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We establish global conformal operator expansions in the Minkowski region in several models and
discuss their formulation in the general theory. Whereas the vacuum expansions are termwise manifestly
conformal-invariant, the expansions away from the vacuum do not share this property.

I. INTRODUCTION

Conformally covariant operator expansions in-
troduced some time ago' ' have been recently re-
investigated by Mack' in the Euclidean region from
the point of view of harmonic analysis over the
group SO(D+ 1, 1), D being the space-time dimen-
sion.

Representing relations between Euclidean
(Schwinger) functions one may write

A;„)(x)B),) (y) = Q Kt(,"'8
) (x- z, y —z)

(1.2)

Equation (1.2) represents a decomposition with
respect to a, central element Z of the universal
covering of the conformal group such that

ZA'(x)Z '=exp[-i t(td, —2$)]A"-(x),

d, being the dimension of the (sca, la.r) field A(x),
and for special conformal transformations

x —bx'
0(b, x}

we have

where A, 8, and C are conformally covariant
type Ia. (Ref. 5) Euclidean fields and [a], [P], [y]
are sets of indices characterizing their tensor
nature. As identities between (n+ 1)—and n-point
Schwinger functions, (1.1}can be unambiguously
continued to the Minkowski region as correspond-
ing identities between t ime -ordered functions.
From those, relations between the Wightman func-
tions of the theory follow' which contain in prin-
ciple the Minkowski analog of the expansion (1.1).
However, the relation between the Minkowski ex-
pansion and Minkowski conformal invariance has
never been very clear because of an incomplete
understanding of the a.ction of finite conformal
transformations on quantized fields. The latter
problem has been investigated in Ref. 7 for free
fields and more recently" in the general case.

It turns out that in quantum field theory the tran-
sition from SO(D+ 1, 1}to SO(D, 2), in going from
the Euclidean to the Minkowski region, leads one
to representations of the universal covering group
of the conformal group, and the transformation
properties of a local field A(x) are most conven-
iently characterized in terms of nonlocal compo-
nents A~(x), with

U(f))A'(- )U (t ) =( (t, .)],—
[ (5 )]

with

o(b, .~-) =1 —2b x+b2x2

x0 (1.6)

being the analytic continuation of the corresponding
Euclidean expr e s sion from the re spe ctive positive
and negative imaginary values of the b„x0 vari-
ables. For the remaining transformations of the
conformal group the A". (x} transform conventional-
ly.

In the present paper we will reexamine, in the
light of our previous results, ' the problem of con-
formal operator expansions directly in the Min-
kowski region.

Because of their simpler transformation proper-
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ties the A '(x) stand out as natural objects in terms
of which such an expansion should be formulated.
We therefore expect instead of (1.1) the following
expansion:

bilinear in A, 8 have canonical dimensions and
therefore' are conserved. With a suitable nor-
malization their matrix elements are

(P q I
C" '"""(0)i0)=q" & ~ q"" —Tr', (2.2)

&& C[» '~'(z) d'z . (1.7)

The A'(x) generalize the notion of the creation and
annihilation parts of a free field to the interacting
case: As a consequence of the spectrum condition
and the transformation law (2.4) we find

A(x)i0) =A (x)i0),

A'(x)i0) =(A" "'(x))' ~0) .

pPpV
gjf V gji V

2P (2 3)

For instance,

qjf 1q jf 2 Tr)' q
jf j, q ji2 Qjl lji2 q

Since

where the Tr' operation consists in removing the
traces with the help of a metric tensor

P'= -q', P q=0, (2.4)
Whenever the expansion (1.7} is applied to the
vacuum state (vacuum expansion) only the compo-
nents ]~ = F„=0 participate as a result of (1.8).

We will prove the validity of the vacuum expan-
sions for free fields in Sec. II. In Sec. III we in-
vestigate the vacuum expansion in the general
case, and in Sec. IV we test our results in a
soluble model. We devote Sec. V to a discussion
of the more general expansion with $, and (, dif-
ferent from zero.

