —1—iy,

E, =I+ 2 (DD)'.
4g2

(3.10)

(3.12)

To illustrate the application of the superfield no-
tation in a simple dynamical system we consider
here the Lagrangian given by %ess and Zumino'
for a scalar multiplet. This Lagrangian, Z(4„4$,
must itself transform as a scalar superfield. In
order that the equations of motion should be super-
covariant, the action integral must be an invariant,

8 i 8
dxZ = dxe —+ —(y 6)

BV 2 Ox'

8
dxZ + surface term8'6

In terms of the components (2.5), the resolution
(3.11) takes the explicit form

The action will be invariant (up to a variationally
insignificant surface term) if it is independent of
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This means that every 6}-dependent term in
Z(4„4 ) must have the form of a spacetime di-
vergence. Such a form can alu)ays be achieved by
ajpLying the covariant operator D a sufficient
number of times: twice on a cbiral or locally re-
ducible suPerfield, four times on a generaL super-
field.

Consider the Lagrangian

.'(DD)'-(4, 4 ) .'DD-[V-(4, )+ V(4 )]

= ~DD[~4, DD4 +~4 DD4+-V(4~}-V(4 )],
(4 &)

where 4 =4 ~ and V is a smooth function (typically
a polynomial" ). The spacetime integral of this
expression is certainly invariant. The variation-
ally important part is obtained by setting 6 =0.
With the help of the formulas in Appendix 8 one
finds, for this part,

g =e„A,B„A +E,E +2pjgp+[V'(A. , )E, + V'(A }E]

V A, )y ~'y+y"

(4.2)

where V'(A) =dV/dA, etc. The equations of mo-
tion are

e2A —VII {A )E V Ill{A )y
2

indicating that one boson component must be a
tachyon. This situation may be altered when quan-
tum corrections are included. "

4, (x, 6)-Q4, (x, 6'),

4 (x, 8)-04 (x, &),
(5.1}

where 0 is an SU(2) matrix (independent of x and
6'). The Lagrangian

Z, =-;(DD)'(4~4, +C~e )

,MDD(4-t-4, +414 ) (5.2)

is both supersymmetric (up to a surface term)
and SU(2)-invariant. Unfortunately, the simplest
SU(2)-invariant interaction for this system,

Z, =gDD[(4 4, )'+{4t4 )'],

V. LOCAL SYMMETRY

It is natural to ask whether supersymmetry is
compatible with internal symmetries of the usual
sort, both global and local. One finds that indeed
it is: Global internal symmetries can be incorpor-
ated quite easily; local symmetries are more dif-
ficult. '

Consider first the global case. Suppose, for
example, that the superfields 4, and 4 transform
as doublets of SU(2),

E, =-V'(A, ),

2
' -

2
iItg= V"(A ) ' g+ V"(A )

(4.3)
is not renormalizable. To have a renormalizable
(i.e., trilinear) interaction it is necessary to
bring in singlet and/or triplet superfields. Thus,
if 4 & transforms according to

The Lagrangian (4.2) and equations of motion (4.3)
could easily be expressed in terms of real scalar
fields A. , I" and pseudoscalars B, G defined by

(5.3) .
then a renormalizable and SU(2}-invariant inter-
action is given by

A, = (AsiB), E, = (Esi6),1 . 1
AD(4' 4,'4~ +4 I4'4 ) . (5.4)

but there is no great advantage to be gained by
this.

According to (4.3) the vacuum expectation values
must, in the tree approximation, satisfy the equa-
tions

(4.4)

i.e., one or other of the factors V', V" must van-
ish in the vacuum. Consider the possibilities. If
(V') =0 then (V") is identified as the (common)
mass of the multiplet. On the other hand, if ( V")
=0 then the fermion is massless. This is a Gold-
stone (fermion) solution. However, it is an un-
stable one since the boson field equations take the
form

O'A, = -( V') ( V"') (A, -(A, ))

+ interaction terms,

As a second example, suppose 4, is a 3x 3
matrix of superfields which belongs to the (real)
(3, 3) representation of SU{2)& SU(2),

4+ -R 14+R2T (5.5)

+ gDD(det4, + det4 ). (5.7)

This Lagrangian will be considered further in Sec.
VI.

