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We suggest that certain nonlinear field theories possess a particle spectrum, richer than has been

heretofore discussed. In addition to states associated with quantization of the free-field modes of
oscillation —these are the conventional particles of the theory —there also appear heavy particles, which

carry a new quantum number and are stable. An approximation scheme is developed in which the

signal for these new particles is the existence of stable static solutions with finite energy to the classical

equations of motion. We give a systematic expansion for the theory, with special emphasis on the

translational motion.

I. INTRODUCTION

There exist many field theories for which the
classical equations of motion have solutions in-
dependent of time but dependent on position in
space, and with energy higher by a finite amount
tha, n the minimum energy of a constant field. In
this paper we investigate the interpretation of
such solutions in the corresponding quantum field
theory, and show that it is consistent to relate
them to a new particle, which is additional to the
particles associated with quantized oscillations of
the field. We consider models for which we find
approximations in a weak-coupling limit ~ In this
limit the new particles (which we call baryons)
have mass large compared to the mass of the
normal particles (which we call. mesons). ' De-
spite this, in the simplest models the baryons
carry a new quantum number a, nd are stable
against decay into mesons.

Our models have a single scalar field in one
space dimension. We show in Sec. II that in more
than one dimension fields with spin are required
to support the phenomena which we are discussing,
but we believe that our interpretation also works
in more realistic theories. In one-dimensional
models, if the classical energy density of a con-
stant field takes a minimum value of zero for two
values Q, , Q, of the field, there is also a field
P,(x), satisfying the static field equations, with

P,(~)- @, as x- —~ and P,{x)-g, as x -+~. The
transition from Q, to fI|, is localized in space and
the total field energy is finite. In the quantum
interpretation, the constant fields P, , Q, corre-
spond to two vacuum states Q„Q,; they are the
vacuum expectation values of the quantum oper-
ator field 4 (x, tt):

(0, ~4(x, l)~O, ) = p, , i =i, 2 .

If p, and Q, are related by a symmetry, the
states Qi 02 are degenera. te even when quantum

fr[yJ
n@(x, t)

(1.2)

is usually interpreted as determining the va.cuum
expectation value of 4 (x, t) and thus should only
have constant solutions. In our models, the loop
expansion for I'[QJ is also an expansion in a cou-
pling parameter X. The weak-coupling limit is
the tree approximation, which yields the classical
equations for (It)(x) and the classical value for the
energy, and hence allows nonconstant solutions
P,(x). We show that the one-loop corrections
contain an unavoidable infrared divergence, so
that Q, (x) cannot be used as the leading term in a
systematic approximation to the solution of (1.2).

fluctuations are included. The quantized oscilla-
tions about @i Q2 correspond to multimeson
states, and we can build a complete set of states
on either 0, or 0,.

We do not interpret y, (x) as determining a third
vacuum" with broken translational invariance.

Instead, we claim that there exists a new sector,
orthogorlal to Qi and 0,, in which the states are
energy and momentum eigenstates. The lowest
states contain one massive particle, the baryon,
a.nd the higher states consist of one baryon plus
mesons. The function p, (x) appea, rs in the quan-
tum theory, not as the expectation value of 4 (x, I)
in the baryon state, but as the Fourier transform
of the field form factor of the baryon in a static
limit. Because the baryon is very heavy, we
can form a wave packet about any point x, with a
position uncertainty much less than the meson
Compton wavelength, which determines the rate
of change of P,(x), but with a kinetic energy much
less than a meson mass. In such a state the ex-
pectation value of 4(x, I) is indeed P,(x —x, ).

In Sec. III we first set up the theory in terms of
the effective action I'[Q J, the generating func-
tional of single-particle-irreducible Green's func-
tions. The equation
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The trouble appears when we consider time-de-
pendent small oscillations of the field about (t),(x).
Because the theory is translation-invariant,
(f),(x+ 5x) also satisfies the equations of motion,
and so (f()),(x}/dx= P, '(x) corresponds to a mode
of oscillation with zero frequency (which we call
the translation mode). This mode ruins the loop
expansion.

We next make the A.nsatz that a baryon sector
as described above exists. We explore the con-
sistency of this A. nsatz by calculating the re-
sponse of the system to a forcing term ~(&)4(x, t)
in two ways: (i) by solving ()I'[(t)]/t)Q(x, () =J(x),
using the loop expansion, which no longer diverges
at the one-loop level, and (ii) by using the A.nsatz
and elementary quantum theory. The comparison
shows that for a suitably chosen J the state of
lowest energy is a localized baryon, plus meson
excitations. The translation mode is exactly what
is needed to give the baryon wave function the cor-
rect spread, provided that the baryon mass (i.e. ,

the mass which occurs in the kinetic energy) is
given by the classical energy corresponding to
(f),(x). The classical energy is also the leading
term in the energy of a one-baryon state, so that
this calculation verifies the Lorentz invariance of
our interpretation.

In Sec. IV we set up a complete calculational
scheme for the one-baryon sector, by using the
equations of motion for all one-baryon multi-
meson matrix elements of the quantum field
4(x, I). We construct a consistent coupling-con-
stant expansion, in which to leading order the
baryon appears as a static particle. However,
when we examine sum rules arising from the com-
mutation relations and the expressions for energy
and momentum, we find that terms proportional
to the baryon kinetic energy must be included;
they exactly compensate for the contributions
from the omitted translation mode.

