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It is shown that phase-space distribution functions that characterize a single-particle quantum system

obey a certain "generalized non-negativity condition, " which reflects the fact that the density operator
is a positive operator. A corresponding criterion is obtained for the associated characteristic functions

and is found to resemble, to some extent, Bochner's theorem of classical probability theory. Necessary
and sufficient conditions on a phase-space representation of quantum mechanics are also derived, which

ensure that all the possible distribution functions in that representation are non-negative; but it is also

shown that such distribution functions are not joint probabilities for position and momentum. In fact,
our results readily provide a new proof of theorems of Wigner, and of Cohen and Margenau, which

imply that quantum mechanics cannot be formulated as a stochastic theory in phase space.

I. INTRODUCTION

The possibility of expressing the quantum me-
chanical expectation values as averages over
phase-space distribution functions has been widely
discussed (see, for example, Refs. 1-7). It is
well known that a correspondence between quantum
states and phase-space distributions is generated
by a rule of association between operators and
c'-number functions. These distribution functions
are often called "quasiprobabilities, "as they do
not possess all the attributes of ordinary prob-
abilities. In particular, they are not non-negative
in general. The fact that they may become nega-
tive has been taken as the distinguishing feature
of such quantum distribution functions. However,
non-negative distribution functions have also been
discussed in the literature, ' "for example in the
so-called "antinormal correspondence" between
operators and c numbers. " But they too are not
true joint probability distributions for position
and momentum. This is clear from a result due
to Wigner'" that "if one imposes the condition
that the distribution function yields the usual mar-
ginal probabilities, in addition to the requirements
such as reality, and linear association, then one
cannot avoid negative probabilities, in general. "

In this investigation we first analyze the role
of a non-negativity requirement on the distribu-
tion functions, in a general phase-space formula-
tion of quantum mechanics. In such a formulation,
the non-negativity requirement that is imposed
on the classical distribution function is shown to
be replaced by a "generalized non-negativity re-
quirement" which reflects the fact that the density
operator is a positive operator. Using this gen-
eralized non-negativity requirement we will eluci-
date the general conditions that completely charac-
terize a quantum distribution function in phase

space. The corresponding result for the charac-
teristic function is similar to Bochner's theorem
in classical probability theory. " Then the nec-
essary and sufficient condition on a phase-space
representation of quantum mechanics is obtained,
which ensures that all the possible distribution
functions in this representation are non-negative.
We will see that there is a large class of such
phase-space representations. Using the condition
for non-negative distribution functions, we mill
also give an alternative proof of Wigner's theorem,
to which we referred earlier.

In the last section of this paper, me discuss
briefly the connection between our results and re-
sults of Wigner, '" Cohen, "'"and Margenau and
Cohen, "which demonstrate that quantum mechan-
ics cannot be formulated as a classical stochastic
theory in phase space.

II, PHASE- SPACE REPRESENTATIONS

OF QUANTUM MECHANICS

We begin with a brief review of the phase-space
representations of quantum mechanics as formula-
ted by Agarwal and Wolf' and indicate a certain
generalization of it.

A natural requirement on any phase-space rep-
resentation of quantum mechanics is that it be a
linear one-to-one mapping of operators on a Hil-
bert space into c-number functions. We will re-
strict our considerations to the single-particle
case, and hence our observables will be functions
of the usual position and momentum operators,
acting on the space of square-integrable functions.
Because of the one-to-one nature of the repre-
sentative mapping, we may characterize it by the
inverse correspondence which associates oper-
ators with e-number functions in phase space.
Now any square-integrable function g(q, p} can be
represented by a Fourier integral:
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g(q, p) = (2.1)
4(q, p; q, p) onto which the Dirac & function is
mapped:

Because of the linearity of the correspondence,
the phase-space representation can be completely
specified by the operator associated with the ex-
ponential function exp[i($q+iip}]. All the well-
known correspondences are particular cases of
what might be called the 0 rules of association.
These are associations of the form [a caret (")
denotes an operator]

i(Ea+nP) ~(i. ) ei(Ki+qi )
QO Qp QJ (2.2)

Thus, the operator g(q, p) corresponding to the
function g(q, p) is given by

g(q, P) =

We have the inverse mapping

1
g(q, p) = — »(ge ""'"")

2r

(2.3)

x[@(],ri)] ' e'"""~'dt' di) .