The problem of setting up a local symmetry
which is compatible with the supersymmetry is

where R, and R, are orthogonal matrices. Suppose,
moreover, that 4 =4,* so that

4 -R 4~
Then a renormalizable and invariant Lagrangian
is given by

Z =8(DD)'Tr(4 4, }-~DDTr{4,4, +4 4 )
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more interesting. First of all, if the matrix Q

which appears in (5.1) is to depend on x, then it
must also depend on 6. In fact, it must be a set
of chiral-type superfields,

C, (x, e)-Q, (x, 6)C„(x, 6), (5.8)

since the transformed field must, if it is to have
the same number of independent components as
the original, be chiral. The consistency of (5.8)
relies on the closure property (3.14) of chiral
superf ields under multiplication.

Representing the doublet 4, (x, 6) and the matrix
Q, by the expansions

C, (x, 6) =exp(--,' 8/y, 6)

x[A„(x}+7)y,(x)+,'6(1-+fy, )6F, (x)],

0+ (x, 6) = exp( ——, GPSS, 6)

x [U (x)+ 6V, (x) +—6(1+ iy, }6W,(x)]

the explicit form of the transformation rule (5.8)
ls

A, (x)- U„(x)A, (x),

(I), (x)- U, (x)g, {x)+V, (x)A, {x),

F, (x) —U, (x)F, (x)-V, (x)P, (x) +W, (xg, (x) .

8(DD)'(C,"e' 4, +4 e ' 4 ). (5.12)

V„= —— C 'y~
' D (e ~ D8e' ) (5.13)

transforms under the local symmetry like a Yang-
Mills gauge field,

(5.14)

The Hermitian conjugate transforms according to

V-Q VQ '+ —Q BQ

Notice that the combinations

Although this is not in general a polynomial, there
does exist a special gauge in which 4"= 0 for n ~ 3,
where (5.12) defines a renormalizable interaction.
We shall come back to this in the following.

Having introduced a gauge coupling into the sys-
tem of matter fields 4„we find it necessary now

to set up a gauge-invariant kinetic term for 4'.
By exploiting the chiral properties of Q„

((1+ f y, )D)„Q,(x, 8) = 0,

one can prove that the vector superfield V„defined
by

The matrices U„V„and W, are complex, and

V, carries a Dirac spinor index. "
It is possible to regard Q as completely inde-

pendent of Q, or one can impose the constraints
and

detQ, =1, 0, =(0 )
' (5.9)

~5 ~ vt
2

which we shall adopt in the following. This means
that the supersymmetric mass term

DD(C'C, +C,'C ) (5.10)

e"-Q e"Q -'.
+ (5.11)

With the help of this field, the kinetic term can be
expressed in the invariant and supersymmetric
form

is an invariant of the local symmetry.
The main problem is to construct a gauge-in-

variant kinetic energy for the doublets 4, . The
expression (5.2} is certainly not satisfactory since
Q~Q, &1. It is necessary to introduce some gauge
fields. Following Wess and Zumino, who solved
the problem of making supersymmetry compatible
with a local U(1) symmetry, ' we deal with the
compatibility problem for the case of the local
internal symmetry SU(2) [in fact, the SU(2) could
be generalized to a local internal SU(n}] .

The gauge field 4' is a general (not chiral) pseu-
doscalar Hermitian matrix superfield which trans-
forms under the local symmetry according to the
rule

transform homogeneously, i.e., like field
strengths. Further, one can show that these field
strengths are chiral,

' D 'g) Vp=0 (5.15)

(and likewise for V„}. This means that the ex-
pression

——DDTr
~

C ' ' (D„V„)(DgV„)

1+&
+ C ' ' (D„V„)(DgV„) I

,—,', (aa)'Tr(V„V„+ V„'V„') . (5.15}

Gathering together the terms (5.10}, (5.12), and

(5.16) we obtain the gauge-invariant and super-

is an invariant of the local symmetry and is super-
symmetric. It can serve as a Lagrangian for the
gauge field. Making use of the identity (5.15) and

discarding a variationally insignificant surface
term, one can put this Lagrangian into the compact
form
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symmetric Lagrangian

7 =s(DD)'I —,', Tr(V„V„+Vq~Vq)+(4+te~v4, +4te ~~4 }]
--,'MDD(4 4, +4t4 ), (5.17)

where V& is defined by (5.13).
To write out the Lagrangian (5.17}explicitly in

terms of component fields would be a complicated
and unrewarding task. Fortunately, there exists
a remarkable gauge' in which the Lagrangian
assumes polynomial form. The infinitesimal form
of the transformation law (5,11) is, to lowest order
in+,

54 =50 4-450, + —(I ——50, .1 1
(5.18)