II. THE VACUUM EXPANSION FOR FREE FIELDS

EP, q) = '(j,)b'(f, )10),
with

(2.1)

In this section we show the existence of a vacuum
expansion for free fields. Let A(x), B(x) be mass-
less free fields. For definiteness we will consider
explicitly only the case of scalar fields in 4 space-
time dimensions, the generalization to arbitrary
values of spin and dimension being clear. For
free fields the $ decomposition (1.2) leads to only
two components, the creation parts A'(x), B'(x),
and the annihilation parts A'(x), B'(x). Consider
the two-particle state

it is clear that (2.2) corresponds to matrix ele-
ments of local conserved and traceless operators.

Consider now the state (2.1}in the center-of-
mass frame P = (P„0,0, 0). We want to write

(P,'j'iP, j)=g a"''"""(P (1}

&& &P;(1 I C„,. . .„(P,) 10).

(2.5)

The matrix elements of the C's in this case, up
to a normalization factor, are the spherical har-
monics in q. Using the completeness of spherical
harmonics one gets

&&(q'& q'" —Tr'), (2.8)

iPO (1)-Q a &"'(~(P0 (l)C'&'"' (Po)i0) (2 7)

and by Lorentz invariance

the time components of the coefficients being zero,
so that

and

~ =P1+P'2, q=P& -Pa
I!P,q) =Pa" "'""(P,q)C„...„(P)10), (2.8)

n

with

„' (2n —1)!! '2n+1
nt 32~'

B'(x) =
2 „, t&'(f)&+(O'}c"*d'f&1

The traceless symmetric conformal tensors

&( (q () i ' ' q
)& n —Tr '

) .

From (2.8) we finally get

(2.9)

&'( )&'b)(0& = g J rc%, ( —*,y —*)c„,( )s I&, '(*)'* (2.10)
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with

o)'&(" —*,) —*)="Jo'&d'o ""'""*' "' ""*o(&* o')ot& o)o(&*)o(&') ""'"(oo) (2. 11)

Equation (2.10) proves the vacuum expansion for
free fields. If we take equal fields, statistics will
restrict the summation to even tensor fields. Fur-
thermore, in this case in addition to (2. 10) we will
have

w'( )o'(o)lo)= Jo'( -&)o'(-,'( o)-*)(o' lo).

(2.12)

N, ~ = normalization constant.

Using the transformation law (1.5) and

(3 4)

with xr given by (1.4} and (v, )' given by (1.6), one
obtains, by comparing both sides of (3.2) after the
conformal transformation,

III. THE GENERAL VACUUM EXPANSION

In the previous section we described the vacuum
expansion for free fields. It is clear that, in gen-
eral, the validity of the vacuum expansion is equi-
valent to the existence of local fields C«)(x) creat-
ing from the vacuum the subspace of states carry-
ing any irreducible unitary (ray) representation of
the conformal group in the Hilbert space. In this
case we should have

~, —2(d, +d~+d ) —2,

A2=2(d —dy —d )+2,
x, = z(d, -d, -d, )+2,

(, = ($, + $,) mod(1),

0 = (t'3 —(,+ )(,) mod(1)

with the dimension d, being related to $, by

8, ——,'(d, +dg -d, ) =Omod(1).

(3.5)

(3 6)

(3.7)

with

+ ~ ~ ~

(3 2)

x C(„){x,) d'x, I 0) .
(3.1)

The kernels in (3.1) can be determined by con-
sidering the transformation law of both sides under
the confor mal group. The orthogonality between
states belonging to different unitary (ray) repre-
sentations allows one to enforce the correct prop-
erties term by term in the left-hand side of (3.1).

Concentrating on scalar fields we have

A "(x,)B'{x2)
I
0)

N, )„C'{x,) I 0) d'x,
(

- 2)(&i &i)( 2)(&2 22)( x 2}()3 E3 )
12 13 23

E, =O,

F„=)(,mod(1),

$2 = {(, —)(,) mod(1).

