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Recently, Gross and Neveu have studied a two-dimensional field theory of an N-component ferrnion

in the large-N limit. This theory is asymptotically free and has dynamical spontaneous symmetry

breaking. In this paper we study certain finite-temperature properties of this theory, especially those
related to the survival of the "condensate, " or symmetry breaking. Within the mean-field approximation,
we find that the symmetry breaking disappears at a finite temperature T„which is of the same order
of magnitude as the physical mass of a fermion. However, the mean-field approximation is not good for

any finite N. At any nonzero temperature, however small, the system prefers to be in space-dependent
field configurations such that the condensate vanishes. The critical temperature is thus zero.

I. INTRODUCTION

There has been some interest in studying finite-
temperature properties of systems governed by
relativistic quantum field theories. The interest
is centered particularly around those theories
which exhibit spontaneous symmetry breaking
through the acquisition by some field operator of
a vacuum expectation value. '

Gross and Neveu have investigated an interest-
ing model in two dimensions (one space and one
time). ' The model is an adaptation of the Nambu-
Jona-Lasinio model, ' which in turn was con-
structed in analogy to superconductivity. It is
described by the Lagrangian

2 =+ [i/, pg~+ i g'(g~ p&)'] .

In this paper we assume that (1.1) is equivalent to

Z = +(i4) P4) qo go0q 0g)

where v is a scalar field and the Pj are E species
of fermions. We shall work with (1.2), and there-
fore the results might not hold for (1.1) when the
assumed equivalence fails.

Gross and Neveu showed that, for N- ~ and
A. =Ng' fixed, the theory has many inte resting
properties. It is solvable and has a nontrivial S
matrix. It is renormalizable and asymptotically

ff(h) =If — o(x)hdx . (1.3)

Then we say there is symmetry breaking if

free. Spontaneous symmetry breakdown occurs at
the one-loop level and the o field develops a vac-
uum expectation value.

In this paper we investigate the finite-temper-
ature behavior of systems governed by the Gross-
Neveu Lagrangian. In particular, we study wheth-
er spontaneous symmetry breaking in such a
system, present at T=0, survives at finite tem-
peratures, whether there is a phase transition,
and if so what the critical temperature is. The
discussion and results here will be very simple,
owing to the simplicity of the model. We present
them purely for their theoretical interest, al-
though there are possible applications of finite-
temperature behavior of quantum fields to the
real world. '

The existence of a nonzero vacuum expectation
value (0~ o(x) ~0) is a property of the Hamiltonian,
and has nothing to do with temperature. A gen-
eral definition of symmetry breaking at any tem-
perature can be given as follows. From the
Lagrangian we can obtain the Hamiltonian H. Let
the system be confined in a volume L, with peri-
odic boundary condition to secure translational
invariance. We also add an external field and
define
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(o) -=lim lim Tr[o(x)e s"" ]/Tre ~""' (1.4)
h 0 1~~

is nonzero, where P =1/T. Translational in-
variance implies that (g) is independent of x. The
vacuum expectation value (O~o(x) ~0) is just (&) at
T=0

(O~o~0) = lim lim lim Tr[a(x}e ""]/Tre
II ~p I -+ac gazoo

For our purpose, it is useful to know the prob-
ability of o(x) assuming the field configuration
given by a classical field a, (x). In this model the
operator o(x} behaves essentially like a classical
field, because there is no So/St term in the La-
grangian. This probability is proportional to
exp[-pl'(o, (x), p)], where No, (x},p), an effective
"thermodynamic potential, " is the free energy
associated with the field configuration o, (x):

e '"+-"»' Tr.=-(e- '") (1.6)

where the trace is taken over all states with o(x)
fixed at v, (x}. The "Hamiltonian" to be used in
(1.6) is i&)&y~8,&}&- L, with L given by (1.2). The
object e ""~"'8' in (1.6) when integrated over
o, (x) will give the correct free energy of the pure-
ly fermion system in (1.1). I'(c, (x), p) is to be
viewed as a classical potential for the o field.
(For a classical field, whether the kinetic term P
is present or not does not change the partition
function by other than a constant. ) I' is not quite
the finite-temperature equivalent of the "effective
action, " frequently used to study symmetry break-
ing in field theories. ' But the minima of the clas-
sical potential I'(o) do indicate whether symmetry
breaking takes place or not ~ Some of these points
have been elaborated on in Sec. IV.