(2.4)

Usually it is assumed that Q($, rl} is the boundary
value of an entire analytic function in two com-
plex variables, and has no zeros for real values
$, g. Other conditions imposed on 0((, q) are

6(q q')-5(p p')--r(q, p;q', p'),
for all q', p'. Then (retaining the assumption of
linear mapping), the operator g corresponding to
the function gq, p) will be given by

g(q', P') &(q, P; q', p') dq' dp'

From (2.8) and (2.9), we deduce that

g(q, P) =»[g(q P) &(q, P;q, p)] (2.10)

The requirement that the "identity function, "
g(q, p) —= 1, is mapped onto the unit operator implies
that

&(q, P; q, P) dq dP =1, (2. 1 1)

and the "reality condition" implies that the oper-
ator 6 is self-adjoint, i.e. ,

(2.8)

The one-to-one nature of a representation mapping
demands the existence of a family of operators
h(q, p; q, p) orthogonal to A(q, p;q', p'), i.e. , such
that

Tr[ &(q, P; q, P) &(q, J; q ', f ')] = 6(q - q ') 6(P -P')

(2.9)

n(0, 0) = 1 , (2.5) n (q, p; q, f ) = r (q, p; q, f) . (2.12)

and

(2.6)

where the asterisk denotes the complex conjugate.
Equation (2.5) ensures that unity is mapped onto
the unit operator. Equation (2.6) is the "reality
condition" ensuring that real functions are mapped
onto self-adjoint operators and vice versa. In
Table I we list the explicit form of the function
Q($, g) for some of the well-known rules of asso-
ciation.

We can discuss more general representations
by considering the set of representation operators

TABLE I. The explicit form of the function Q($, g) for
some of the well-known rules of association.

In the table z=(q+iP)/v 2, z*= (q -iP)/v2,
a = (q+iP)/v2, and a = (q —iP)/~~2.

~ q, p; q, p) dq dp = Tr ~ q, p; q, p)

= I/O, (2.13)

where C is a constant. Thus, one can define a
representation "conjugate" to the original repre-
sentation, via the correspondence

6(q q') 6(P - f ') —&(q, P; -q', P'),
where

(2.14)

It should be clear that a general representation
in phase space is completely characterized by the
two-parameter family of representation operator s
h(q, P; q, P) which satisfy Eqs. (2.7), (2.9), (2.11),
and (2.12). The operator h(q, p; q, p) orthogonal to
n(q, p; q', p'} can also be shown to be Hermitian and
satisfies the relation

cos[( 7]/2]

exp[(( + 7]2)/4]

exp[ —(4'+ 7] 2) /41

Rule of association

Wigner -Weyl

Symmetric

Normal

Antinor mal

Example

P e —a&P i+PiP+P')
P e —&(P~4+vP )

zz*—a a

zz* aa

n(q, p;q', p') =cZ(q, p;q', J') .

It is clear that E(q, P; q', P') satisfies Eqs. (2.7),
(2.9), (2.11), and (2.12) and thus defines a repre-
sentation.

The orthogonality relation (2.9) leads to the gen-
eral resu1. t that for any two operators A and B
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'r (&())=J f & I& (~, (;a()I
x Tr[BZ(q, p; q, p}]dqdp . (2.15)

The result expressed by Eq. (2.15) forms the basis
for the representation of quantum-mechanical ex-
pectation values as averages with respect to a
phase-space distribution function. For example,
the expectation value of any operator A may be
expressed as

(A) = T (pA) = f f f(q, p)A(q, )d(gdp,

III. "GENERALIZED NON-NEGATIVITY REQUIREMENT"
ON QUANTUM DISTRIBUTION FUNCTIONS AND THE

ASSOCIATED CHARACTERISTIC FUNCTIONS

In this section we will restrict ourselves mainly
to representations generated by the 0 rules of
association, defined at the beginning of Sec. II.
For the 0 rules of association, the representation
operators ho(q, p; q, p) are given by"'

r .(q, p; q, p) = (1/2v)'

x f1(t', )}}dt dq, (3.1a)

where

(2.16)
4(q, p; q, p) =» r .(q, p; q, p-),

where

(3.1b)