Section V contains a discussion of some open
questions. We propose a description of multi-
baryon states in our models, and attempt to ex-
plain in more detail how a quantum number ma, king
the single baryon stable arises. We also discuss
the simplest example of a higher-order correction
to the scheme proposed in Sec. IV and show that
the necessary consistency condition is satisfied. '

II. CLASSICAL SOLUTIONS AND

THE TRANSLATION MODE

We consider theories with a Lagrangian

1 8/x t)1$(x t)

where U(g) depends on a parameter X through

U(Q; X) = —U(X'~ (t); I) (2.Ib)

U(Q ) has two zero minimum values at Qy f2 and
a. symmetry which sends Q, into Q, . The classical
equation of motion is'

s'y(x, I) s'y(x, t) +U' y)=O (2.2)

and the classical energy of a static field (t)(x) is

2{{()'}= U((t)) . (2.4)

If (1),(x) is a solution of (2.4) with (l),(-~) = P„
()),(+~) = P„ the only solutions with finite energy
are g(x}=P,(x —x,) or P(x}=(f),(x, —x}, for arbi-
trary x,. Any other choice of integration constant
in (2.4) leads to infinite energy,

Equation (2.4) implies that Er =E„. This virial
theorem may also be proved as follows. The
static solutions of (2.2) are those fields ())(x) which
make E,[P) stationary. If Q(x) is such a solution,
and (f),(x) = g;(x/a), then E,[Q, ] must be stationary
at a=1. A change of integration variable shows
that

Ec[f.) = Er+aEv,1

which is stationary only if E~=E~. Since E~&0,
a = I is in fact a minimum of E,[Q, ]. Moreover,
the same argument used in D space dimensions,
with any number of fields P"(x) and

(2.5a)

gives

] =a 'Er+a E„ (2.5b)

and hence Ev = [(2 —D)/D]Er This means .that for
D & 2, E„&0 and E,[Q, ] is a maximum for varia-
tions in a at a =1, which implies that the field is
not stable against oscillations in a.' Consequently
in three dimensions, something more complicated
than a set of spinless fields must be used if one
wants to consider classical solutions which lead
to a finite and minimized field energy —for ex-
ample, fields with spin. '

To investigate stability in more detail, we look
for solutions of the field equations (returning to
one dimension) with ())(x, t) = Q, (x)+ ()(x)e' '. The
perturbation g must satisfy

(2.3)

A static solution of (2.2) may be found by inte-
grating once to give
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(2.6)

and the stability condition is that all eigenvalues
~2 of this Schrodinger-like equation should be
non-negative. This is, of course, precisely the
requirement that f&'E,(Q)/5$(x)5$(y)~l~ d&

have a
non-negative spectrum, which is necessarily true
if E,[P] is to have a local minimum at 4& =4&, .
The assumed symmetry of U(4&) implies that
U"

(&»&, ) = U"(p, ) = p.'& 0, where l&, is the lowest ap-
proximation to the meson mass in the sector
built on either of the vacuum states with p = p„g2.
However, since U(&)l) must have at least one maxi-
mum between the two minima at &p

= &t&„&p„U"(p)
must certainly go negative between g, and ftt)2. In
general {2.6) has a continuous spectrum of eigen-
values v'=I&'+k', with &1&-e'"" at large ~x~ and

possibly some isolated bound states with a & p, .
But, by differentiating {2.2) we see that

d', L{L+1)——,+L'-, O(~) =~'0(-)
dr 2 cosh2~ (2.11 )

with very simple properties. ' There is a con-
tinupus spectrum fpr = k + L, k & 0, with

g{z)—e'"' multiplied by a Jacobi polynomial of
degree L in tanhz. (There is no reflection, only
transmission. ) In addition ~' takes the discrete
values L' —n', n=L, L —1, . . . , 1.'

For (2.10}this means that ~'=4»&'+ 0'-,

=3pn', and u =0 are the eigenvalues, the last
being the translation mode. The {unnormalized)
wave functions are

O.(x) =
1

cosh 0'2-&
(2. 12a)

(2. 12b)

This is the case L = 2 of the class of Schrodinger
equations

, +U"(y,) @,'=0 (2.7) k /, 2

g„(x) = e' " 3 tanh'»&x —3i —tanhmx —1 ——,,
»2 m

—m Q +&A. ft)
m 2 2 I 4

2A.
(2.6)

(which we refer to as the fit)' theory). The sym-
metry Q —-f)t) is broken in the vacuum states with
&)l, , =am/X'~'. The nonconstant solution is

P,(x)=,~, tanhmx,

with energy

and so Q,
' is always a.n isolated solution of (2.6)

with co' =0. This is, of course, the "translation
mode" described above; it must be present be-
cause of translation invariance. For stability,
this must be the lowest mode of (2.6). [In more
than one dimension, we find a translation mode in
each direction (V4&,), so that u' =0 is a degenerate
eigenvalue and therefore not the lowest. In that
case the solution Q, is necessarily unstable. For
example, for a spherically symmetric it)„ the
translation modes form a P state and there is an
s state "breathing mode" with negative ~'. This
is expected from the argument above which showed
that the energy is a maximum for breathing mode
oscillations. J

As a typical example in one dimension, we take

U(P) = —(»&' —Z y')'1
2A.

(2.12c)

We shall show that the level ~'-=3m2 should be
associated with an excited state of the baryon;
and the level a =4m'+k', with the spectrum of
baryon plus meson states. Indeed p=2»~ is the
meson mass calculated in the simplest approxima-
tion to the vacuum sector.

III. QUANTUM THEORY USING THE EFFECTIUE ACTI(7N

We now investigate what happens if we try to
use P,(x) as a zeroth-order approximation to the
solution of (1.2). For a potential of the form
(2.1b} the»-loop term in the effective action is of
the form I'"&(4&; A. ) =»." 'I' "&(X'~'&P; 1), which sug-
gests that a systematic expansion with Q
=Q». " ' '&&&&'" and X ~'Q" = Q, should succeed.
Since we are interested in this paper in time-inde-
pendent solutions, it is convenient to use the en-
tirely equivalent method of evaluating the mini-
mum value of the expectation value of the energy,
(4'~H~4&) =E[P, GJ, in states constrained by

(4ic(x, t)ie) =4)(x)

and

(4~@(», &)@(y, &)I4') =4 (x)4 (y)+G(x, y)

The equations

E.[V.J= —, —,
4 m'

Equation (2.6) becomesd', 6m'
, +4m2- Q

= (ddx' cosh'm x

(2.9b)

(2.10)

t&E[4, GJ/6y(x) = 6E[4, GJ/6G(x, y) =0

are then equivalent to 6I'[4&J/t&${x, &) =0.' With &t

of order A
-I/2 and G of order /){.

o the lppp expan-
sion of E[y, GJ is again an expansion in powers of
A. , of which the first two terms are'
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F- '
[Q, G] = 8 dxG '(r, x)

(3.1)

+ - dx dy G(x, y)

d'
&& —d, + U"(y) 6(x —y) .