(3.3)

It should be noticed that the kernel in (3.2) is a
perfectly well-defined distribution as long as A2 is
not a positive integer. This is quite clear since
(3.3) can be written as

Equation (3.6) still leaves one with an undeter-
mined parameter, say (,. This freedom is re-
moved by exploiting the spectrum condition: The
state A "(x,)8'(xo) IO) can be analytically con-
tinued to positive imaginary values of the time
variable x'2. This is only compatible with the rep-
resentation (3.2) if

and

1 1
, t)

(
.2 )X —2( .2 (3.3)

1 1 i sin7)(x —()+2,2)(X, K) { 2 )X (x2)) (x')

x [e ' 8(x ) e' ". 8( x )] (3 ga'}

Xi~ = Xq —Xg,

X o =(XO+2f } —X

which is a tempered distribution defined by analytic
continuation from A. & 1 by means of

J
iP.xd 4

,, (~, , )
= - IP'I" 2 ' vt'(2 —) )I'(I —) )

I

x [8(P2)8(P3)si '
tv+ 8(P')8( P, ) sin2v()( —() —8-(-P') sinn(sins()( —I)] . (3.9b)
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For positive integer ~, we have a degenerate case
with the kernel in (3.2) ill defined.

In order to check the consistency of the vacuum
expansion (3.1), one has to show that it reproduces
the conformal-invariant three-point function in the
whole Minkowski space:

side of (3.10) and using the field normalization

&01 C'(x, )C(x2)l» = [-(x„)'.] " (3.11)

we get

& 0
~
C (x, ) A '-'(0) B{x,) ~

0 }

&0(C*(x,)A' (x,)B(x,)~0) N, ~
[ (. }2 ]2)

d.„, f-(x.)' ]"' '[-(x,)'.]" '
' [-{'.}' ]"'[-(x-}'.1"

=( 0~ C~(x2)A(x, }B(x,) ~
0)

=g.„[-(x„)',] "[-(x„)'.] "[-(x„)',1 ",
(3.10)

with

5, =-, (d, +d, -d, }, 5, =-,'(d, +d, -d, ),
5, =-,'(d. -d, -d, ).

In case the composite fields create a complete set
of states from the vacuum, this would even be a
proof of the expansion. As a by-product of this
calculation one obtains also the normalization con-
stant N„,.

Inserting the expansion (3.1) into the left-hand

(3.12)

It suffices to calculate the integral in (3.12) for

x, =0, Imx, &0, Im~, &0

and then use Lorentz invariance and the analyticity
properties of the integral to obtain the general re-
sult. Performing the angular integration and in-
troducing new variables (for details see the Ap-
pendix)

'M =X3+ X3, 6 =Kg — X~

g =x', + )x,f, q=x', —fx, f, 2 =x, ,

one can express the integral in (3.12) in terms of
one-dimensional integrals I" as

& 0~ C*(x,)A t'(0)B(x, ) ~
0}=[,,„'" [I'(q, z)I'(], -) —I'(q, z)I'($, z}],

where

(3.13)

I"($, 2) =
—u —tc ~ —u+ 2C

JQQ [- (u —$ —ic)] 2 [- (n —z + ic)] ~
'~ 'A - I d (3.14)

For n =0, 1 one can evaluate (3.14) as a contour integral in terms of hypergeometric functions"

I"(),z)=2iv(A2 —1)"(-1}" ' ' e "
~,,2, 2 F(n —1, 2 —t)2;d, +n —1; g/2), (3.15)

so that finally comparing (3.13) with (3.10) one
gets

I'(Z2+ d, - 2}I'(Z2+ d, - 3)~"'"r(d, IF(d', —I)r(~,)r (~, —1)
='"

Equation (3.19) a.llows one to elevate (3.1) to a
true operator expansion,

(3.16) x Ct2)){x2)d x2. (3.20)

(0~ D(.-,)B'(x,) F'(x, ) ~
0) =0

unless

(3.17)

Considering now an arbitrary 3-point function
and its transformation under Z, ' we obtain Let us finally remark that for free fields, al-

though A2 in (3.2) is 1 and $2 from (3.8) is 0, even
in this degenerate case one can write the operator
expansion in the form

,'{lt + t, I,) = 0 mod—(1), — (3.18)

with t=d —s. In an interacting theory we may ex-
pect that (3.18) does not have any solutions since
the dimensions of composite fields should not be
additive. This being the case, we conclude from
(3.17) and (3.1)

0. O. C'(x, ) d 'x,
1 2} 32 2

[ (. )2 ][ ( )2 ]