This indicates that half of the components in 4' can
be transformed away, leaving it in the special
form

&iy, y, &A„+ ~ && &y,h+.,—' (&&) D, ,

(5.19)

where A„ is transverse. " In the SU(2) space the
matrices A„, ~y, A, , and D, are Hermitian and

traceless. In the special gauge, V„ is given by

yQ ~ Vg gpyg +»28 ~$ ~lfm ~l ~ 4 ~7$ (5.20)

After some tedious labor one finds

~+, (DD)'Tr(V~ V~ + V„V&) = —
4 (S„A„-S+„+geol AtA )i+ ~i7~y&(S&t+ geAl™A&~X )+ ~(D~5)', (5.21)

i.e., the Lagrangian for a Yang-Mills field A& in interaction with a triplet of Majorana spinors X .
The matter terms in the Lagrangian (5.17}reduce to

-'(DD)'(4te' 4, +4te ' 4 ) ,'M(DD)(4-t-4, +4t4 )

=(&qA, +~igA~Aq)(&qA, ~igAqA+)+(aqA +~igAtAq)(&qA ~igAqA )

+FtF, +F"F +igy„( „&--,'ig A)g +M(A"F, +At+F +FtA+ +F+tA PP)+ ~ g-(A+~D5A+ AtD, A )-
i@ ~

—1+iy, i g ~
—1 iy, ig —1+iy, ig l-iy, (5.22)

in which A„=A'„7', X = ~'7', D, =D",7'. One may, if this is desired, replace the chiral combinations A& and

E, by definite parity combinations

1 . 1
A, = ~ (A aiB), F, = ~ (F+i Gi

(bearing in mind that A, B, F, and G are all isodoublets). For a triplet of matter fields

[+ (4I )g]

the gauge-invariant kinetic term is

—,", (DD)'Tr(4 e~ 4, e ~ )=(&„A" + ge ' A„'A }(&&A", +ge ' A&A+)+F F+ +~ Piy„(&&P + ge~' A'„P}

g~»
2

+ (5.23)

This expression is particularly interesting because the sum of (5.23) and the gauge Lagrangian (5.21) pos-
sesses a new symmetry, viz. ,

X - A, "cosa-(I} sino. ,

P- A. sinn+/" coso. ,

(5.24)

(5.25)

with all boson components treated as scalars. In other words, if we introduce the complex Dirac field

x' = —(~'+ i0')
V2

the fermionic part of the Lagrangian takes the form

a-, i-ay, 1+i% mX'~r„(~„X'+a&" A„'X )+~a&" ~2A'. X'
2

'X + 2 A'X'
2

'
X (5.26)
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which is manifestly invariant with respect to the
phase transformations

(5.27)

The new symmetry could be associated with a
conserved quantity (such as baryon or lepton num-
ber) which is carried only by the fermions. " To
maintain this symmetry the matter multiplet must
have no mass.

Before we close this section, remark that in the
one-loop approximation, contributions to the
Callan-Symanzik function P(g) for the gauge super-
multiplet equals —(g'/16m')(3C, (G)), while the con-
tribution from the matter-supermultiplet equals
+ (g'/16'')C, (G), where C, (G) is the value of the
quadratic Casimir operator for the adjoint rep-
resentation of the internal-symmetry group. If
we introduce three matter supermultiplets (as we
do in the next section), P(g) =0 in the one-loop ap-
proximation, so that the charge renormalization
of g is finite.

VI. GOLDSTONE AND HIGGS PHENOMENA

It is of prime importance to demonstrate the
feasibility of spontaneous-symmetry-breaking

mechanisms in supersymmetric systems. It has
already been pointed out that the spontaneous
breakdown of super symmetry cannot occur (at least
in the tree approximation) in the case of a self-
interacting scalar multiplet. Our aim now is to
show that internal symmetries, on the other hand,
can be spontaneously violated even when they are
embedded in a supersymmetric scheme. This
means that it will be possible to set up renormal-
izable supersymmetric Lagrangian models in
which the gauge particles (vector and spinor) are
massive.

A suitable system on which to test for spontan-
eous breaking is the SU(2) x SU(2}-invariant I a-
grangian (5.7). To begin with we shall treat this
as a global symmetry and obtain a stable Gold-
stone solution which carries a residual SU(2) sym-
metry. (This is only one of a number of possible
solutions. ) Then we shall go on to consider the
symmetry SU(2)~ ~x SU(2),

~
~. ~

and show that the
Higgs mechanism is operative.