In Sec. II we evaluate I' for the case where o, (x}
=o, is a constant in space. We find that, for suf-
ficiently low temperatures, I'(o, } has two sym-
metrical minima at c, = + o„(T). At T = 0, they
reduce to the ~ o„obtained by Gross and Neveu.
As T increases, o„(T) decreases. It vanishes at
a temperature T, . Beyond T„ I"(o, ) has just one
"normal" minimum at 0, =0. If we ignore all but
constant field configurations, the result is the
mean-field approximation. This turns out to be
the leading approximation in the 1/N expansion.
The symmetry breaking continues with a decreas-
ing (o) =o„(T), until T reaches the critical tem-
perature T„where (a) vanishes in a second-
order phase transition.

This phenomenon is very similar to supercon-
ductivity, at least mathep&atically, with cr, (x)
playing the role of the order parameter. Many
features of similarity will be discussed in Sec. II.
They are not unexpected, given the parentage of

the Gross-Neveu model and its obvious similarity
to the four-fermion interaction in the BCS theory.

When space-dependent configurations of a, (x)
are not ignored, the results of the mean-field
approximation are qualitatively modified. This
is the subject of Sec. III. It will be shown that at
any temperature, however small, the probability
is overwhelming that the system splits into seg-
ments, with o, (x) taking alternating values o„(T)
and cr»(T-) Wh.ile such segment configurations
have higher energies than the uniform configu-
rations with o, (x) = o„(T), the number of such con-
figurations is sufficiently large (to gain enough
entropy) to secure an overwhelming probability.
As a result of this segmentation, (o) vanishes
[i.e., (1.4) vanishes] . Symmetry breaking occurs
only at T=0 exactly [i.e., (1.5) is not zero]. The
critical temperature is not T„but O. Of course,
this is just an example of a general rule for
systems of one space dimension. '

We shall estimate the energy of a segmented
configuration by evaluating the energy correspond-
ing to a simple trial function of 0,{x)—one which
alternates between +o& and -o„ in sharp steps, or
sharp "kinks. " The energy per kink will be shown
to be proportional to N. For N- ~, the cost in
energy for segmentation is prohibitive. If the
infinite-volume limit I -~ is taken after the limit
N- ~, the segmentation will not take place and
the mean-field approximation will be good. More
precisely, the size of a segment will be shown to
be proportional to exp(n MzN/T}, where o. is a
constant of O(1), and Mz is the fermion physical
mass. ' Thus, for sufficiently low temperatures
(even when N is not large), the size of segments
is very large, and the mean-field results o„(T)
and T, are of significance.

At any finite temperature, the alternating kink
and "antikink" pairs (i.e., the boundaries sep-
arating the +c„and -o» segments and vice versa)
behave just as sets of particle-antiparticle pairs.
Thermodynamic equilibrium requires that they be
produced with finite density at any finite temper-
ature, much in the same way as electron-posi-
tron pairs must exist in a photon gas at any T & 0.

The gradient expansion for Qo, (x)) and the
Ginzburg-Landau equation is also briefly dis-

FIG. 1. One-fermion-loop graphs contributing to
p(0, ). The black dots represent 0, , which acts as a
constarrt external field in these graphs.
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cussed in Sec. III.
Finally, in Sec. IV we make some remarks

about the different kinds of "effective potentials, "
their interrelationship, and the use of an ex-
ternal field in defining one of them. These re-
marks are general and not restricted to the
Gross-Neveu model.

II. PROBABILITY DISTRIBUTION AND

THE MEAN-F IELD APPROXIMATION

A. The potential I (0,fx))

The probability distribution e as given by
(1.6) is the basis for studying statistical prop-
erties of the o field. To find F, one fixes a'(x)
at a, (x) and computes the free energy of the ferm-
ion field. This is to some extent analogous to the
Born-Oppenheimer procedure in molecular and
solid-state physics. There one fixes the positions
of all nuclei and calculates the electronic energy.
Do this for all nuclear configurations and the ef-
fective potential is obtained.

The Hamiltonian of interest follows from (1.6):

H = dx —', a' +g —tYjr& y
' —

re&+gartr& re& . (2.1)

Here x will denote the space coordinate only and

y~=(y, y'). Note that there is no kinetic-energy
term (Ba/Bt)' for the o field. Thus, the Hamilton-
ian is diagonal in eigenstates of the operator a(x).
The 0 field is effectively classical. I' thus repre-
sents the entire Hamiltonian of o.