+ ~ ~ ~

with

C'(x) =A'(x) B'(x)

(3.21)

(3.22)

B'(x,}F'(x,)~ 0}=0. (3.19} as can be seen directly from (2.9) and (2. 10}.
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IV. MODEL CALCULATIONS

We shall discuss in this section the vacuum ex-
pansion in the Thirring model. Since the Wight-
man functions of the model factorize in terms of

the variables « =.i' +x', v = x' -x', it is convenient
to classify a general field 6 in terms of its u and v

"dimension" instead of its dimensions and spin.
In this way we have for a special conformal trans-
formation6,

( }
8'('3 '(u/(1 —»), 1, /(I — 5D))

(I —», )
3 el '- ('(I —» }3'- ((I —56(, )'&63 (4. 1)

P(u) = P, (u), g=0, a+5 =2k. (4.2)

The Wightman functions of this model are just the
free d, = 2 functions raised to a power 2d:

(4,(u, ) ()(,(u.)({(",!ul) 4(;(u.') &

The factorized form (4. 1) which also holds for
Lorentz transf ormati ons and dilatations clear ly
corresponds to the fact that O(2, 2) = O(2, 1)
xO(2 I} 12

For simplicity we will consider a pure "«Thir-
ring field. " The factorization property allows us
to reduce the general Thirring model to this case,
which corresponds in Klaiber 's" notation to

so that we may equivalently describe such a Klai-
ber field by an "exponential model"

ip(u) = exp[i ~2d @ (u)1 exp[ 3~&& qr {"})

where Q(u) is the u part of a zero-mass two-
dimensional free field, in complete analogy to
the model discussed in Ref. 8. Consider now the
vacuum expansion

4"(u, )(l("(u, )10& = Q (I*'-(((,)((("(u,) I
o &

(n) («I Lf~ B2 «

x e'"'(((}
l 0& (fu, (4 4)

- II {u;-u, ) II (u,'-(( )-(33
i&j i&j

g(u( —u,')
(4.3 } where the arguments of the previous section fix

the kernels to be

(n) C„
(u,3- ie)"'(u, —u —i6)' "(u, —u+i@) "(u3 —u+ ie)' (4.5)

with

~, = 2d + 5„—1, 5„=dimension of 6~'

Inserting (4.4) into the 4-point functions we obtain

g!( F3}( ,u}()((u,) ()((u))3= Q (4.6)

with

dR

(ue —u —ie) "(ue —u —ze) (u( —u —if} "(u( —u+i6) "('u3 —u+if) {4.7)

!4(u3)4(ue)5('"'(u ) &
=

(u„—i6)' '" (u, —u —i6)'" (u, —u —ie)'" (4.8)

Taking u, = 0 and the configuration 0 & u, & u„& u„an arbitrary configuration being obtained by analytic con-
tinuation from this one, we evaluate I„by closing the integration contour in the upper u complex plane:

I
f„=exp[iw(1 —25 })(-32i)sin(m5„)u2 u3 ue { )( 6 (1 )1-6 [I ( / ) )6„[1—{ / ) )6„~ (4 9)
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The last integral is given by a generalized hyper-
geometric function

F(5„,5„, 5„,25„;u, /u„u, f'u, ),

and in general

dim8 '"' = 5,„=4d+2n,

dim8 "'"= 4d + 2n+ 1.
(4.15)

(4.16)

with

„I'(5.)
Zl(25 )

F(5ili 5nr 25iii )
n

(4.10)

(u, -u, )(B,-u, )

(u, —u, )(u, —u, }
'

The decomposition (4.6}now takes the form

&P(u, )4(u. )4*(u,)k* (u, ) }

„~ r'"F(5„,5„,25„;r), (4. 11)

where all the constants have been absorbed into
C„.