Therefore Q and G satisfy

g" —U'{Q) —-'G{x, x)U"{Q)= 0, (3.2)

,'-G-'(x, y) = —„., +U"(4) o(x-J) (3.3)

An iterative solution of Eqs. (3.2) and (3.3) is at-
tempted. First the last term in (3.2) is ignored.
[It is O(A'~') while the other terms are O(A '~'). J

With Q =g,(x) solving (3.2) to leading order, the
solution of (3.3) for g = P, (x) is obtained by finding
a complete orthonornal set of functions $„satisfy-
ing [compare with (2.6}j

as in the approximation above, which leads to an
infinite term in the energy. (The only way out
would be by some summation of the entire series
for F[P, Gj. We assume this is not what hap-
pens. )'

This is analogous to the situation with a broken
inte mal continuous symmetry, whe n this same
zero in the inverse propagator is interpreted as
indicating the presence of a zero-mass particle.
Such an interpretation is neither necessary nor
desirable here. "

An obvious way to obtain more information
from the effective action formalism is to introduce
an external source term —J dx J(x)C'(x, I) into the
Hamiltonian. The difficulty in interpreting P, (x)
arises from the translational degeneracy, and
this is one way to remove that degeneracy. If we
use the same formalism as above, Eq. (3.2) is
modified by the addition of J(x) on the left-hand
side; (3.3) is unaltered. To develop a useful ap-
proximation scheme, we must decide how J is to
behave as X-0. It turns out to be convenient to
keep J small but fixed as A. -O and to approximate
as follows:

y(x; J) =y,(x-x,)+y, (x)+y, (x), (3.8)
, + U"(P,) i](„=or„y„ (3.4)

It follows that

G(x, 5) =g
2 0.*(x)W.(J)

1

n 2n
(3.5)

dx(4, ')' = z, [@,J, (3.6b)

where the virial theorem (2.4) is used. This gives
an isolated divergent term in (3.5) so that the
leading approximation to G is infinite.

It is no use trying to solve the equa, tions for P
and G as a self-consistent pair rather than by
systematic expansion in A. This is most easily
seen using the effective action I'[&p]. If P(x, I)
= P,(x) satisfies 51 [Q]/5$(x, /) = 0, then so does
g, (x+ bx), and

(3.7)

But O'I'[Qj/5P5P is the inverse of the one-meson
propagator and according to (3.7) has an eigen-
vector at zero frequency with zero eigenvalue.
The propagator therefore has an infinity exactly

(of course G is the equal-time value of the Green's
function for small deviations of Q from Q,). The
translation-mode solution of (3.4) has &u, =0. The
corresponding normalized eigenfunction is

{3.6a)

where Q, is of order ~ ~' as before, Q, is of or-
der J and P~ will turn out to be of order X' J '
{see below), which is much less than (]t}„provided
J»&'y6 ~ {x—xQ) i.s a solution of the order A.

' '
terms in (3.2), P," —U'(P, ) = 0, and at this stage
x, is undetermined. (tt), obeys

, +U"(y, ) g, (x) =J(x} . {3~ 9)

v(x, ) = — dx z(x)[4,(x —x, ) —y, (.~- —a, ) J .

(3.10)

Here &Q is an arbitrarily chosen point, and the
term with Q,(x- &Q) is subtracted so that the inte-
gral for V(xQ) converges even if J(x)- constant as
x-+~. In our typical Q' model, Q, (x) tends to a
negative value as x- —~, and a positive value as
x-+~. Thus if we choose a J(x) also tending to
+ values as x-+~, V(x,) rises like ~x, ~

for large
x, and has a unique minimum, which we hence-
forth take to be x, =o. Thus, as is usual in de-
generate perturbation theory, the first-order

Because the operator -d'/dx'+ U" (g, ) has the
isolated zero eigenvalue, (3.9}can only be solved
if J(x) is orthogonal to the translation-mode eigen-
function P, '(x —x,), i.e. , if Jdx J(x)P, '(x —x,) =0.
For interpretation, we write this in the form

V(x, ) =0,d

xQ



1490 J. GQLDSTQN E AND R. JAC KIW

terms determine the choice of zeroth-order ap-
proximation. The solution of (3.9) is now

4, (x) = g, 4.*(x} &3 4.(3)f() )
1

n ~0 u)n
(3.11)

[The possible addition of an arbitrary multiple of

g, (x) can be absorbed in a first-order change in
the choice of x, in the zeroth-order term. ]

The term Q, arises from the term in G which
becomes infinite when J=0. Thus we take

——,+ U" (Q, ) P, + ~zGO{x, x)U" (Q, ) = 0,

(3.12a}

where

(3.12b}

and Ace, is the lowest-order perturbation in the
zero eigenvalue of (3.4}when Q, is replaced by

4.+4~

(&~.)' = dx[O. (x)J'U"'(4, )4, (x) (3.13}

[U"(Q,} is of order A')', P„which is normalized.
is of order X', and {II), is of order J, hence ~~, is
of order )»' 'J')']. Because of translation invari-
ance, these equations have a remarkably simple
solution. Differentiating (2.7) once more gives

., +U"(e.} e."+U"'(4.}[e.'i'=0. (3 14)

Thus, comparing with (3.12) and using (3.6), we
find

1 „1
y, (x) = y, "(x) (3.15a)

[Eq. (3.15a) shows that P, is indeed of order
X. ') J ') . J Moreover, multiplying (3.14) by P, and

integrating gives, with the help of (3.6}and (3.9),

«d(x)l@(x, 0) —4.(x- &.)JI4') .