The scalar multiplet 4", belongs to the real rep-
resentation (3, 3) of SU(2)x SU(2) and it satisfies
the reality condition 4 "=(4+'}*. In terms of com-
ponent fields the Lagrangian (5.7} takes the form

g=a„A' a„A;+F'.F;+-', P' tjy'+u(A; F;+A'F' ,'q'. P')--
a . ,5 1+ ~y5 c a j5 c a, b 1 ~y5 c (6.1)

1+ iycI'~a„+gpss' +. g qaj)'c 2g" xgc y' x 5 qc =0,
2

I" +&VI&'. + g e' g X&c„=Q,

From these equations it follows that the vacuum
expectation values, in the tree approximation,
must satisfy the algebraic equations

M(A;) + g, e"'(A'„. ) x(A') = (F')
M(F;) ~ 2g~e'~~(Ab) x( W) =0.

(6.3)

(We are of course requiring that the vacuum be
Poincare-invariant so that (&'A, ) = 0 and ( (t) = 0.)

Equations (6.3) are very much simplified if we
choose the matrix (A~+') to be diagonal. [No loss
of generality is implied since any one of the ma-
trices involved here can be diagonalized by means
of an SU(2)xSU(2) transformation. J The equations

where all the fields are 9-folds (E' I'; =I'"I',",
etc. ) and the fermion components P" are Majorana
spinors. The equations of motion are

themselves then imply that the other matrices
(A'), (F';) must be diagonal as well. Represent-
ing (A.) by

(A,') =diag(X„P. .„X,} (6.4)

A. (M+ 2g, A. )(M + 4g, A. ~}= 0 (6.7}

and there are three distinct (parity-conserving}

one finds

(A~'} =diag(A. ,*, A,,*, A~),

(F")= -diag(MX, +2g, X,X, , MA., +2g,k, lI.„MA., (6.5)

+ 2g, A, ,A, ),
and Eqs. (6.3) reduce to the form

M X, +2M@,(82K~ +X2X~*+X2*P3}+4@,A. , (X2A.,*+ A~X~*)

=0, (66)

and cyclic permutations thereof.
We shall not pursue the genera. l solution of (6.6)

but instead make the restrictive assumption that
In effect, we are selecting solutions

in which a global SU(2) symmetry is preserved.
With this restriction Eqs. (6.6) reduce to
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solutions.
The solution ~=0 corresponds to the case where

no symmetry is broken. The solution X = -M/4g,
gives

M2
(A(a) 6(a (Fia) 5(a

Bg,
and corresponds to the ease where the supersym-
metry is broken as well as SU(2}xSU(2). This
solution can be shown to be unstable: Some of the
bosons turn out to be tachyons.

The solution )(= -M/2g, gives (Fi) =0 and so
preserves the supersymmetry. " Indeed, by test-
ing the propagation character of weak perturba-
tions about this solution one finds that it is stable:
The superfield C" breaks into three pieces [be-
longing to the representations I= 0, 1, 2 of the un-

broken SU(2)J with the respective mass values

M =M, M, =O, M, =2M. (6.8)

The isovector piece is a Goldstone superfield.
It is perhaps North emphasizing that the Goldstone
multiplet includes a massless Majorana fermion
along uith the scalar and pseudoscalar bosons.
Supersymmetry is not broken, though the internal
SU(2) x SU(2) is. It is the breaking of this internal
symmetry which is responsible for the occurrence
of the Goldstone fermions (together with Goldstone
bosons).

Now consider what happens when the Lagrangian
symmetry is generalized to SU(2)i, i

x SU(2}
» the special gauge discussed in Sec. V the La-
grangian assumes the renormalizable form

2 = - ~ (s&A „-s+&
+gA „xA „)'+ ~ X i y& (8& )( + gA &

x )() + —,
' I|'

+ (s&A' + gA& xA' )' (&&A+ + gA& xA+)+ 2 g' 'iy& (9& f4+ gA x (()4)

—&2g(A;xX ' i' A' xA ' i' ~ 'gA;xA' D E F ~ M'(A'' E 2' E =''(' i'')1-iy 1+ iy

+ g /abc ga, gb X pc ~a, yb + s yc +~a,~b +~ pa ~ yb X
1+iy 1-iy

(6.9)

where the gauge condition ~&A. „=O is understood. Our purpose here is only to discover the excitation spec-
trum implicit in (6.9) when the symmetry SU(2)x SU(2) is broken down to SU(2). We shall therefore take
advantage of the manifest SU(2)„„,symmetry in (6.9) to change over from the renormalizable Landau

gauge to the unitary gauge in which the spectrum is simplified. That is, we shall adopt the gauge condition

A(ia] —&(A(a Aa() 0 (6.10)

where A" denotes the real (scalar) part of A';. The scalar isovector part of the superfield is, in effect,
"gauged away. " The pseudoscalar and spinor parts must of course remain.