A(q, p) = Tr[A d,(q, p; q, p}]

is the phase-space representative of operator A
in the "6 representation" and the corresponding
phase-space distribution function f(q, p) is given
by

f(q, p} = Tr[p a(q, p; q, p)] (2.17)

f*(q, p) =f(q, p),
and the normalization

(2.18)

Thus, every representation associates a phase-
space distribution function with each density oper-
ator. The reality of the distribution function, viz. ,

From (3.1a) we note, on taking the trace, that

Tr[h„(q, p; q, p)] =1/2w . (3.2)

In classical probability theory, the character-
istic function, associated with a joint probability
distribution of two random variables P, q, is de-
fined as the expectation value of e' ~" . Re-
calling the correspondence (2.2) we may define
the characteristic function in the Q rule of cor-
respondence, for a single-particle quantum sys-
tem, as

f(q, p) dqdp= 1 (2.19)
Mo(t, q) = f1(t, n) M(t, n),

where

(3.3a)

follow directly from Eqs. (2.12) and (2.11) and the
corresponding properties of the density operator:

P =Py (2.20)

Trp =1 . (2.21)

However, these quantum distribution functions
need not obey the non-negativity condition f(q, p)
~ 0, as do the distributions of classical statistical
mechanics. We can derive a "generalized non-
negativity" requirement, using the fact that the
density operator p must be a positive operator,
i.e., that

&pl ply) ~ 0,
for any state vector i%I)). This requirement is
equivalent to the condition that

(2.22)

(A A) = Tr(pA A) ~ 0 (2.23)

where A is any operator of the Hilbert-Schmidt
class. We will show in the next section that Eq.
(2.23} leads to a "generalized non-negativity" re-
quirement on f(q, p) and also on the quantum char-
acteristic function.

M((, ))) =&e'"""") . (3.3b)

Since M„(t, )(}}=M($, q) when A($, ri) =—1, M($, ))) is
the characteristic function in the Wigner-Weyl
correspondence (see Table 1).

The following properties of the characteristic
function may readily be established:

(i) M„(0, 0) = 1,
(it) ~(k '9) ™o(-t —'9) .

Moreover,

(iii) M„(t', rl) is continuous.

(3.4)

(3.5)

The property (iii} follows from (3.3a) if we use
the fact that the Wigner-Weyl characteristic func-
tion M((, )1) itself is continuous, "'"and recall that
Q(t', r}) is the boundary value of an entire analytic
function in two complex variables.

In order to transcribe the positivity condition
(2.23) as a requirement on the characteristic func-
tion, we use the result that any Hilbert-Schmidt
operator A has a "Fourier" representation"

A = a $, g) e' ~"~ ~ d(dg, (3.6)
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where o'($, q) is a square-integrable function. Hence, since according to Eq. (2.23), (A A) ~ 0, it follows
that

~w(( q ) o(t q )
e- (&&»p t~» -)/2 (e H&2-&, )~+(»2 —»&)P )}d( dq d( dq ) () (3 7)

Clearly, (3.7) has to be satisfied for all square-integrable functions n((, q}. This implies the "general-
ized non-negative-definiteness requirement"

(iv) ~*(~„~,) ~(~„q,) e-'"~' &~-"& &'-"

X[II((,—]„q,—q, ) J
' M„((, —g„q, —q, ) d$, dq, d$, dq, -0, (3.8)

for all square-integrable functions a((, g). Thus,
we have established the following result:

Theo' en& l. A quantum characteristic function
in any 0 representation is completely character-
ized by the conditions" (i)-(iv).

The condition (3.8) can be equivalently written
in the discrete form as

P g z*. z e '" '& "»' "&"[Q(( —( q —q )]
-'

f= I A=1

xM&)($& —$&, q» —q/) 0, (3.9)

for arbitrary non-negative integer N, arbitrary
set of pairs of real numbers I($„,q, )&, and any
set of complex numbers Iz,).

We can contrast this "generalized non-negative-
definiteness requirement" with the usual non-neg-
ative-def initene ss r equir ement

N

(iv') Q g z,*z, M($, —$, , q, —q,.) o 0 (3.10)
/=1 @= I

on the characteristic functions in classical prob-
ability theory, "which arises from the non-nega-

tivity of the distribution function. That the con-
d)tions (i), (ii), (iii}, and (iv') are obeyed by all
classical characteristic functions is embodied in
a well-known theorem (essentially due to Bochner)
in classical probability theory. It is clear now that a
similar result holds for the quantum character-
istic functions in phase space, provided that the
condition (iv') [Eq. (3.10)] is replaced by the con-
dition (iv) [Eq. (3.9)].