From conformal invariance the general form of
the 4-point function is

&q(u, )q(u, }y*(u,}q*(u,})=
(

„)„f(r),
us~

(4.12)

with f(r) being given in the Thirring model [cf.
(4.3)] by

f( i=(i ) (4.13)

The composite operators 8 "' can be computed in
this model by a limiting procedure in the manner
of Lowenstein'4 or alternatively by writing the
field P(u) as in the exponential model,

(~(u) =exp[is 2d P'(u)]exp[i~2d Q (u)]

= e,, (u),

so that

(4.14)

8 =limp de~(g)e~(u —~) =e4~{u), dim8'=4d
q-+ P

8' =:e„(u)s„p(u):

s„e„(u), dim8' = 4d + 1

8 =:e„(u)s„4f(u) s„4f(u): —i 2 Wd: e„(u)6„'@(u):,
dxm8 = 4d+ 2

which can be expressed in terms of an ordinary
hypergeometric function. " After translating back
by u, we obtain

I„=—2i sin(v 5„}exp[i7r(1 —25„)]

x (u„) """(u») 'n (u„)

The operators 8~'"'" do not participate in the
expansion (4.11) since they are derivatives of
type Ia conformal "tensors" and therefore not

type Ia themselves. Notice also that a linear tra-
jectory for the dimensions of the irreducible con-
formal tensors, as in (4.15), is an atypical two-
dimensional feature owing to the failure of the
Parisi-Callan-Gross theorem" in this case.

Inserting (4.15) into the expansion (4.11) and

comparing with (4.13) we have

r"C„F(4d+n, 4d+n; 8d+2n;r).1
(1-r)" n

(4.17)

Since the hypergeometric function can be expanded
in Taylor series for

~
r

~

& I and so can the left-
hand side of (4.17), the coefficients C„can be
determined recursively by comparing both expan-
sions, with C,„„vanishing owing to the absence of8""'"in the expansion (4.4}. For arbitrary values
of r the validity of (4.17) is assured by analytic
continuation, thus proving the correctness of the
vacuum expansion (4.4) at the 4-point-function
level. The generalization of this result for an
arbitrary n-point function and the related problem
of the vacuum expansion for composite operators
will be considered elsewhere.

The C„can also be determined as in Sec. III by
using the expansion (4.4) in the 3-point function

&8* "'(u, )P'(u, )g*(u, ))

K HI —H, D2 —0) 8 93 8 R FLY

(4. 16)

corresponding to the construction of the composite
operators 8*~"' from g(u, }P(u,) in (4. 11).

The consideration of the vacuum expansion for
$*(u,)g(u, ) ~

0) leads to degenerate kernels since
the dimensions of the relevant "tensor" operators
are canonical in this case:

dim8 "' = n, 8 "= 1.
This case therefore should be treated by a limiting
procedure taking dim8 "' = n + e and letting c - 0 at
the end of the calculation.

V. COMMENTS ON THE GENERAL EXPANSION

In this section we make some considerations on
the more general expansion problem, i.e. ,
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A "()2,
' (*,) = Q IK (')"( ', -*, , —') ponents, which in the fra. me (5.4) can be chosen

to be

x C I)nn/ i (x) d 'x . (5.1)

If (5.1) exists, the transformation law of both sides
under Z, Eq. (1.3), fixes $, to be

&p. Ic'"'(o}lp & =(q..q,)",
& p I

c' "'(0)
I p &

= (q. -q, )" .

Introducing for x' «0, ~p «0

(5.5)

$, = [ t', + )0 —,(t, +—t,—t, )] mod(1),

with

t=d —s.

(5.2) x, = (1,' -x,')'" cosh8, , q, = (q')'"cosh8,
(5 6)

x, = (x,' -x,'}'"sinh8, , q, = (q')'"sinh8,

our expansion problem amounts to writing

For the vacuum expansion one is able to obtain
the kernels in the form (3.2) by imposing that the
right-hand side has the correct conformal trans-
formation law term by term. In the general case
there is no good reason for such a requirement
which would lead to incorrect results even for
free fields. We cannot expect therefore to deter-
mine the general kernel a priori from a direct
application of conf ormal invariance. Consider,
for instance, the free field case. It suffices then
to prove (5.1) to examine the 1-1 particle matrix
element of the product of two fields, that is,

& p, I
A'(x, )A4'(x, )I p, & =—,e ' e "*2

(p, IAt'(x, )A'(x, )l p, ) =g a„e" [(q } 1" (5.'t)

and using

exp I - i [(x,'-x, ')'"(-P')'" cosh(8 —80)])

en( — 0 (t )/I J( ) ( (x 2 x 2)1/2 ( P2}1/2)

(5.8)

where we have

a —e -n t) () e —i px
(

.
)n

with

(5.3)
~i.i

(&x0' -x '}'"(-P')'")
(2 }2( P2)n (5.9)

p - Pi - P2 q- P&+&2

X=-2'(x, +x2), x=-,'(x, -x, )

Expansion (5.7) can be easily covariantized as

&p, l~'(x, )&"(x,)l p, & =g a"1'"""(xP)

and A' and A the creation and annihilation parts,
respectively, of the field.