For a fixed a'(x) =a', (x), (2.1) is a, Hamiltonian
for noninteracting fermions in an external field.
The free energy I' can be deduced from the solu-
tions to the Dirac equations. In terms of graphs,
we have

B. The mean-field approximation

Since we are not interested in the constant C in
(2.2}, it is sufficient to calculate

By(cr,)/Bcr, = (51/der, (x)), C, r

=cr, AT Q — —Tr[(P-go, ) '],A yp
2 7T

(2.4)

where P = ey —Py', and the sum over e is taken
over odd integral multiples of iwT. The one-loop
graphs summed in (2.4) are shown in Fig. 1.

The sum over e in (2.4) can be converted into
an integral along the contour shown in Fig. 2:

d e 1
2mi e8'+1 (2.5)

The contour can be deformed to pick up the poles
at +a~,

=(p2 +g2a 2)1/2

We obtain

(2.6)

'dP 2
By/Ba, =a 1 —— —1—c c 2F 6 e~~P+1

(2 '1)

In practice, the calculation of I for an arbitrary
a,(x) is very difficult. Even if this is done, the
problem is not over, because, after the probability
distribution is known, we still have to perform
nontrivial integrals over the a, (x) space to get
average values of interest, such as (a').

The calculation is not difficult if a,(x) =a„a
constant independent of x. If x-dependent config-
urations are simply ignored, we get the mean-
field approximation, which we now study.

Let us define

(2.3)

n

XII a, (x;)dx; dT;

(2.2) c

plane

where I'„ is the amputated n-point function for the
0 field with one or no fermion loop. The constant
C is independent of a', (x}.

Note that graphs in quantum statistical mechan-
ics' are identical to those in field theory, except
that time variables become purely imaginary —i7.

with 0& 7 & P. In the energy-momentum repre-
sentation, the energy variables must be even in-
tegral multiples of inT for boson lines and odd for
fermion lines. For T-O, the graph rules reduce
to the usual Feynman rules with Wick rotations
already performed.

~&p+~pg~~~»

err )( /&

FIG. 2. Summation over the poles at odd integers on
the imaginary e axis can be converted to an integral over
contour c which can then be distorted to pick up poles at

(p
2 +I20 2) i/2
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where A. =g'¹ Note that when T&0, there is no
infrared divergence in (2.7) even when o, =0.

The cutoff A will disappear after renormaliza-
tion:

o, -z "0, ,

g~Z g
(2.8)

where Z is furnished by the theory at T =0 by fix-
ing the value of 8'y/so, ' at some point. In the
large-N limit, it is given by

Z = 1+—[In(4A'/g' o ') —2j

(s'y/so, ')r, , =1 .

Substituting (2.8) and (2.9) in (2.7) and setting
sy/so, = 0, we locate the extrema of y. There are
three of them, o, =0, +o„(T) (see Fig. 3). The
quantity 0'„satisf ies

(2.9}

(2.10)

2 ln(1. 14 A/To) . (2.11)

Using Z from (2.9), we get

M& is the physical fermion mass. '

(2.12)

(2.13)

where e~ is given by (2.6) with o, =o„(T) It is.
easily shown that (i) for T-O, (2.10) reduces to
the Gross-Neveu relation for the minima of their
potential; (ii) as T increases, o„(T) decreases;
(iii) at some temperature T„o„(T,) vanishes, and,
for T) T„(2.10) has no real solution. The tem-
perature T, is obtained by setting o„(T)= 0 in
(2.10):

In the J -~ limit, the probability distribution
exp(- |17 (&,)}peaks infinitely sharply at the min-
ima of y(o, ) since F(o,) =Ly(o, ). The exact sym-
metry between the two minima +o„(T}can be re-
moved by adding a small external field h, as was
done in (1.3). As a result, the peak of the prob-
ability distribution at o, =+o„(T) dominates and
(1.4) gives

(2.14)

For T) T„(o)=0.
The strong resemblance between these results

and those in the BCS theory of superconductivity
is evident. The gap lk(T) in the BCS theory is akin
to go„(T) here. Equation (2.10) is identical to the
gap equation. ' So are (2.12) and (2.13) connecting
T, and M& identical to the relation between the
critical temperature and the zero-temperature
gap in BCS theory.