The "generalized non-negative-definiteness re-
quirement'* (3.9) on the characteristic function
can also be expressed in terms of the quantum
phase-space distribution function itself. We will
establish this result here for a general 6 repre-
sentation (as we already noted, 0 representations
are special cases of it) using the following "product
theorem, " established in the Appendix:

Theore&n 2 /Product tt&core»&). If g(q, P) and

t&(q, P) are the phase-space functions representing
the operators g(q, P) and h(q, P), respectively, then
the phase-space function that represents the prod-
uct g(q, P) t&(q, P), which we denote by g(q, P) &3&h(q, P),
is given by

g(q, P) I (q, P) = If(q, p; q„P„q„p,)g(q„p, ) t (q„p,) dq, dp, dq, dp. , (3.11)

where

&(q, P; q„P„q„p,) =»[d(q, p; q„p, ) t)(q, p; q„p, ) t (q, p; q, P)] (3.12)

With the help of this product theorem we may at
once transcribe the positivity condition (2.23) into
phase space and obtain the following "generalized
non-negativity requirement" on the quantum dis-
tribution function:

Theorem 3. If f(q, P) is the phase-space dis-
tribution function of a single-particle quantum
system in a 6 representation, then

[A*(q, P}A(q, P)]f(q, P) dq dP.- o, (3.»}

where A(q, P) is an arbitrary function of q and P.
The function A(q, P) in (3.13) is, of course, the

phase-space representative of the operator A(q, P),
which enters the positivity condition (2.23) on the
density operator.

IV. CONDITION FOR NON-NEGATIVE QUANTUM

PHASE DISTRIBUTION FUNCTIONS

We have already seen that for a general "4 rep-
resentation" the phase-space distribution function
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corresponding to the density operator j is given
by &(q, p; q, p) =

2 I q, p)U rr(q, pI (4.6b}

f(q, P) =»[p ~(q P' q, P)] (4.1)

We have also seen that one has to impose the con-
ditions

and it is obvious that the condition of Theorem 4
is satisfied in this case, so that the distribution
function in such a representation, viz. ,

and

& (q, P; q, P) = d(q, P; q, P), (4.2) 1f (q, p) = 2,(q, pl pl q, p)v, (4.V)

&(q, P; q, p) dqdP=1. (4.3)

f(q p) o-0 . (4.4a)

Equation (4.4a), implies, according to (4.1), that

Let us now impose the condition that all the dis-
tributions that arise in the representation should
be non-negative, i.e., that for all values of q and

p

is necessarily non-negative.
We can now use the general result expressed by

Theorem 4 to find all the Q representations which
lead to non-negative distributions.

Let hn(q, p; q, p) denote, as before, the repre
sentation operator of an 0 representation. Then
it follows at once from Theorem 4 and from Eq.
(3.2) that this representation will give rise to non-
negative distribution functions, provided that for
every q and p, 2vd, „(q, p; q, p) is a density opera-
tor. According to (3.1a).

«(q, f; q, p)) - 0 , (4 4b) QO

(" p. p) &t. k(q -q) y)(p -u)1
2rfor all states. Thus, the necessary and sufficient

condition for all the distributions to be non-nega-
tive is that d(q, p;q, p) be a positive operator. But
by (2.12) and (2.13), A(q, p; q, p) is a self-adjoint
operator with constant trace C and hence,
n(q, p; q, p)/C satisfies, for every q and p, all the
properties of a density operator. Thus, we have
established the following general result:

Theorem 4. The necessary and sufficient con-
dition that a phase-space representation, charac-
terized by the set of operators h(q, p; q, p), in-
duces distribution functions that for any state are
non-negative is that for each q and P, the operator
h(q, p; q, p) be proportional to a density operator,
the proportionality constant being independent of
q and p.