To shorten the argument we present the proof of
the validity of the expansion (5.1) for two equal
scalar fields in three -dimensional space-time,
the generalization to higher dimensions being
clear.

Choose a frame in which the external-momentum
configuration is such that

~&p Ic„," „„(x)lp,)

(5.10)

for x' «0 p1 and p2 arbitrary with

( P) (
1)„2'" ' J2n((x')' (-P )" )

(2 )2 ( 2)n ( p2)n

P = (O, O, P,), q= {q„q„0),
{5.4} where

X(.V1. X"0 —Tr') (5.11)

For fixed P the matrix elements of the irreducible
conformal tensors have only two independent com-

I

P" (P x)
X =X

so that finally for x «0, xp «0

(5.12)

(DI A( .lA't". lA't, )At*,)l D) = Q J K' '( .—*', *,—x')(0 I A(, ) O'"' I 'l At, )ID) D'*', (5.13)

with

ff»'"2n(X —X' X, —X')e ' ' d'X'=e ' ' a" 1"'""(X,P) .
t

2
~ O

~ 4 ~

X~
~ ) I ~ ~ ~ 4 ~ I 3 I ~ ~ i~ ~ I ~ ~ ~ ~

~

t ~

&P, P & 02XO&0
(5.14}
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The derivation for g', xo &0 is similar.
In four-dimensional space-time the analog of

(5.12) will involve spherical Bessel functions.
On the other hand it is readily seen for free fields
that the kernel one would obtain in analogy to
(3.2) by imposing term by term conformal in-
variance in (5.1) leads to Hankel functions instead
of Bessel functions.

We conclude that although a general operator
expansion of the form (5.1) might exist (and we

suspect that its existence already follows from
the vacuum expansion), the determination of the
corresponding kernels cannot, for $, and (, differ-
ent from zero, be obtained without a more detailed
consideration of the 4-point function. Contrary to
what happens in the vacuum expansion one cannot
in the more general case reduce the 4-point func-

tion problem to a 3-point function by considering
the limit x3 x4.
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APPENDIX

In this appendix we want to show that the vacuum
expansion (3.1) reproduces the well-known confor-
mal invariant three-point function in the whole
Minkowski space; i.e. ,

(Ol C*(z)A "(0)a(x) I O) =- N, ~
[ —(x+ te)']" &

[-(t —ie)'] & '[-(t+ is)'] ' '
[- (t-x —ie)'] "&[-(t -z+ie)']"

= g„, l-(x —z+ce)'] '&[-(x+ t~)'] '3[-(z —ce)'] '&. {A1)

As a by-product of this calculation we also obtain
the normalization constant X„,.

As already indicated in Sec. III the basic idea is
to calculate the integral for a certain complex
region in x and z, and then extend the result by
analytic continuation to all Minkowski vectors
x, z. From simple power counting we can easily
find a complex region in X3 and d, containing some
part of the real axes such that the integral of {A1)
is analytic in the direct product of the open back-
ward tube (in z) and the open forward tube (in x)

rm.-. V, z =-0, zo~o

Imw + V, , x, =x, =O, x340 xQNO.