Note that in BCS theory, electron momenta are
restricted to the neighborhood of the Fermi sur-
face. As a result, the electron energy depends
only on k —k~, where k is the momentum com-
ponent perpendicular to the Fermi surface, and
k~ is the Fermi momentum. The density of one-
electron states is nonzero and constant around
k —k+=0. Furthermore, ~k —kz( is restricted to
less than the Debye frequency cuD. In the Gross-
Neveu model, the fermion momentum P plays the
role of k —k~. There is only one space dimension
and the density of states near p = 0 is nonzero
(and in fact always constant). There is no natural
cutoff, however. The theory in terms of bare
parameters would diverge. Requiring the renor-
malized theory to be finite makes the bare cou-
pling constant vanishingly small, and unrenor-
malized 0, infinite.

It should also be noted that the condensed v field
here carries no charge and is a real field. There
is no superfluidity. This is in contrast to the BCS
condensate, which is a complex field of charge 2e
and does give rise to superfluidity.

C. Finite fermion density

The total number of fermions minus the total
number of antifermions

dx: gyog: (2.i5)

FIG. 3. Shape of the potential y(0~, T) with minimum
at + o (T) which will approach zero as T T p from
below.

is a conserved quantity. Let us examine the effect
on symmetry breaking of a nonzero fermion den-
sity N/L.

We add a term -p.N to the Hamiltonian where
p. is the chemical potential. Mathematically this
addition simply changes the free fermion propa-
gator I/p to I/(P+y, p, }. Following previous steps
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of calculation, one obtains

ga, "dP 1 1
&y/8. =(~wl~. ) = = +

z z8( -
& y 8( + ) 1)

o fp 8 P
(2.16)

where e~ is given by (2.7). It is a matter of further
algebra to obtain the minimum a„{T,p. ) of y by
solving &y/&o, =0. The answer for the case T =0
is particularly simple. Let P~ be the Fermi mo-
mentum, i.e.,

E.p =P. ) (2.17)

and let m be defined as go„(0, p.). Then (2.16)
giVes

kinks, the energy is (ne-x+ho„L), where the last
term estimates the gain in energy in the portions
with o, (x) =-o„. It is not affected much when the
positions of the kinks are varied. The probability
of finding n kinks is then proportional to

n~

L
" E+ "~br

], 2
~ 0

- ntx+ ha+I mr(ln(I/n)+1) , IT (q I)

2PQ

Mf M~
(2.18)

which is strongly peaked as h -0, at

n= Ie-'r~' (3.1')
Note that the density of fermions is related to
Pz by

X/L = IVp~/2v (2.18)

in this case. In view of (2.18), the symmetry
breaking is diminished by a nonzero fermion den-
sity and vanishes when pz goes beyond Mz/2.

III. FEATURES AT VERY LOW TEMPERATURES

A. Qualitative aspects

The mean-field approximation discussed above
does not adequately describe the physical picture.
This is because too little attention is paid to con-
figurations which differ considerably from the
uniform configuration o, (x) =constant. When the
effect of nonuniform configurations is taken into
account, there is a qualitative modification of the
mean-field results. In particular, (o) vanishes
when 1'~0. This particular modification is pecu-
liar to infinite systems of one dimension, as noted

by Landau and Lifshitz. ' Thus, the critical tem-
perature for this model is actually zero. However,
the mean-field results are still meaningful. We
shall devote this section to questions related to
these facts. Attention will be limited to T40, but

in the limit of large L. Thus, we conclude that
there is a nonzero kink density if T 40. As long
as e~ is a finite quantity, the internal energy
no~ required to produce the kinks is more than
offset by the gain in entropy n[in(L/n)+1] associ-
ated with the positions of the kinks. The resulting
free energy is lower d by the presence of a finite
kink density given by (3.1').

Further, when a finite density of kinks per unit
length is present, the value of a' clearly alternates
between +a„and -a„ in alternating segments. As
h - 0, the a =+a„segment is not preferred over
the v = -a'„segment. When the locations of the
kinks, i.e., the sizes of the segments are inte-
grated over all possible values as in (3.1), it is
obvious that the region of a =+a„will, on the
average, have the same weight as those of a = -a„.
Thus (o) =0, in the limit h-0.

The reason why this result does not appear in

the mean-field approximation is because, by def-
inition, that approximation ignores spatially vary-
ing fields. Equivalently, in the N- ~ limit, the
internal energy c~ required to produce a kink be-
comes infinite, as we show in the following sec-
tion. Then, the entropy can never offset the in-
ternal energy.