Once more the c-number term involving an arbi-
trarily chosen a, is subtracted to make (4'IH~I+)
finite. We make the following A. p~satz about the
relevant eigenstates of H. (i}There is a set of
one-particle (baryon) states with momentum p
and kinetic energy P'/2M, where M is of order

(ii) The matrix element ( P 'I4(x, 0)l P) be-
tween one-baryon states (which we refer to as the
form factor of the baryon) is given to order A,

'~'

by II

(p'I4(», 0)lp) = dxoe' "o(b,(x —x„) . (3.16)

Certainly for a very heavy particle, the require-
ment of Lorentz invariance makes the form factor
a function of P -P ' to leading order in 1/M. The
translational degeneracy of g, now becomes an
unimportant phase ambiguity of the form factor.
[The role that Q, (x, —x) plays in the theory is dis-
cussed in Sec. V. ] If we simply define a localized
state

e ""'Ip)d

(not an eigenstate of energy), then (3.16) is equiva-
lent to

(x, l4 (x, 0)l.x, }=5(x, —x,)g,(x —.», ) . (3.17)

The meaning of (3.17} is obvious, but note that
we do not need to construct explicitly the states
Ix, ) . (iii) There are states of one baryon plus
one meson corresponding to each solution P„of
(3.4) excePt $, . The baryon-meson state IP; n)

with total momentum P has energy cu„above the
rest energy of the baryon, neglecting the baryon
kinetic energy which is of order A. . The matrix
element (P 'I4(x, 0)IP; n) is assumed to depend on

p and p' only through the difference:

(a~,}'=, , dxy, (x), —U"(4,) y, "(x)
dx

dx J(x)y, "(x}

The solution for P, is

0', (x) = —,iE,(%, J
V"(0)] -')'0, "(x) . (3.15b)

The next terms in the expansion of P(x; J) come
from U"(Pp}Qy and the nondivergent term in
G(x, x)U'"(tP, ).

We now explain these results by recalculating
Q(x; d) as the expectation value (@I4{x,0)I4') in a
normalized state which minimizes , + V(x,) p(x, )=~p(x,},2' dxo'

(3.19)

(O'IC'(x, 0)lp;n} = dx.e'" ' '" „,. tl.(x —x,) .
(24) „}

(3.18}

(The labels n are, of course, nearly all con-
tinuous labels k, representing the asymptotic mo-
mentum of the meson. For theories with isolated

like the p' theory, the corresponding Ip; n)

are interpreted as excited states of the baryon
with excitation energies ~„.)

If we take for I4'} a linea. r combination of one-
baryon states I4'} = fdx, p(x, )Ix,) and minimize
(O'IHzl+) using Ansdlze (i}and (ii), we find that p
obeys the Schrodinger equation
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where V(x, )= —Jdx/(x)[q}, (x —x,)-p, (x —a, )]. Be-
cause M is very large, p is dominated by a
Gaussian centered round the minimum of V,

which we take to be at .&„=0, and with a sprea, d

I ~ 1' = J~***Ip I )
I

'

=,-'[M v"(o)]-'~'

(harmonic -oscillator approximation). This leads
to

(4 I4(x, 0)I4) = dx, P.(x- x,)l p(x, )l'

=4,(x)+,'-[M V"(0)]-'~'4,"(x),
(3.20)

provided the spread 4x is small compared to the
meson Compton wavelength. All this agrees ex-
actly with (3.10) and (3.15b) if M is identified with

E,[P, ]. Consequently our calculation of the
baryon' s motion when constrained by a suitable
external d{x) leads to the conclusion that the mass
in the kinetic energy is equal to the classical en-
ergy of a localized baryon. On the other hand, the
leading-order term in the energy is given by
E~'l [P, , GJ =E,[P, J, which is again the classical
energy. We have thus verified that the baryon en-
ergy is of the form M+p'/2M, which is Lorentz-
invar iant to orde r A. .

This accounts for the terms p, and (t)2. g, , as
given by (3.11), is identical to the first-order, in
J, perturbation-theory response to the source J,
with the baryon localized at x, =0 a.nd the various
meson states excited, using our Ansatz (iii) for
the meson matrix elements.

It should be emphasized that the method only
gives information with J sufficiently strong to
localize the baryon (in fact J»X~6), and that it
depends on the comparison of two calculations of
the response. We therefore develop a more direct
analysis of the problem in the next section.

IV. THE KERMAN-KLEIN METHOD

In this section we develop a procedure for cal-
culating in a systematic fashion all the matrix
elements of the quantum field 4 in the one-baryon
sector. We have not proved that the expansion is
indeed consistent when carried to arbitrary order,
but in the first few terms that we have investigated,
it gives sensible results. The method makes use
of the quantum equations of motion; it was sug-
gested to us by Kerman, who, with Klein, used a
similar procedure in a many-body problem. ' We
generalize the A.rgsggz of Sec. III as follows: The
states in the one-baryon sector are multirneson
states labeled by the baryon momentum P and a

set of meson momenta (k„. . . , kg. The state
IP;(k)) has momentum P+Qk, and energy E(P)
+Q(u(k, ), with E(P) =(P'+M')'~' and u){k)
= {k'+y.-')"'. [For simplicity we assume that the
spectrum of (3.4) consists of the discrete point
&u, =0 and a continuum. ]

We have in mind two calculations, one for ma-
trix elements of 4 between "in" states, the other
between out" states. We shall not exhibit the
"in, " "out" label explicitly; it will matter only in

selecting boundary conditions for the differential
equations which are encountered below. (Of
course the single-baryon-no-meson state is both
an "in" state and an "out" state, since the baryon
is stable. } The two sets of matrix elements are
related by the S matrix, which can therefore be
calculated once both are known.

The matrix element (P; [k)I4 lq; (l}) is the sum
of all possible terms of the form

(2x)5(k, -l, )(2v)5(k, —f,)(p; k, I4 Iq; l, ),
in which any number of mesons are "disconnected"
(but not the baryon). " The essential assumption
is that the connected matrix elements between ~n

and n mesons, denoted by the subscript c, have
an expansion in powers of ~ with leading order

Thus (pl4lq) is of order A.
' ' and

(P I4'Iq; k) of order X', while

(P' kI4'lq; f) = (2x)d(k —f){PI4'lq&+{P; kl4'Iq: f). ,

where the connected part is of order A. '~'. Finally
we set to zero matrix elements of any product of
4's between no-baryon and one-baryon states,
since the baryon is stable (see Sec. V).

We write down the equation of motion for 4 (x, 3),

at first for the Q4 theory

(4.1)

and take matrix elements. The left-hand side
gives

2

~- p+gk, —q -pl,
2

+ E(P)+Qu)(k, . ) —E{q)-Q(u(l, ) +2»~'[

«p; Jk)I4'lq; ~if) &

To evaluate the matrix element of 4', we insert
complete sets of multimeson states. It is then
easy to see that we obtain a set of equations for
the connected matrix elements of the form

[-(&p)'+(«)'+»»'](p'Jk)l4'iq; (f)&.