We will elucidate the above result by simple
examples. For the antinormal rule of correspon-
dence, we have''

&(q, P; q, P) = —,I q, P) {q, P I), (4 &)

(4.6a)

where U is a unitary operator. We define the
corresponding representation by the representa-
tion operator

i.e. , A(q, p; q, p) is the projection operator onto the
coherent state labeled by the complex number
z = (q + fP)/v 2, and thus, for each (q, P), is the
density operator of a pure state. It is also clear
that we obtain non-negative distribution functions
if our representation operator is the projection
operator onto the so-called generalized coherent
state"

x&(5, ))) did' .

We have also the identity
— )+ nO -P)) D&( p) iLa ry ) D( p)

where

D(q P} &
—i(Pa eP)- (4.8)

(4.9)

QQ "-o

2m~, (q, p; 0, 0) = — n{t, )})e'"""'d~ d))

be a density operator. It is immediately seen
from (3.3b) that the Wigner-Weyl characteristic
function of this state coincides with the function
0((, g). Thus, we have established the following:

Theorem 5. The necessary and suff icient con-
dition for all the distribution functions in an Q
representation to be non-negative is that 0((, )))
be the Wigner-Weyl characteristic function of

is the unitary translation operator. The relation
(4.8) can readily be established by using the
Baker-Hausdorff identity. " Using Eqs. (3.1a) and
(4.8), we obtain the formula

&&(q, P;q, f) =D'(q, p) &o(q, J; o, 0) D(q, p) .

(4.10)

Since D(q, p) is a unitary operator, we conclude
that in order that 2m'~(q, p; q, p) be a density oper-
ator for every q and p, it is necessary and suf-
ficient that 2vhn(q, P; 0, 0} be a density operator.
Hence, for an 0 representation to yield only non-
negative d istr ibution functions, it is necessary
and sufficient that
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some quantum state.
If Q($, q) is the Wigner-Weyl characteristic

function of a pure state, all the operators
2nd„(q, p; q, p) will be pure-state projection oper-
ators. If Q($, q) is the Wigner-Weyl character-
istic function of a mixture, all the operators
2wAo(q, P; q, P} will be density operators repre-
senting mixed states. The usual conditions im-
posed on Q($, g), such as those expressed by Eqs.
(2.5) and (2.6) and the requirement of analyticity
show that Q((, q) is already chosen to satisfy con-
ditions (i), (ii), and (iii) for a quantum charac-
teristic function. Thus, the condition of Theorem
5 that Q((, ri) be a Wigner-Weyl characteristic is
that for arbitrary non-negative integer N, any set
of pairs of real numbers I($, , q„)}and any set of
complex numbers {z„},

f(q, p) =Tr[pr4(q, P;q, P)]; (5.1)

(5 2)

a theorem that shows that it is impossible to ob-
tain proper joint distribution functions by any such
generalization. More precisely, Wigner's theo-
rem may be stated (in our notation), essentially
as follows:

Theorem 6 (8'igne~'s theorem ). There is no
phase-space representation of quantum mechanics
which satisfies all the following three require-
ments.

(i) The distribution function f(q, p) is the expec-
tation value of a self -adj oint operator & (q, p; q, p),
*1.e. ,

its% ~k "j~i~ Q(( ( g g.)» P

(4. 1 1}

(iii) it gives correct quantum-mechanical mar-
ginal probabilities

This condition is automatically satisfied, for ex-
ample, for the case of antinormal rule of associ-
ation, where

(q, pdp= q pq

q, p)dq= p i p

{5.3)

Q(k, t}) = exp[- k ($'+ n')]

It is also clear that one can construct many other
examples of 0 representations with non-negative
distribution functions.

V. NONCLASSICAL FEATURES OF PHASE-SPACE
REPRESENTATIONS OF QUANTUM MECHANICS

The results of the previous section provide us
with a large class of representations which lead to
distribution functions that are non-negative. How-
ever, as we will now show, these distribution
functions cannot be joint probability distributions
for the noncommuting observables q and p.

In a search for joint distributions, one may pro-
ceed along the lines of classical probability theory,
using the relation between the joint probability dis-
tribution of the random variables X and Y and the
distributions of the linear combination A. X+ p, Y.
Then one could consider the Wigner distribution
function, obtained as the Fourier transform of

e{px[i ($q+qp)]). Since the Wigner distribution
function will, in general, take on negative values,
an attempt can be made to circumvent this by
noting that there is an ambiguity in the definition
of functions of noncommuting operators q, p, and
consider differently ordered exponential forms.
The existence of different phase-space represen-
tations of a quantum system was noted by Wigner
already in his basic paper. ' However, in the same
paper he stated and later" published the proof of

Taking the expectation value of both the sides of
(5.4), in a state lq), we obtain

A(q)= A q' q a q, p;q', p' q dq'dp'.