It is very easy to see that (o) must be zero for
T +0. The potential I"(o,(x)) has a minimum when

a, (x) =a„. For the configuration a(x) =-a„, the
potential is higher by the amount 2hcr„per unit

length, where the small field h, introduced in

(1.3), is to make -cr„ less favorable than o„. Now

consider a configuration with "kinks" as shown
in Fig. 4, where o, (x) is either o„or -o„except
near a kink. Assuming the kinks are sufficiently
far apart, each kink contributes some energy
e~ above the ground-state energy. If there are n

(Tg (x)

FIG. 4. Typical field configuration with "kinks. "
The field alternates between + v~ and —0„,which are
the minima of the mean-field potential.
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The arguments given here are of course heuris-
tic and do not constitute a rigorous proof that
(0) =O.

The above argument does not apply to systems
of more than one dimension. Take the two-dimen-
sional case, for example. A finite but small tem-
perature implies v,{x}= o„everywhe re except in
small regions, "bubbles, " where v, (x) =-v„,
scattered over the system. The energy of a bubble
is proportional to the circumference, which in-
creases with the area of the bubble. Thus the
size of bubbles is limited and is very small when
T is very small. Thus (v)40 for small enough T.
In the one-dimensional case, the "circumference"
is just tw o points, whose "size" does not increase
with the size of the region with o, =-0„.

v, (x) = (m/g) sgnx, (3.2)

where m is a positive constant, and then calculate

B. Estimate of energy per kink

For a rough estimate of the energy of a kink, we
first evaluate I'(a, (x)) for a, simple configuration

Using (3.4), (3.3}, and (3.8}, we obtain
1

e~ = gNMy. (3.9)

Renormalization is easy and needs no explanation.
The result (3.9) is for the special kink shape
o„sgnx. The shape of the kink can be changed so
as to minimize e~. The minimum would be NMf
times a number somewhat smaller than &. There
is little point in determining this number pre-
cisely. '

Clearly, for large N, cJ, is large. The kink
density is proportional to

-eg /T ~-NNf /2T (3.10)

which is very small. In the X-~ limit, it vanish-
es exponentially. Thus, it will not show up in
finite orders of the 1/N expansion.

As long as one looks at a finite segment of the
system, the probability of finding a kink is vanish-
ingly small. In this sense, the mean-field approxi-
mation is not bad.

e„=I"(v„sgnx) —r(v„) (3.3)
C. Probability distribution and effective potential

for the dc component of g, (x)

by integrating Sr/Sm with respect to m. It is easy
to show that

Consider the effective potential I"(v,(x)) with

v, (x}=v and the effective potential A(v) defined by

m ' = dx(v, '+ g(x, 0)g(x, 0))v, (x)),sr(v, )

where
(3.4)

P{(Y)= 5 o —— Cho {x

Ocr, {x)e "~""6 (Y —— dxo {x)
1

(g&t&) =& Q Trg»(x)&I&»(x) e(e,),
p, X

and e&, and &}t~~(x}are eigenvalues and eigenfunc-
tions of the Dirac Hamiltonian:

(3.5}

8
-&xp'~8—-m&0 4p), =&p0p), . (3.6)

and the representation y0= T„y,=is„where r;
are Pauli matrices.

Substituting (3.7) in (3.5), we find

(&T&g)=mN —(2/e~)(1 —cos2px)sgnx. (3.8)dp

0

For ~p &0, we find

(~2+ p2)1/2

q» „=[A,A„e(x)+A,A „e( x)]L '"(c"* &-ge "*), -

A. =+, P &0,

&) =+, A, =[(e,+m)/2&~J"'. (3.7)

%e have used the notation for fermion wave func-
tions

1
dxcr, {x)=a, (3.12)

while I'(v, (x) =v) is the free energy with an infinite
number of restrictions: v, (x) =v for every point x.
What is plotted in Fig. 3 is r(v)/I and not A(v)/L

To determine whether (v) is zero, one must
find out whether A(v) has its minimum at a non-
zero v. It is not sufficient to look at I"(v,(x) =v).