= ~&(p; Jk)I4" Iq' (fl~. (4.2a}
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= Z&p {kdl4'l" (I }&.& '(k,}14'I;(I,}&,

x &s; {k,}l@lq; {I3}&, . (4.2b)

The sum is over baryon momenta r, s and sets of me-
sonmomenta(k, } (I,}consisting of (i) the external
momenta (k} divided among (k,},jk,},(k,}in any
way and (I}divided among (I,},{lj,(I,}in any way;
(ii) internal momenta each occurring twice, once
in a set (I}and once in a set (k} to its right, i.e. ,

in (I,}and (k,}, or (I,}and (k,}, or (I,}and (k,}.
The crucial point is that the leading term on the
right-hand side of (4.2a) is now the term with no

internal meson momenta and is of order X~ '" '
consistent with the order of the left-hand side.

[Our formula. can be written in operator form

as follows. There are creation and annihilation
operators, a (k) and a(k}, for mesons, and the
field 4 taken between baryon states lp&, lq& is
the meson operator

dkdl(p; k iC q; l ),
m ~ + ~

xa (k, ) at(k )a(l, ) a(l„) .

The disentangling of 4' in {4.2b) is then just the
use of Wick's theorem to normal order a product
of a, a'. j

We now make the further assumption that the
baryon mass M is of order A

' and expand E(P)
=M+p'/2M+ ', so that E(p) —E(q) is of order
A and can be dropped on the left-hand side of
(4.2a). Consistently with this, we assume that the
matrix elements can be written in the form

&P;{k}l4(x,0}lq;(I}&.= dx.«p I q+QI;-P-Qk; x. f((k}.(I};x-x.} (4.3)

We call these two assumptions the static approximation. They amount to using Galilean invariance for the

baryon. The integrals over internal baryon momenta now simply make each x, the same point, and the

leading-order equations become

+ (u k;) — cu(l;) +2m f k, l;x)=& f ks l;x k2, l~;x k, l;x (4.4)

In particular, the no-meson matrix element obeys
the classical static equation

f"(x) —U'(f ) = 0, (4.5)

with solution f(x) =Q,(x), so that as before the
classical solution appears as the leading term in
the Fourier transform of the baryon form factor.
For the no-meson-to-one-meson matrix element,
the external momentum k can be put in any of the
three sets (k,},(kg, (k,}and (4.4) becomes

, +U"(g),} f(k; x) =(u (k)f(k; x), (4.6)

„,+(~~)' —U"(y, ) f({k},(I};x)

which is (3.4) once more. Higher matrix elements
obey equations of the form

We thus obtain a sensible hierarchy of equations
for the leading order of all the connected matrix
elements in the static approximation. It is clear
that (4.5)-(4.7) a.re valid for an arbitrary poten-
tial, not just the one of the P' theory.

It is crucial to our interpretation that the solu-
tion for ( =0 of (4.6) does not correspond to a
state In fac.t, (4.6) does not determine the

normalization of f(k; x} (unlike all the other equa-
tions). We must therefore examine some nonlinear
expression in f(k; x) to find the correct normaliza-
tion. The field commutation relations are an ob-
vious possibility. We look at the no-meson matrix
element of the canonical commutation

4{x, ~),
84(y, I)

f =P

= f(2v)5( p - q) 5(x- y) . (4.6a)

=a sum of terms involving
only fewer mesons than f({k},(I};x} . (4.7}

Insertion of a complete set of intermediate states
gives

g «pl4(x, o)l v;(k}&(v;{k}l4'(y.0)lq& E(&)-E(q)+g&(k, }
r, I a)

—&p l4(y, 0)lv;(k}&(v;(k}l@(x 0)lq) E(p) -E(v) -gu(k, . } = 5(x —y)(2v)5(p -q) . (4.6b)

The no-meson terms give a contribution of order ~', since each matrix element is of order ~ ' ' while the
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energy differences are of order A. . The one-meson terms are of the same order, since each matrix ele-
ment is of order )(.o and so is (()(k). All other contributions are of higher order in)(. . Thus we obtain two

types of contribution to this sum rule.
(i} From the one-meson states

g ~(k)[(pl@(x, 0)lr;k)();klan(y, 0)lq)+(x —y)]=+ ur(k) dx f*(k;x —x,)f(k;y, -x)e'«)"o+(x—y)

If we take for f(k; x) the orthonormal solutions of (4.6) P,(x) divided by the usual boson factor of
[2o)(k}P~', then

(4.9a)

f(k; x) ={I/[2~(k)J'"NA(x)

and

g 2o) (k)f*(k; x)f(k; y ) + N'q&, '(x) q&, '(y ) = 5(x -y ),

where the second term is the contribution from the o) =0 state. [Any bound-state solutions of (4.6}are
included in the sum, with f interpreted as the matrix element of 4 between the baryon and a baryon ex-
cited state. ] The contribution of the one-meson terms to the sum rule is therefore

t&(x-y)(2a)6(p-q) fq' dx, e-" ~)*o(p, '(x —xo)(p, '(y —x,} .

(ii} From the kinetic energy of the no-meson states

(4.9b)

g ((pl@(, o&(18( le(v, o&(lv& 2~ ~ (( let&, o&18(-(le(*, o&(lq& '2 )
dr

dx dy q, (x —x )q, (y —y )
q e' " )' *o+'(~ ~)»o+ e'((& ') "o+'(' ) o

(2x) ' ' ' 2M 2M

dxodyoq&, (x —x )(p,(y y, )e'(" -)')*o"(' ")'o

=
M q.'(x)q, '(y)(»)~(p-q) (4. 10)

[the second equality follows from the first by
changing & to p+q —& in the second termJ. Thus
provided M = I/N = fdx((P, ')' =Eg(P, ], we find
that the translation-mode state is not needed to
saturate the sum rule to leading order in A. . This
identifies M and shows that it is indeed of order

We ought also to determine the rest energy of
the baryon. The energy is given by the matrix
element of the Hamiltonian density K:

0()(. ') contribution Jdx[a ((P,')'+ (I /2)()(m' )((P,'}oJ

(The matrix element (p ill lq) =f[E(p) —E(q)J(plC& lq)
is order A' ' and is dropped. ) (ii) The O(xo) terms
come from one-meson states. II' gives

(P lIq;k) q;kII p)

uk ~p 4 q;k)q;k4P

E(p) = &p lx(0) lp),
(4.11)

4x g(d k fp+ x)fI x)

The remaining terms are similarly evaluated and
the total energy becomes

The matrix elements of products of fields are
evaluated by expanding in intermediate states.
When the computation is carried to terms of order

' and X', the relevant intermediate states are
the following: (i) The no-meson state gives an

E(p }= dx[-'((p, ') + U((p, }J+—,
' dx G '(x, x)

d2
+ o ) dx dy G(x, y ) —,+ U" ((P,) t& (x —y),

(4.i2a)
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+0(A. ) . (4.13)

[It is easy to see that any O(X' -') correction to the

baryon form factor does not contribute to this
order. ] The first term is the classical energy
E,[P, ] =M. The second term is the first quantum
correction. It is essentially equal to —,'g„&u(k),
the zer o-point e ner gy of the flue tuations of the
field. Qf course the corresponding vacuum energy
must be subtracted, and the result is an integral
of the phase shift in f(k; x), which is still logarith-
mically ultraviolet-divergent. The divergence is
canceled by the renormalization of the meson
mass. " Since this contribution is independent of

P, we interpret it as the first correction to the
mass of the baryon. The kinetic P-dependent term
does not appear until O(A), which is to be ex-
pected since the kinetic energy is P')2&I

Another sum rule which establishes the con-
sistency of our procedure arises from the matrix
elements of the total momentum operator

P = — dxII(x, 0)BC (x, 0)/&x

Between no-meson states, the momentum density
should give

p= — p 11 —, p) (4.14)
d.}(,

As in the energy calculation, we saturate with in-
termediate states. It is easy to show that the one-
meson intermediate states give zero, while the
no-meson intermediate states contribute

F (P q}(P q}F(q -P)--(p' -q')

G"(x, y)=Q [2ur(k)J''4,*(x)q,(y) (4.12b)

(contributions from baryon excited states are to
be included in the sum). This formula is similar
to the one obtained from the effective action (3.1),
with two important differences. The quantities
P, and G are not variational parameters, but are
fixed matrix elements of the quantum field. Also,
only the infrared-finite G occurs; the pole due to
the translation mode is absent. When we make use
of (4.6), the result is

E(P) = dx[z(zP F+ U(gc)]+ ~ dxG (xi x)

[F(P) is the baryon form factor, i.e. , the Fourier
transform of Q, , and symmetric integration elim-
inates the integral Jdq q'F(q)F(-q). ] Again we
see that for consistency we must have E,[y, j =M.

The decision whether we are computing
' in" or

"out" matrix elements determines the boundary
conditions for {4.6) or (4.7). For ' out" states,
the boundary conditions on the continuum solutions
of (4.6) are

0,(x) = [2~(k)]"':i,(~)

i ftx, i I 0
~ aA (~&)

r ~~
eikx q i

~ k~rg(p) (4.16a)

The constants A and 8 satisfy the following rela-
tions, which follow by evaluating at +~ the
Wronskian of g„(x}with y„"(x) and $ „(x):

~A(k)l'+2 ReA(k}+ B(k}~-' =-0, k = 0

~B(k)['+2ReB(k)+~A(k})'-=0, k= 0

A(k) =B(-j, ), k- 0 .

Therefore it is also true that

~B(k))'=[A(-k)~', k = 0.

(4, 16b)

(4, 16c)

(4. 16d)

(4.17)

The relation of the matrix elements to Eq. (4.6)
makes it clear that the S matrix is the same as
the S matrix for scattering of a meson in the
static potentia, l U"(Q, ). For the 0' theoryour,
discussion of Eqs. (2.10) and {2.12c) shows the. t
there is no reflected wave, only a transmitted
wave with a phase shift,

ta«(&)=
2

-3ik iiin,
2 —g2 ~),)

2 (4.18)

where the g matrix is e""'" .

For "in" states the asymptotic behavior is ob-
tained by complex-conjugating (4. 16a) and replacing
/e by -1~. To calculate the 5 matrix for baryon-
one-meson scattering, we consider the expression
(p'~C

~ p; k out), and insert a set of one-meson "in"
states:

(p'~C ~p; kout) = g (p'~4
~
r; /in)(&; /in[O; kout) .

q'I' (q)F (-q)

dx(q), ' }'

E.[@.J
.VI

(4.15)

q'(2P -q)F(
(2~} 2m V. FURTHER ASPECTS OF THE THEORY

One question we have not discussed in the pre-
vious sections is that of multibaryon states.
There certainly exist time-dependent solutions of
the classical field equations which as /- -~ con-
sist of widely separated baryons moving with uni-
form velocities. In the type of theory with two
constant minimum-ene gy fieMs Q, and P„'elated
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by a symmetry, such a solution would have re-
gions where Q(x, I}= P, alternating with regions
where P(x, t) = P„ the transition regions would

have

x —xo —ut
4( I ) 4c (1 2)l/2

or

x0+ ut —x
0( 1 ) 4 c (I ~2)L/2

94
i —=HI,

at (5.1a)

where

Q2

5y( )5y( )
c[a=--, dx (5.1b)

Thus the classical field energy E,[QJ plays the
role of a potential energy in the Schrodinger
equation. E,[Q] is infinite unless Q(x)-Q, or P,
as x-+~, and so the configuration space is
divided into four regions separated by infinite
potential barriers. The solutions of Eq. (5.1) may
be divided into four sectors, in each of which

4[/] is nonzero in only one of the regions. The
whole space of states is divided into four orthog-
onal subspaces, listed below, with no transitions
between subspaces.

Sector I. 4'[P] =0 unless P(x)-Q, as x-+~.
The lowest energy eigenstates are multimeson
states built on a vacuum 0,. However, the clas-
sical multibaryon scattering states with an even
number of transition regions alternately from

Q, to P, and from Q, to Qy must also correspond
to quantum states in this sector.