(A2)

Introducing polar coordinates for 7 the integral
reads

and, moreover, is invariant under the proper
orthochronous Lorentz group L, on its real bound-

ary. Hence we may restrict ourselves to calculate
the integral for complex vectors x and z such that

(0 l c*(z)A'(0)8{x)
l
0) l;, „

2vN, t„
X+ 2E

drr' ]-[{t.—&&)' —r']) "' 'L-[(t.+~e)' —r']}" '
d9 sin6 (-[(to —ie —x,) —r -x, +2rx~cos8]] 'l —(t, —ie —z, ) —r ] &

(A3)

For all complex x„x3 such that

the integral

I -=d6 sin0 r'+x, ' —(t, —x —2E —2rx3cos0
0

2 4rx3
(-[(t,—ie -x,)' —(r+ )'x]) '~

0 (r+x, )' —(t, -x, —ie)'
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is just a special case of the well-known expression"
1

dx(1 -x)'x' '(1+ax)" =B(v+1,s)F(- u, s; v+ s+1; -a),
0

Applying one of Kummer's relations" and the equation

P(,b;;*)=(1-*) F( —,b;; ),z —1

Re v& —1, Res & 0,
~
arg(1+a)

~

& s . (A4)

it follows that

I
= [(X,—1)2rx, ] '([-[(t,- is -x,)' - (r —x,}'])' ~ -]- [ (t o

—is -xo}' - (r +x,)']J ' "3)

and therefore

Next we introduce new variables

x([-[(t,—ie -x,)' —(r -x,)'j] ' ~'

-(-[(to-iz-xo)' —(r+x,)']}' &) .

u=- to+r, v—= to —r, u -v=2r+ 0,
$:—xo+x3, 'g —= xo —x3q $ —g = 2x3,

(t, —x, —ie)' —(r —x,)' = (u —
&

—ie)(v —rt —ie),
(t, -x, —ie)' —(r+x,}'=(u -rt —ie}(v —] -ie),
dt, dr =

& dudv;

(A5)

(Ot C*(z)A(0)B(x)10&I;,. „, „, ,

w(X, —1) 'Nu
dv du(u -v) [ (u —Kf )(v —'k)] s [- (u+ if )(v+ if )]

2 [—(x —ie )']"&((-rt) [- (v -z, +i~)(u -z, +i~)]z'

&&([- (u —$-ia)(v —q-is)]' s-[ —(u —q-ie)(v —(- ia)]' "').
Now the essential point is to split the double integral into a sum of two equal terms and interchange the
order of integrations in one of them, which results in

r
+ OO + oO + us + «g) + 00 Q

dv du =- dv dm +- du dv1 1

Relabeling the integration variables of the second term and using the distribution identity

[—(u+ te)(vs te)] =e'""[ —(u+ te}]"[ —(vg ie)]"

finally leads to the almost-factorized expression

mN, ~
& 0[C*(z)+(0)B(x)10&I z=o;*q=*s=o =

4(~ 1)[ ( ~ )s]xq(] q)

(A6)

[-(v -ts)]"' '[-(v+to)]+ '
[-(v -rt —is)]"' '[-(v -zo+ie)]+

[-(u —tz)] "s [-(u+is)]&x du(v - u) „, - (rt —g)[-(u -(-iz)] "s '[-(u -z, +is)j+

Hence all that remains to be done is to calculate the simple integrals

(A7)
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il, , ;(t', zo) =-
8 —Sf —0+ lE

de@ [-(u —t-ie)] & [-(u —z, +is}] ~ (AB)

for n=0, 1.
The first important observation is the following:
Remark I. For n=0, 1 and all (X„d,) from the set

—:((A„d, ) E:-CxC ~Re(&, +d, )&3 —n, ReA, &2)

the integral I~, +($, z, ) is analytic in both variables ($, zo) in the open set

]C xC)lmg&O, Imz, &0].

If E is real, I", ~ (g, z, ) is still analytic in z, for Imz, & 0 and all (A„d, ) w A„.
For real ( the integrand has two cuts just above some part of the real axis and two other ones in the

lower half plane. The discontinuity of the integrand at the two upper cuts reads

I

[-(u —ie)]'& ' [-(u —ie)] "& ' lul"3 '
[-(u —$ —iE}]'& "

( [-(u —]-iE)] ~
~ lu —gl

0 for u& min(0, ()
2i sink, w for min(0, t'j & u & max(0, t'}

0 for u&max/0, $}.

(A9)

Since, moreover, for n =0, 1 the integrand is of order O(~ u~ ') at infinity, (AB') may be rewritten as

Ig w ($, zo) = —2$ stnk~w du
I u I u [- (u+1E).