At 7 =0, A(v) is simply the minimum of the po-
tential I'(v, (x)) with any a, (x) satisfying (3.12).
Clearly, for a v, (x) with one kink, we can make a

equal to any value between -O„and cr„by putting
the kink at the right place. Since ~~ is finite {for
finite N),

(A(v) —r(v. =v~))/L= L
=o {3.13)

in the limit L-~, h-0, for ~v~&v„. For ~v~&v„,
the uniform a, (x) =a gives the lowest I'(v, (x)), and

-=e-'"'&. (3.11)

Thus, A(v} is defined via the probability distribu-
tion for the dc component of v, (x). It is the free
energy with one restriction,
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A(cr) /L

T. O

FIG. 6. The coefficient of 4 in this graph gives the
constant a in the Landau-Ginzburg equation {3.15).

A (a.)/L

property1, 1—A(-,'(g, +a,)) & —(A(a, ) +A(a, )) (3.14)

for L-~ is a general requirement for thermody-
namic stability of homogeneous systems.

D. The Ginzburg-Landau potential

(b)

For those g, (x) which are small and slowly va.ry-
ing, the potential I'(o, ) can be approximated at
nonzero T by the Ginzburg-Landau form

2
I"(a, (x))-" dx —,

' a ' + —,ha, '+ —,
' ca,'

Bx

FIG. 5. {a) The potential A {rJ)/L at zero temperature,
in the presence of a small external field A. {b) The
same potential at a small but finite temperature, with
h turned off for simplicity.

A(a)/K=I'(g, =g)/I. To sum up, A(a)/L. is ob-
tained from Fig. 3 by replacing the portion between
-g„and g~ by a straight line. For a nonzero h, the
line is tilted. [See Fig. 5(a).]

If the temperature is nonzero, configurations of
many kinks and satisfying {3.13) become important.
They give higher energy but also higher entropy.
The net result is a finite density of kinks as de-
scribed earlier. A(a)/L then behaves like Fig.
5(b) for a finite but low temperature. It always
has a positive curvature. Note that the convexity

9'
O'I /5a, (x)5a, (0) = -a, 5(x)+ ~ . (3.16)

Let us skip the algebra, which is almost identi-
cal to Gorkov's derivation of the Ginzburg-Landau
equation of superconductivity from BCS theory. '
The result is

(3.15)

This is obtained by expanding I'(a, ) in powers of

sa, /sx and g„and dropping higher powers. It is
useful only when the 0, of interest are in fact slow-
ly varying and small.

The constants b and c can be obtained by ex-
panding (2.7). The constant a can be obtained by
evaluating the k' term of the graph in Fig. 6,
which is the Fourier transform of

i 1 ag, ' T' TI"(a, ) = (rx/T') dx
' — ' —+ ln —g, '+ —g,"

2m I 2 Bx 2n T, ' 4N
(3.17)

where

n 7g(3)/8m=—',
( is the Riemann & function, and T, is defined by
(2.23). The extrema of I'(a, ) are determined by
the Ginzburg-Landau equation 51'/5a, =0:

$2g ' + —ln —g, +—g, =0.
Bx (y To N

(3.18)

The statistical mechanics of a one-dimensional
classical field described by a Qinzburg-Landau
potential such as (3.17) has been studied by Scalla-

rI.,)= J ~* „N Bgc
24mg, Bx

(3.19)

pino, Sears, and Ferrell. ' Their exact calculation
shows that (a') differs from [a„(T)]'very little,
except in the immediate neighborhood of T,.

Evidently, the 1/T' factor in front of (3.17) in-
dicates that, for T-O, the expression will look
very different. Since, at T =0, 0, ' is the only
length parameter (except the one in the logarithm),
we expect g, to replace T in (3.17}. A little alge-
bra shows that, for T = 0,
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plus higher orders in o, 's/sx, where y(o, ) is
given by (2.7). The applicability of (3.19) is limit-
ed to ~o, ~

sufficiently large. In particular, (3.19)
cannot be used to study kink configurations where
0, passes through zero.

IV. REMARKS ON POTENTIALS

In this section we shall make some trivial but
often overlooked remarks concerning the concept
of "potential. " We shall first draw the distinction
between the elementary definition of potential
familiar in statistical physics and the definition
of "effective action" in recent field-theory litera-
ture. Some difficulties associated with the latter
will be pointed out.

A. Definitions of potentials

There are different definitions of the term "po-
tential ~" They are not the same, although they
are often mistaken to be.