Sector II. This is related to sector I by the sym-
metry which takes Q, —Q, and consists of states
built on a vacuum 0,.

Sector IIj. 4'[Q]=0 unless P(x)-Q, as x- -~

Eventually the moving transition regions meet
and an interaction takes place. A great deal is
known about such solutions of some classical the-
ories, ' in particular that for some theories the
"solitons" emerge unchanged from the interac-
tion; but whether there is a deep relation between
the soliton property and the existence of a quantum
field theory is obscure.

To obtain a provisional picture of the nature
of the quantized multibaryon states, it is perhaps
helpful to look at a Schrodinger picture of the
quantum field theory, in which a state is described
by a functional 4 of a c-number field P(x). The
quantum field 4(x, 0) is represented by multiplica-
tion by Q(x) and the canonical momentum ll(x, 0)
by (I/i)5/5$(x); @[/] satisfies the Schrodinger
equation"

and Q(x)- P, as x-+~. The lowest energy eigen-
states are the baryon-multimeson states de-
scribed in this paper. But there must also be
scattering states corresponding to the classical
solutions with an odd number of transition regions
alternately from P, to Q, and Q, to Q, .

Sector IV. This is related to sector III by the
symmetry Q, —Q, .

To make a sensible theory of a real (one-di-
mensional) world, we should retain only two sec-
tors, one chosen arbitrarily from sectors I and II,
and one chosen arbitrarily from sectors III and

IV. The discarded sectors are identical doubles
of those retained. Since no transitions take place
between sector I (even number of baryons) and

sector III (odd number of baryons}, the baryons
carry an additive quantum number +1, which is
conserved modulo 2. Thus the one-baryon state
is stable, a,s we have assumed. It should be
noted that whether a baryon localized at x, is as-
sociated with a field expectation value P, (x —x, ) or
P,(x, —x) depends on how many baryons are to its
left; however, this does not obviously contradict
local causality since insertion of an extra baryon
far to the left does not affect the physical behavior
far to its right, it merely changes the description
in effect from sector I to II or III to IV.

If this is a correct description of the quantized
theory, there is no baryon-antibaryon conjugation.
The symmetry Q, Q, is broken, since it sends
a retained sector into a discarded sector. How-

ever, within sector I C (x, t)- 4 (-x, &) is a parity
transformation; within sector III this must be com-
bined with the Py Q2 transformation. Thus for
the Q' theory, the field 4 behaves as a scalar in
sector I, but as a pseudoscalar in sector III.

This structure is specific to the particular type
of model [with a Q, —Q, symmetry], but should

be capable of generalization. For example, still
in one space dimension, in the theory with U(Q}
= 1 —cosQ we would retain one sector for each
integer N, with P(~) —Q(-~) =2Xw; there are
baryons and antibaryons with a conserved additive
quantum number sl; the symmetry 4(x, t)
—-4(x, /) survives as a baryon-antibaryon con-
jugation.

We have no systematic method of verifying
these conjectures or of calculating scattering of
ba, ryons. We should draw attention to the rather
puzzling analytic properties of the matrix ele-
ments we have calculated. For the Q' theory, we

found

(p'~C ~p) =~-"" axe'"-"*tanhmx

2 lT j/2 1 (5.2a)
rri sinh(v/2m)(P -P') '
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(The singularity at P-P'=0 is a principal part
and is due to the large-x behavior of tanhx. ) We
may write this in a Lorentz-covariant form as

(5.2b)

iteratively. Setting f = P,(x) + 5g (x) and construct-
ing G(x, x) from the solutions of (4.6), we find"

{5.4)

I = (P -P '), (P -P ')" ,

2 nb.
G(t) = m» I sin(n/2m)WI

(5.2c)
For consistency, the right-hand side must be
orthogonal to the translation mode:

dx G(x, x)U"'((p, )(f),'(x}= 0 . (5.5)
The pseudoscalar form is expected from the argu-
ment about parity above. There are poles at
I = (2nin)'; whether these can be associated with
meson thresholds in the crossed two-baryon to
vacuum matrix element is not clear. Indeed any
attempt to interpret Eq. (5.2b) in the crossed
channel immediately runs into the difficulty that
it is antisymmetric under interchange of P and P'.
Is this a peculiarity of the two-dimensional theory
or a hint that the baryons are fermions? (The
classical picture of the multibaryon states does
not obviously force a particular statistics on the
quantized theory. )

The stability of the baryons may also be under-
stood in terms of a conservation law. All models
in one dimension possess a conserved current
J"=»"'9,4(x, I). The charge is 4(~, I) —C(-~, I).
In sector I (or II), matrix elements of this charge
a.re zero, since the matrix elements of the field
tend to the same value as x-+~, while in sec-
tors III (or IV) the matrix element is nonzero,
since the field matrix elements have differing
asymptotic values. It is the conservation of this
charge that renders the baryons stable. "

In the one-baryon sector which we have ex-
amined, the question of higher-order calculations
remains open. The corrections in A. come from
two distinct places. First there are contributions
of the multimeson states to the right-hand side of
(4.4) which are of higher order in A than the left-
ha, nd side. Secondly, the use of correct relativistic
kinematics for the baryon will produce corrections
in ~ to the static approximation which we have

employed.
As an example we derive a formula for the bar-

yon form factor which includes first-order cor-
rections to (4.5). In this particular case, the
kinematic corrections only occur at second order.
Returning to (4.4}, we find that for the no-meson
matrix element the order A.

' ' terms on the right-
hand side involve only one-meson terms. The
equation satisfied by f therefore becomes

To see that this vanishes we proceed as follows.
The integral in (5.5) ean be expressed as

dx4,*(x)t „(x)U"'(P,)g, '(x) . (5.6a}
1

2(d k)

But by differentiating (4.6) with respect to x, we
see that the quantity $»(x)U'"(Q, }P,'(x} can be re-
placed by g»" (x) —

I
U" (Q, }—~'(k}]g»'(x). Thus

using (4.6) once more to eliminate &»*(x)U"(P,),
(5.6a) may be rewritten as

2 dk IB(k) 12 -2
(u(k) )

I+(k)l

(5.6c )

Changing A' to -k in the second integral and using
(4.16d) shows that this quantity indeed vanishes.
IEquation (5.4) does not determine contributions
to &Q proportional to P,'. This is as it should be,
since such terms can be compensated by adjusting
the phase of the form factor. ]

Consistency conditions, like (5.5), may be ex-
pected to a,rise at each new order of the calcula-
tion. It would be most interesting to formulate
them in some general way, so that the consistency
of our theory is evident to all orders.