Into (6.9) substitute

~2 gi gk ~(f )M
&2g,

and collect the bilinear terms
2

g(&) — —' (S A& s~& )~+-'P itive& y '(D( )2+ — S A(«) /(i&A) + —'(S Il«)2 y—'y«iy'y«
P 2 2 5 2 P ~2g P

j.

1(F(a)2+ |(Gia )2 yM(2A((4) F& ia) A(ii)F&ii) 2II(iu) G(ia) y fl( ii) G()i))

M
2&M(2y(ia) yy(«) y(ii) y(ti)) 8 eiiaP ~(a

F2 g,

(6.11)

(6.12)

where (J)(")= (-', )(P" + ()t'), etc. This free Lagran-
gian ean be separated into three independent pieces
if the fields are decomposed into their I=O, 1, 2

components by writing, for example,

yja y(io) + q
[ha j + 1 gta y (6.13)

I

+ 2(~~ +I) + 2(+I + GI )

+ 2 p, i (ig, + 2 )(i(f)(— Xp, , (6.15)

where tI),
" = O. Suppressing I-spin indices, the

three pieces are given by
g, = —,'(s„A,)'+ —,'(s„a,)'+ —,

'
y, i()'y, +,'(F; +G,')-.

&.=2(()„A.) +z(s„&.)'+ 0j P(2t). +2(F.'+ G.'') + 2M(A2F, -B,G2-2 P2P, ) . (6.16)

-M('A Po-~OGO--' 4A'0) (6.14) The Lagrangians (6.14) and (6.16), respectively,
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APPENDIX A: THE ALGEBRA OF
COVARIANT DERIVATIVES

The differential operators D„defined by

--:(P&). (A1)

[and D defined by ff"=(C '}"Dej are easily seen
to generate a Clifford algebra which is isomorphic
to the supersymmetry algebra, viz. ,

jD Dqj=-( jc) 8

The purpose of this Appendix is to list some of its
properties.

First of all, the algebra contains 16 independent
basis elements,

1, D~, DD, Dy, D, Diy„y,D, DDD~, (DD)- . (A3)

Any product of D's can be reduced to a linear com-
bination of these. A complete multiplication table

describe the propagation of an 1=0 multiplet with
mass I and an 1=2 multiplet with mass 2M. The
Lagrangian (6.15) describes an I= 1 system con-
taining a massless pseudoscalar, a vector with
mass Mg/g„and a pair of Majorana spinors,

~ (],+X) and ~ {4,—X},
1 y

with mass Mg/g, and opposite parities.
This shows that the Higgs mechanism is operat-

ing here in the usual way. The fact that a pseudo-
scalar Goldstone particle remains in the system
merely indicates the need for a larger local sym-
metry: one which involves axial-vector gauge
particles as well as vectors. " It is certainly pos-
sible to construct such a scheme by the methods
described in Sec. V.

D„D» = , (P'—c—) 8+ 'c 8—DD '(y,—c—) ~DyD

--.' (ir.r,c).BD ir. y,D. (A4)

Multiplication of this formula by —(C 'y„) and by
—(C 'Ou, ) yields the identities

Dyu D =2pu

and

Do'u v D = 0 .
(A5)

Products of three D's are comprised in the
formulas

D~DD = DDDO + (2PD)~,

D.Dy D = -DD(r, D). + (2Py, D). ,

D Diy„y, D = -DD(iyuy, D} +2iPu (y,D)

D y,DD„= -DD(y5D)~,

Dir„y,DD„= —DD(iy„y D) -(2p),o'&„y D}

(A6)

Products of four D's can sometimes be reduced
by multiplying a single D into one of the formulas
(A6). For example,

(Dr,D)'=Dy, DD ( —C 'y, D)"

DD(y, D} (-C -'y, D)"

»( Dy, C)-. ( C-'y,D)--
= (DD)'.

Any combination of four D's can be reduced with
the help of (A4) and the multiplication table

for these basis elements would be too bulky to
reproduce here. Instead, we shall list only the
more difficult products from which, with the help
of (A2), any other product can be deduced without
too much effort.