For simplicity, let us start with a classical
scalar field Q(x) in a d-dimensional Euclidean
space and in thermal equilibrium. Ignore the
kinetic degrees of freedom. Thus, the Hamiltonian
is simply the potential energy. For convenience,
the reader can consider the example where the po-
tential energy is

set of dynamic variables in a similar way. For
example, let

q (x) = Q L "e"'"
4)», (4.5)

where

(4. 6)

P((p) ~ e —BI (5) e —BA(e)

k &

(4.V}

A(p(x)) is thus the potential seen by y(x). It is
something in between the potentials I'(&P(x)) and

A((f)). Of course, it depends on A.

These three potentials I (Q(x)), A(y(x)), and

&{/}are directly expressing the probability dis-
tributions of interest. They are related to the
free energy &by

e-8w ~~ x}e-8&(4(r))

5p(x)e '"(~'*&' II=-dy, e '"i-

and X is an arbitrary cutoff. The field (i)(x) is the
"long-wavelength part" of (t)(x). The probability
distribution for q(x) is

I"(g{x})= d'x —,'(V y '+bg'+cy' . (4. 1)
e - 8a(@) (4.8)

[If the field Q interacted with some other field g,
then the degrees of freedom associated w'ith P are
summed over and contained in I'(()))(x)) as, for
instance, in Sec. II.] The probability distribution
for Q is

P(4, (x))~e ()re(») (4.2)

The potential I'(Q(x)) thus tells us all about the
system, in every detail, as far as Q dependence is
concerned.

Suppose we are only interested in a certain spe-
cial dynamic variable, for example,

Finally, we come to the potential often appearing
in recent field-theory literature. ' We first de-
fine @"{J}by

{4(x))g = — =-0,(x) . {4.10}

e = 5gexp -P I' — d"x J x}Q x}

(4.9)

Clearly, W(J) is simply the free energy when an
external force J{x}is turned on. The average of
(t)(x) at the presence of J(x) is

d"x(I) x (4 3) Then define a potential:- as

where L is the volume of the system. Then we
can define a potential A(Q):

)~(((&) f& .*&( le.( ), ' (4.11)

p(») f (((( ) '""'"()(» i f*(*)&d »''
—e -8&(4 ) (4 4}

The quantity (Ij) is in some sense the "center of
mass. " The potential A(4)) is thus the potential
seen by the center of mass.

It is clear that we can define a potential for any

where it is understood that one has solved (4.10)
for J in terms of P, and thereby expresses (4.11)
in terms of Q, . We have

J(x) =+
( )

. (4.12)

If = is known, the free energy W(0} is thus deter-
ined as an extremum of ". We can also obtain

((f)(x)) as a solution to (4.12).
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Note that = does not have a direct connection to
the probability distribution of the field Q. It does
not have a clear physical interpretation in con-
trast to the potentials F(g), A(y), and A(P).

To begin with, :"(P,) may be undefined over
some regions in P, space. For example, let us
consider the case P-~. Then, by (4.9), W(J) is
simply the minimum of I"

z —=I' —fd x JQ. The
location of the minimum in Q space gives ~t)„
and:" is just F(Q,). One can attempt to adjust J
to move the location of the minimum and hence
define = for different Q, 's. However, adjusting
4 can never change the curvature of the potential
F(Q} since JP is linear in Q. Therefore, if
O'I" /Op(x)6$(x') is not positive-definite at @,(x),
there is no J(x) such that F~=F —JJP d'x is mini-
mum at this Q, . Further, having a positive-defi-
nite O'F/Op(x)OQ(x ') is sufficient only to guarantee
that Fz can be made locally minimum at P(x) by
taking J(x) =OF/OQ(x). However, a local minimum
is not enough. Equation (4.9}demands the absolute
minimum. Equations (4.9)—(4.11) make sense only
for those (t},where I'~ has an absolute minimum
for some J. For a finite P, the above argument
must be modified. It seems evident that, in gen-
eral, the potential:- is defined only for a subset
of Q„although a multisheeted structure for W(J)
in J might widen the range of Q, for which =(g,}
is defined.

8. Perturbation expansion of the potentials

Clearly, the potential F(Q} needs no discussion,
if there is only one field Q in the problem. It is
given as input.

From the definition (4."/), we see that A(y) is
the sum of all free-energy graphs for the field
Q'(x) defined by

y(x) =y'(x)+ y(x) . (4.13)

@(x)=y'(x)+ y . (4.14)

One sums all graphs with internal-line momenta
not identically zero. In view of our discussion on
A. (P) in the previous section, it it clear that one
could encounter infrared problems, if there is
such a problem, in computing 4(Q). The kink
configurations, for example, are very difficult
to account for by perturbation theory.