(5.5)

Since {5.5) holds for any arbitrary function A(q },
we conclude that

&q I &(q, f;q', p') lq &
= 6(q q')~(p'), -(5.6a)

In establishing this theorem, Wigner pointed out
that the same result holds if requirement (iii) is
replaced by a milder requirement (iii'), namely,
the following.

(iii'} The operator that corresponds to a phase-
space function of the form A(q)+B(P), where
A(q) and B(p) are arbitrary functions of their
arguments, is A(q}+B(p).

We will now show that Wigner's theorem, in
this stronger form, follows readily from our anal-
ysis. First we note that requirement (i) is nothing
but our representation requirement; it takes care
of the linearity and the reality requirements.

Requirement (ii) implies, according to Theorem
4, that for all q and P A(q, p;q, p)(C (where C is a
constant) is a density operator.

Considering functions of q alone we have from
(2.8) and the requirement (iii')
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where

o)(p') dp' = 1.

Similarly, considering functions B(P) of P alone,
and imposing the requirement (iii'), we obtain

(pl&(q, p;q', p')l)p&=5(p p')P-(q'), (5 8b)

where

P(e') de'= &.

Thus, requirements (i), (ii), and (iii') together
imply that each member of the family of density
operators d, (q, p;q ', p')lC has the marginal dis-
tributions [ o(p')/C]5(q-q ') in the configuration
space, and [p(q') jC]5(p-p'} in the momentum

space. However, the existence of a density oper-
ator with this property would clea, rly violate the
uncertainty principle, and hence we conclude that
there is no phase-space representation that satis-
fies all the three requirements (i}, {ii), and (iii').
Since (iii) implies (iii'}, it follows that there is no

phase-space representation that satisfies all the
requirements (i}, {ii), and (iii), in agreement with
Wigner's theorem.

Wigner's theorem clearly shows that quantum
mecha. nics cannot be formulated as a classical
stochastic theory. The same conclusion was also
reached by Cohen" (see also Cohen" and Margenau
and Cohen" ). They demonstrated that every phase-
space representation of quantum mechanics that
satisfied the requirements (i) and (iii) of Theorem
6 necessarily violates yet another basic principle
of classical stochastic theory that is embodied in
the following requirement:

(iv) li'g(q, p) is the phase-space representative
that is used to calculate the expectation values of
an operator g(q, p), then K[g(q, p}] will be the

phase-space representative that gives the expecta-
tion values of K[g (q, p)], where K is an arbitrary
function.

We will use our earlier results to provide anoth-
er proof of Cohen's theorem which can be stated
as follows:

Theo~em 7 (Cohen' ). There is no phase-space
representation of quantum mechanics that satis-
fies the three requirements (i), (iii), and (iv). In
other words, there is no linear one-to-one repre-
sentation of quantum mechanics which satisfies
the marginal probability condition as well as the
requirement (iv).

We will prove Theorem 7 by showing that if all
the three requirements (i), (iii), and (iv) were to
hold, a contradiction would result.

From Wigner's theorem (Theorem 6), it is
clear that if conditions (i) and (iii) are satisfied,

then the condition (ii) must be violated; i.e. , the
phase-space distribution function f (q, P) cannot be
non-negative for all states.

Consider now a special ca.se of the requirement
expressed by Cohen's condition (iv), with K[g]=g-',
where g is a self-adjoint operator, i.e. , we re-
quire that if the operator g (q, p) is represented by
the c-number function g (q, P), then [g(q, P)]'
should be represented by g'(q, p). Since our
Theorem 2 implies that the phase-space function
corresponding to the operator [g {q,p)]' is given by

g(q, p}3g{q,p), where )3 is the nonlocal phase-
space product defined by (3.11) and (3.12}, condi-
tion (iv) demands, in this case, that

g (q, p)3 g (q', p) =g'(q, p), (5.7)

for any function g(q, p). Now we can use Eq. (5.7)
in conjunction with the "generalized positivity con-
dition" on the phase -space distribution function,
expressed by Eq. (3.13) (a condition that is valid
in any representation, as it just reflects the posi-
tivity of the density operator). We then obtain, if
we recall that g is Hermitian,