3l lu —&I"& ' — u -z, +i&)" (A10)

Case I. For E & 0

I ]Xg+ d~+ n-q

1 — $/ zo)t
(A11)

Remark II. Obviously the integra. l on the right-hand side, and therefore also I"„&(),zo), possesses for
a.ll (A„d, ) E A„an analytic continuation into the entire z, plane cut along the real line —~ &z

For
l z, l

& $ and (A„d, ) ~ A„ the integral can be explicitly calculated":

, (],zo)~t, o-- —2i sinew e "~B(A., +d, +n —3, 2 —X,}(~'" '(z, ) ~E(d„A, +d, +n —3;d, +n —1; $/z, )

= —2i sink. ,we '"&8(A, +d, +n —3, 2 —X )$ c'" '(z —$)' 3 ~(z,) 3 '

x F(n —1, 2 —h.,;d, +n —1; $/zo). (A12)

Since the hypergeometric function is in fact a polynomial of degree n —1, and in view of remark II both
sides of (A12}are analytic in z, a Cg (z, e R

~

—~ &z, -$) for (X„d,)HA„and n=0, 1. Since both agree
on the real axis $ &z, &+~, Eq. (A12) holds for all complex z, from the cut plane

Cg(z, ~ R(-- z, g).

Case II. ( &0. By exactly the same arguments as before it follows from (A10)

I~, ($, z,)~(„=—2i ist, (-1)"8(),+d, +n-3, 2 -A, )(-()'~'" '(z, —$)' "' "(z,)"& '

x E(n —1, 2 —A„d„+n —1; g/z )

for F &0,

z, e Cg(z, e R~- -z, 0), (~ d, ):=A„, n 0 1.
Putting both cases together we find by means of the identity
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[- (( s ie)] = exp[A ln I$ I+ ixarg(- $ w ie)]

that

'x
e""" for F )0,
1 for (&0,

for

I"„,, (&, zo) =
[- (u —if }]'" ' ' [- (u + ie )] '

de@ [-(u —g-~e)] ' [-(u -zo+io}] ~d

„F(X,+d, +n —3),,„[-((-ic)]"'" '(- z,)"~ '

0

(A13)

($, zo} = R x(c')] z, - R
I

—~ & zo (max(0, ()jj, (A„d, } . A„, n=-0, 1.

In the next step we have to extend the domain of
validity of (A13) to complex (. According to re-
mark I the function

I"„,, ($, zo) =-[-((+ie)1' " "&", , ($, z, )

(A14)

is for (A„d,} E-. A, DA, analytic in both variables f,

and z, for ($, z, ) ~ C. x C, with C, being the open
half planes

C, =( z e C
I
Imz &( 0} .

Moreover, from equation {A13)we find, that for

any rap
+ C and (A3 d ) ~ &p it is a continuous

function on the real axis in (. Then from (A13)
and the Phragmdn-Lindelof theorem" it follows
that I"„~((,z,}vanishes for I( I-+~ if 0-arg( -m,

C, and (&„d,) )== A, . Hence we may use
Cauchy's integral formula in the upper half plane
to show that (A13) also holds for all ($, z, )
= C, ~ C . Combining this with the former re-

sult, it means that (A13) holds for ((I z,)= C, x C

where C. denotes the closure of C. .

Inserting (A13) into (A'I), applying the identity
(A6) and going back to the original variables (A5)
we find

for

I'(A., +d, -2)r (X, +d, -3)
( I

'*( ) (o) (. ')Io)I-, .. ., . .= ' . F(d )'~(d' 1)F(~')F('I )

x( I (xo zo+KE) Ao Ij ] I(Ao+ lE} 'Eo ] I [ (zo 6') ] o (A15}

zo & C (.lo xo) C). ) (xo+))3) i:. C- )

Re6, & —1, Re 6, &0.

The homogeneous function on the right-hand side of (Al} is, if we absorb the X,o, together with the I
function into g„, , obtained as the analytic continuation of (A15) in z and x. Finally, by analytic continua-
tion in 6, and 6, one can also drop the restrictions in them up to certain poles on the real axis.
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