To begin with, the product of two D's is given by

DD

Dy, D

Di y„y,D

DD

2 'E'pp D iy& y5D

-2ip„Dy, D

Dy, D

-2i p p

Disap

rsD

(DD)'

2i puDD

Dsyv r5D

2ip Dy D

—2ip DD

quv (DD}'- 2iP q~ q»~Di y~& D 4(fI uvP-'-PuPD }

(Av)

where left (right) factors are listed in the rows
(columns).

Products of five or more D's can be reduced
with the help of the above results together with
the fundamental formula

jD„,D,)=o, ID„,D, j=o, jD„,D, j=P„, .

Since they anticommute, the product of three op-
erators DA must vanish, e.g. ,

(DD)'D„= DD(2PD)„. -
Of some importance are the identities

(AS)
1+ iy,0 = D„D~Dc = &~cD„D

2

((1+iy,}D) D(1+iy, )D =0, (A9)

which become more transparent in the notation of
2-component spinors. In a basis where y, is di-
agonal, the anticommutators (A2) take the form

This is one of the identities (A9}.
Frequently useful are the following formulas

which give explicitly the action of some operators
on a general superfield 4 whose components are
given in (2.5):
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D-' DC =Em iG+3 ' (X-if')
—1+iy, . 1+iy,

2 2

+ —& ' 8(D-a'A+2ia A. )
1 —1+ iy,
4 2

+ ~ 8 iy„y, 8 (w i a „)(Ew i G)

+-,' ee&
"' ' (-iy)(x-iy'q)

2

+ —,', (ee)'(-a')(E+ iG), (A 10)

g(DD)'4=D a'-A-8(a'p+ i p'X)=~ &8(2B'F)

-~ &y, &(2B'G)=~ &iy„y, &(2B„B„A„)

+e &6&(ik)(a'0+ iPX)

——,', (&&}2B'(D-a'A), (A12)

D„4=)~+~[-i(yp &)~aqA + &~F +(y5&)„G+(iy„y~e)~A„]

Diy„r,D4 =2A„+ 8 (iy y, x-Py„y, g)

+ ~ 88(2aq G) + ~ eyse(-2B~F)

+-,' 8iy, r, e[q„„D 2e„-„~pa ~Ap

+ (q„„a' 2a„-a „)A]

+-,' 888 [y„g y, x-(q„„a'-2 a a)iy„y, g]

+ ~', (88)2(q~„a2-26~ a„g„, (Al 1}

+-'&6[-'i(00) +2x ]

+'-&r,e[ 2i(-A;0)„+k(y,x).J

+'-»r. r[ liP'{-ir.r, 4) +k(ir. y,x) ]

+ ~ 86 2 [ i(y„&) B„F-+ (ir„r,&) B„G

-(r„r,r, &) B„A.+& D]

+ —,', (»)'(i 0x). . (A13)

APPENDIX B: PRODUCTS

The product of two expansions of the form (2.5}can be rearranged into

c (1, e)e(2, e) =A{1)A(2)+e[A(1)4(2)+y(1)A(2)]+-,' &&[A(1)F(2)-P(1)y(2)+E(1)A(2)]

+ ~ &y, &[A(l)G(2) +g'(1)y, g(2) + G(l)A(2)]

+ —' & iy„y, &[A(1)A, (2) +P (1)iy„y,P (2) +A „(1)A(2 )]

+ —,
'

&&&[A (1)x (2) + 4 (1)E(2)-y,g(1)G(2) + iy„y, g(1g „(2)

+X(l)A(2) +F(l)P(2)-G(1)rsvp(2)-A„(l}fray, g(2)J

+ —,', (8&)'[A (1)D(2) +2E(1}F(2)+2G(1)G(2) +2A „(1)A,(2)

+D(l)A(2)-2P'(1)x(2)-2x'(1)g(2)J,

where P' denotes the charge conjugate of g, i.e.,

{0')"=(G ') 'ks

(B1)

The formula (Bl) comprises the multiplication table for the anticommuting Majorana spinor 6 and the var-
ious monomials made from it.