(g*)=f J g)v), ))@a e)t))f(e ,p)&o&p.

g(Q, P 'f (e,P)&~ ~P

APPENDIX: PROOF OF THEOREM 2
(PRODUCT THEOREM )

In this Appendix we will establish Theorem 2

(the product theorem), which gives an expression
for the phase-space function [to be denoted by

g(q, p))3h(q, p)] that represents the product

g{q,p)h(q, p) of two operators g(q, p) and h(q, p).

(5.8)

Now, since g(q, p) is an arbitrary function, (5.8)
implies that f(q, P) ~ 0. But this result contra. —

dicts our earlier conclusion from Wigner's theo-
rem. Hence, Eq. (5.7) cannot be satisfied, and
Theorem 7 is thus established.

The main conclusion of our analysis, then, is
that if we restrict ourselves to pha. se-space repre-
sentations of quantum mechanics that are linear
one-one associations [i.e. , which satisfy the re-
quirement (i)] and also give correct marginal
probability distributions [i.e. , satisfy the re-
quirement (iii)], then the phase-space distribu-
tions will necessarily take on negative values for
some states, and mappings that involve functions
of operators follow rules that are completely
foreign to the spirit of the classical theory of
stochastic processes [violation of Cohen's re-
quirement (iv)].
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Since g(q, p) is the phase-space function repre-
senting the operator g(q, p), and h(q, p) is the
phase-space function representing the operator
h(q, p), we have from Eq. (2.8)

and

e(.-.p)= f f .(. p ).(..p;-.. p )d.. dp.

d(e, p)= J J d(e„p, ) (dp;e„, p, )de, dp, ,

(A1)

Hence,

(A2)

d(dp)p(e, p) f, f=f f d(e„p, )e(e. p.ld(d, p;e„p,,)d(dp;e. p.,)de, d, p, de dp.

According to (2.10), the phase-space function g(q, P)(8)h(q, P) that represents the operator g (q, P)h(q, P)
is given by

8 (q, P) h(q, p) = »(g (q, f)h(q, p)&(q, I;q, P}].

From Eqs. (A3) and (A4) we immediately find that

(A4)

d(ep)@e(ep, ) ff, f=f de(ep;e„p„, e*l id(e , .pie(e„p, )de. ,dp. de ,dp, . (A5)

where

&(q, P;q„p„q„P,) =»[&(q,P;q„f,) r (q, P;q„f,)&(q, P;q, P)] .

Equations (A5) and (A6) constitute the required product theorem.
We note that in the special case of the 0 representations, the kernel, given by (A6), becomes

&&(q, P;q„p„q„f,) =»[&n(q, f;q„fP,)&o(q,f;q„f,)&n(qf; q, P}].
Using Eqs. (3.1a) and (3.1b), (AV) may be expressed in the form

d.(ep;e„p ep, .) f„f J =(~(e ( e" ).] ~. ,(e , e.)D(( .„i, .
X e '{&iqi+y) X&&+ ~2q2+f|2&2} e' I{«+~2]q+{~&+y]2)

~l 91 ~2 l2 '

(A6)

(A8)

Equation (A5} together with Eq. (A8) is in agree-
ment with the product theorem for 0 representa-
tions, established by Agarwal and Wolf [see Ref.
7(b), Eqs. (3.3)-(3.5)].

In this context, we also note that the relation

g(q, P)& h(q, P) =g(q, p)h(q, P) (A9)

cannot be satisfied for all functions g(q, p} and

h(q, p) in any phase-space representation, for it
is clear from Eq. (A5) that Eq. (A9) would hold if

and only if

&(q, p;q „p„q„p,)
= 5(q q, )6(P P, )6(q-q, )6(f-P, ) . -(A 1o)-

Clearly, (A10) cannot hold in any representation,
since the right-hand side is symmetric under the
exchange of (q„p, ) and (q„p,), whereas the left-
hand side is not, as is evident from Eq. (A6} de-
fining the kernel A(q, p;q„P„q„p,}.
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