2 2 („) dxl&»(x)a»"'(x) —C» "(x)C»'(x)i
2(u(k)

12,„}I N»(x}&»"(x) —a.*'(x)a, '(x) i.* =="
2(u(k

(5.6b)

For discrete states this clearly vanishes; for con-
tinuum states (5.6b) can be evaluated from (4.16a).
We find with the help of (4.16b)

f"—U'( f) —»G(x, x)U"'(f) =0 . (5.3}
VI. CONCLUSION

This is similar to (3.2), with the crucial differ-
ence that the propagator G(x, x), given by (4.12b),
is infrared finite. Equation (5.3) may be solved

We have paid rather close attention to the quan-
tum interpretation of classical solutions to field
theory and to the translation mode. Though it was
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clear that such an interpretation had to be in
terms of new particles, it was not so obvious how
to carry it out in a way that ~ould extend beyond
the crudest approximation. Once the properties
of the quantum theory have been established, one
can proceed with more confidence to physically
interesting calculations on field theories in three
dimensions. Also one must develop approxima-
tion techniques suitable to larger coupling con-
stants. It may be, as has been long speculated, "
that the baryons occurring in nature will be found
to coincide with the mathematical baryons which
we have discussed. "
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~There exists a vast literature about solutions of non-
linear field equations. We are concerned with quantized
solitary waves; much of the classical work concerns
itself with "solitons, " which are solitary waves that
emerge from collisions unchanged. We do not use the
name soliton since we do not know whether our baryons
have, or possibly must have, the soliton property.
For a review of solitons, see G. Whitham, Linear and
Ron-linear Waves (Wiley, New York, 1974); A. Scott,
F. Chu, and D. McLaughlin, Proc. IEEE 61, 1443
(1973).

2R. Dashen, B. Hasslacher, and A. Neveu [Phys. Rev.
D 10, 4114 (1974); 10, 4130 (1974}; 10, 4138 (1974)]
have also examined the quantum-mechanical interpre-
tation of classical solutions. Their method is entirely
different from ours, though some of their conclusions
are similar.

The notation U'(Q), ?J"(p}, etc. will always denote
derivatives of U(Q) with respect to @, while Q', P", etc.
will mean derivatives of (II)(x') with respect to x.

4This stability theorem is generally known to workers
in this field.

5H. B. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973);
G. 't Hooft. Nucl. Phys. B79, 276 {1974); L. D. Faddeev.
Max-Planck Institut report (unpublished); A. M.
Polyakov, Landau Institute report (unpublished);
R. Dashen et al. , Ref. 2; T. Eguchi and H. Sugawara,
Phys. Rev. D 10, 4257 (1974).

6See for example P. Morse and H. Feshbach, Methods
of Theoretical Physics (McGraw-Hill, New York, 1953},
p. 1650.

VAdditional field-theoretic models which possess static,
stable solutions in the classical approximation can be
constructed in the following way. Letf (x) be any in-
tegrable function without zeros. Define Q, (x}=f" dy f (y)

+P~ and express V(P, ) =2f in terms of P, . It follows
that f is a zero-energy eigenstate of —d /dx +V" (@,);
since f has no zeros, it is the lowest state. The class
of field potentials that lead to (2.11) correspond to
setting f (x) =1/cosh~x. For L =1 the sine-Gordon

theory is obtained. The sine-Gordon equation in class-
ical mechanics has been recently analyzed by
L. Faddeev and L. Takhtajan, JINR report (unpublished},
while S. Coleman [Phys. Rev. D (to be published)] has
discussed the quantum theory.
J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys.
Rev. D 10, 2428 (1974).

In other words, we are assuming that the exact equation
6 I'[P]/op(x, t) =0 only has solutions with constant Q,
and the lowest-order nontranslationally invariant
solution @, (x} is an artifact of an approximation. It
was emphasized to us by F. Low that the situation
here is analogous to the polaron problem or the Har-
tree-Fock approximation to a nucleus. There too a low-
est-order calculation violates translation invariance,
which is an exact symmetry. Nevertheless, the ap-
proximation is physically relevant.
There is an important difference. When an internal
continuous symmetry is spontaneously broken, the
singularity in the propagator is not isolated, as it
is here.

~~The idea that Q, (x} should be related to a baryon form
factor was also developed in corn ersations with F.
Low.

~~A. Kerman and A. Klein, Phys. Rev. 132, 1326 (1963).
When the operator 4 occurs without an argument, it
means that the argument is the origin: 4 =4(0, 0).

~4Renormalization is discussed by S. Coleman, R. Jackiw,
and H. D. Politzer, Phys. Bev. D 10. 2491 (1974).
The explicit evaluation of (4.13) in the @4 theory is
given by Dashen et al .. Bef. 2.

~~Such a Schrodinger picture has been discussed most
recently by J. Kuti (unpublished). An account of Kuti's
work is given in Ref. 8.

~6The interpretation which we are advocating is also
supported by Coleman's investigation of the quantum
sine-Gordon equation (Ref. 7). He finds that model
to be equivalent to the massive Thirring model, with
~""8„@proportional to the fermion-number current.
Since our methods apply equally well to the sine-
Gordon theory (see Ref. 7), it is plausible to identify
our baryons with the fermion field.

~YG(x. x) is ultraviolet-infinite: a mass renormalization
must be performed in Eq. (5.4), analogous to that
discussed in Bef. 14.

~SAn early reference is T. Skyrme, Proc. R. Soc. A262.
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237 {1961);a recent one is %. Bardeen, M. Chanowitz,
S. Drell, M. %einstein, and T.-M. Yan, Phys. Rev. D
ll, 1094 {1975).

~sThe classical statistical mechanics of the Q~ theory.

as a model for a ferroelectric, is discussed by J. A.
Krumhansl and J. R. Schrieffer, Univ. of Pennsylvania
report {unpublished). The "baryons" are their domain
walls.