To compute =(Q, ) by perturbation theory, one

In other words, we substitute (4.13) in F(Q} and

compute graphs with no external Q' line and no in-
ternal y line. Thus all the internal lines have mo-
menta larger than A. . This guarantees that no in-
frared problem can arise in computing A(rp}.

For the potential A(Q) defined by (4.4), we simply
lower the cutoff A. to O'. Namely,

w»«s P(x)= 0'(x}+4,(x} and sums all one-particle
irreducible graphs with (t}' internal lines. There is
no restriction on internal-line momenta, and in-
frared problems stay.

Note that in counting the power of coupling con-
stants for a given term, one must take into ac-
count the order of magnitude of y, Q, or P, . If,
foe example, the coefficient b in (4.1) is negative,
then the minimum of F(P) will occur at P(x)
= +(b/c}' ' = O(c ' 2). This means that we must
count q, P, or P, as 0(c ~') in computing A(y),
A(P), or =(Q,), since we are in most cases in-
terested in the minima of F(Q}.

To the lowest order in c, we have

(4.15)

when we take y, Q, Q, as O(c "~'). U(p) includes
graphs such as Fig. 7. The momenta of the ex-
ternal lines are all less than X but that of the in-
ternal line can be larger than A. . These graphs do
not enter for A. (Q) because the external lines must
have zero momentum (g is a constant} while the
internal lines must have nonzero momenta. Equa-
tion (4.15}is the so-called 'tree approximation. "
The potentials are of O(c ').

The higher-order terms in the perturbation
series are essentially cumulants of Q' (which is

or Q —Q, ). These terms are or-
dered with Q' counted as O(1). This essentially
means Q' is much smaller than y or Q or P„
which is of O{c '/'). For those cases where con-
figurations with large g' Ccomparable to O(c '~'),
for example] are important, the perturbation
series may become meaningless as every term
becomes of the same order in c. In fact, the kink
configurations discussed previously serve as an
illustration. There I'(Q, ), &{a)play the roles of
F(Q) and A(Q), respectively. Although I" (a) in the
GN model is not a simple a' potential, it does
imply a perturbation expansion in powers of 1/N.
We have a„=O(N'~'). The 1/N expansion is good
only if a'=a —a„ is of O(1). The fact that the kink
configurations have o' -0 „implies the breakdown
of the 1/N expansion. We showed that kinks are
important for configurations with ~a~ &a„, but not

FIG. 7. The tree graph giving U(y) in (4.6). The
dashed internal line refers to the same scalar field,
but with momenta k».
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for ~V~ &o„. This is why A(o) is qualitatively dif-
ferent from F((T) only for (((( «x„. [See Figs. 5(a)
a.nd 5(b}.J

The discussion so far was restricted to classical
fields with no kinetic degrees of freedom. The
latter are present in the Hamiltonian usually only
through a term ~(w(x)} where w is the canonical
momentum. For a classical field, w and (t( com-
mute, and integrals for the free energy go over
both wk and Qk for each mode. The integrals over
mk are, however, trivial Gaussians and merely
multiply the potentials by temperature-dependent
constants. Thus, for instance, the potential in

(4.7) becomes

e '""'= Indy„dw, exp -P Q-,'w, '+r(P}

(4.16)

degrees of freedom, and H is not diagonal in P(x).
Consequently, integrations such as in

e-8A(IP) — II d4

rx (I|' exp -p ~ nk'+
k&P

have to be done by summing the usual quantum
statistical diagrams with internal lines of momen-
ta k&X.

Finally, note that in the GN model with N fer-
mions, there is no dependence on the o-boson
canonical momentum. Many of the distinctions
discussed above disappear in the leading N-~
limit. Since no internal (o') lines exist in the
leading term in the 1/iy expansion,

A(o') =I'((r).

egg e ~rgy} (4.11}
Also, the quantum behavior of fermions will af-
fect only the fermion propagators, but do nothing
to integrals over boson degrees of freedom. "

e 'w= Qdy, dw, exp -p —,'Qw, '+&(y)
k&X

(4.18)

where n is the number of modes with» ~. For a
quantum field, w(x) and P(x} do not commute. Any
one of them, say Q(x), represents the complete
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