A particular case of (Bl) is the product of left- and right-type chiral superfields,

4~(1, &)4 (2, 6)=A, (1)A (2)+'8[A, (l)g (2)+i/, (l)A (2)]+~ &&[A~(1)F (2)+E, (1)A (2)J

+~ &y, &[-iA, (1)E (2)+iF, (1)A (2)]

+ ,'eir, y, e[i—a+,{1)A (2)-iA, (1)BQ (2)-P (1)y, g (2)]

+~ 888[ if4j(1t)A-(2)+iy„4(+1) +a(2)-iA+(1)pp (2)

+is+, (1)y, p (2) +2), (1)E (2) +2F, (1)4 (2)1

+ —', (68}'[-a'A (1)A (2) + 2B„A,(1)a+ (2)-A, (1)a'A (2}

+4E, (1)F (2)+2/', (iP-iP')f (2)] .

The multiplication of two left-type fields yields again a left-type field with

A, (3) =A, (1)A, (2),

4. (3) =A. (1)4.(2) +4, (1}A.(2),

E, (3} A, (l)F, (2)-P„(1)y,(2) +E, (1)A (2) .

(B2)
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Repeated application of this rule gives the components of the superfield (4„(x, &))", viz. ,

A, =A, (x)",

p, =nA+{x)" '(I {~) (B4)

F, = nA, (x)"-'+„(x)- A, ( x)" 'y-; (x)y, (x) ..-2-c

The vector multiplet 4y contained in {3.8) can be expressed in chiral form as a spinov superfield,

e., =("'" ya) o,

1k Zy5 —8 z 1+zy5 Ia Zy, 1 . 1+Zyg
=exp(+~ &gy5&)

' X + 8 — ' D+i ' a„„C A„, —, &(lsiy)8 'if'
C. Ba Bn

where

D = &'A.
1&

A~, = &„A.,„-d„A,„.
Conversely,

(B6)
DD4+ —2M@ = 2J,
DDC -2', =2J,

(C4)

where the components are labeled such that JA,
acts as the source of A„etc. The linear inhomo-
geneous equations of motion

4, =, , IP(4'„, +4 ),
1

2'Z ~
(B7)

a e easily solved. Making use of the identity

(DD)'4, = -4&'4, , (C5)

which may be a nonlocal superfield.

DDC =2V'(4 ),
DDC = 2V'{4, ) .

(C1)

These equations can be solved perturbatively. The
first step is to linearize them and work out the
propagator. Make the replacement

V(4, )- (M/2)4„'+ J,4, ,

where Z, (x, 6) denote external-source distributions
of the usual chiral types

APPENDIX C: SUPERFIELD EQUATIONS

In the text we have been concerned mainly with
the construction of supersymmetric Lagrangians.
For this task the superfield concept has provided
a compact and suggestive notational framework.
One may ask whether the concept can be usefully
pursued and, in particular, whether it would be
advantageous to set up an apparatus of Feynman
rules with superfield propagators, superfield
vertices, etc. Little has been done in this direc-
tion. The purpose of this Appendix is merely to
sketch a preliminary idea of how such a develop-
ment would proceed.

Corresponding to the Lagrangian (4.1) the super-
field equations of motion are

which can be deduced from the formula (A10}, one
finds

(C6)82+M
This equation defines the bare propagator. In a
formal sense the propagator is given by equations
like

(T4, (x„6,)4 (x„6,)}=(T4, (x, +a + —,'iÃy&„6, + e)

x4 (x, +a+ ,'icy&„&-, +e))

=(TC .{x,-x, +-,'i 6,y6.„6,—6, )

x4 (0, 0)) (C'i)

(on choosing e=-&„a=-x.,). Now 4 (0, 0)=A (0}
and one needs to evaluate only

h
(T4 {x e)A (0)&= DJ-' (0)

m, (x, 6)

A 1,— &J (x, &)

a-+m' '
O J„(0)

1
~DD

(T4, (x„&,)4 (x„&,})= —.
If {xf,(x„&,)
Z~X2j

but the meaning of the functional derivative here
needs to be clarified. To this end one can exploit
the supposed invariance of the vacuum with respect
to translations and supersymmetry transforma-
tions to write

—1k zy5j (x, 6}=exp(w-,' 60'y, &)

+-,'6(1+ iy, )6J~ (C2)

x[exp(-, &yy„&), &{1 iy, )85-(x)]-,

(C8)
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where we have used (C3) and (C6). This formula can be simplified with the help of (A10), which implies
the relation

=exp(-& &sy 6}[F + 9( i-P&(& ) +~ 6{1+iy~)&(-a'A )]

and, therefore,

@
{T4,(x, 6)& (o)) =, , «p (--' &P'y, &)6 (x) . (C9)

The propagator (C7) now takes the form

(Clo)

which is a polynomial in 9, and 9, . (The component propagators can be obtained by comparing coefficients. )

In similar fashion one obtains

—'{T4,{x„&,)C, {x„&,}) =exp [,'7},i-y„y, &, ——,
'

&,iy„y, &,]i (--,' M)9„(1+iy, }&„, , (6 x, x) . -
(C 11)

With the bare propagators in hand one can con-
template the problem of computing scattering
amplitudes. For example, one could put the equa-
tions (Cl) into integral form

4, = —, , [MV,'„, (4, )+-,'DDVI„, (C, )J (C12)

and go on to obtain perturbative developments of
the superfields. This kind of approach may, per-
haps, lead to useful insights.

A different sort of Lagrangian which can be
used to characterize at least the free-field be-
havior is given by

2 = (DD)'[ ,' 4 (DD 2M)4-2J-4], - {C13)
where 4 is a general superfield. The equations
of motion are

(DD 2M)4=2 J .- (C14)

In fact, these equations are equivalent to (C4).
Substitute the resolution (3.11) for 4 and J. Then,
since DD4, =0, Eq. (C14) takes the form

DD4 -2M4', =2 J, ,

DD4+ -2M@ = 2J,
2M@, =2 Jz,

and one sees that the nonchiral part, C„does not
propagate. The equation (C14) can be solved di-
rectly with the help of (A6) to give

4 = —, , —,'DD+ (DD)' J- —J, (C16)1, 1 —, 1

and from this the form of the 2-point function can
be obtained.

The methods can be applied to other kinds of
superfield. For example, the spinor superfields,
+ „may satisfy the equations

(iP 2M }4-, + s DD4', = 2 J,
which are solved by

(C17)

(C18)

These equations describe the propagation of a
supermultiplet of particles of mass M and (spiny'"'"~

content 0', (2)', (s) ', and 1'. lt remains to be
seen whether or not there exist any renormaliz-
able interactions for this superfield.
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Our notational conventions are as follows. The Dirac
matrices satisfy —,

' {y„,y, ) = v» ——diag(+- —-) Ad-
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joint spinors are defined by g =$~pp. The matrices
1

&p» &9'p» &popv = 2~ &p[&p»&v]» &ps'Y&p» and &ppg

f$p2p3 are Hermitian. The charge conjugate of g is
defined by ~c =Cg, where C = —C and C p&C =-p&.
By a Majorana spinor we mean gc =$. It is useful to
remember that the matrices p&C and o&,C are sym-
metric, while C, p&C, and iy&y&C are antisymmetric.
In particular, it follows that gX =X), gp&X =- ~&g,
~opvX = Xopv~» ~~&p&gX =X&'Yp'p~» n ~'Y5X=Wgg if g
and X are anticommuting Majorana spinors.

It may be remarked that the rank-4 "line element"
ds =(dx -2i8p d9) is an invariant.
See, for example, J. M. Jauch and F. Rohrlich, The
Theory of Photons and Electrons (Addison-Wesley,
Cambridge, Mass. , 1955), Appendix A.2, p. 425.

~~In certain cases it is possible to avoid this doubling
and so define an intrinsic parity. The "vector" part,
4&, of the scalar superfield illustrates this [ see Eqs.
(3.10)-(3.13)].
For renormalizability, V must be a polynomial of

order 3. This Lagrangian, given by Wess and Zumino
(Ref. 3), has been analyzed in detail by Iliopoulos and
Zumino for renormalizability [J. Iliopoulos and
B. Zumino, Nucl. Phys. B76, 310 (1974)]. See also
Hung-Sheng Tsao, Phys. Lett. 53B, 381 (1974).
Abdus Salam and J. Strathdee, Phys. Lett. 49B, 465
(1974), Footnote 2. A heuristic argument has been
given by Iliopoulos and Zumino, suggesting that super-
symmetry cannot be broken spontaneously (Ref. 12,
Appendix 1).

~4The compact notation becomes somewhat ambiguous in
this formula. In particular, V,$, =— (C ) V+&g+~.
In order to avoid the Faddeev-Popov complications, it
might be better to choose the noncovariant "axial"
gauge n&A &

=0 rather than 8&A.
&

=0.
The same proposal was made independently by Ferrara
and Zumino and by ourselves (Ref. 7). Another and quite
different proposal is contained in R. Delbourgo, Abdus
Salam, and J. Strathdee, Phys. Lett. 51B, 475 (1974).
See Delbourgo, Salam, and Strathdee, Ref. 16.


