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Nonvanishing neutrino mass and the process yy ~ vv
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Within the framework of the local V —A theory, I find that the experimental uncertainty in the

p,-neutrino mass is not sufficiently great to allow the process yy ~ vP to be an important neutrino

energy-loss mechanism in stellar objects.

I. INTRODUCTION

Some time ago, Pontecorvo' and Chiu and Mor-
rison' suggested the process yy- vv as a poten-
tially important energy-loss mechanism during
certain stages of stellar evolution. Their first
expectations were for rates comparable to what
are now considered the dominant neutrino energy-
loss m.echanisms

ye- vv,

ee- vv,

plasmon- vv.

However, Gell-Mann' has noted that the yy- vv

cross section actually vanishes in the local V -A
theory to first order in the Fermi coupling con-
stant. Rosenberg" has obtained a nonvani shing
cross section by replacing one of the real photons
by a virtual photon supplied by a nuclear Coulomb
field, but the effect is small.

A nonvanishing cross section also results from
a nonlocal weak interaction, and a number of
authors have attempted to calculate this process
in the intermediate vector-boson theory. Most of
these calculations" '4 cast away several divergent
Feynman diagrams, producing non-gauge-invariant
and/or cutoff-dependent results that are, more-
over, not in agreement with Gell-Mann's theorem
in the local limit. Levine" has put together all of
the highly divergent diagrams and has obtained a
finite cutoff-independent result. The effect is once
again very small. As pointed out in that paper,
a neutral current does not contribute to this pro-
cess as it does in other neutrino energy-loss
mechanisms. ' In the language of gauge theories, '
Levine's calculation was performed in the unitary
gauge, and in view of the need to argue away the
Adler anomaly, "it is comforting to know that
Gell-Mann's theorem is also obeyed in the local
limit when the calculation is performed in the
renormalizable gauge. "

The Gell-Mann theorem depends crucially on
the vanishing of the neutrino mass. In this paper
I shall, within the framework of an otherwise un-

II. CALCULATION

This calculation is based on the Fierz-rearranged
local V-A weak interaction Lagrangian,

L~(x) = —iv, (x)y p(1+y, ) v, (x)l V~q(x)+4'g(x) j,G

2

and the usual electromagnetic interaction

L„,„,(x) =ielq(x)y~l, (x)A~(x) . (2)

Here Gm~'=10 ', e'/4w =(137) ', and j =electron,
muon. Henceforth, the lepton subscript, j, will
be omitted. The matrix element for the process
yy- vv can be written to first order in G as

Ge2
M = v"yq(1+y, )v' '&0I V~(0)+&g(0)lrr),

2

(3)

where v' and v are positive- and negative-energy
neutrino spinors, respectively, and normalized
to V(p, E, A) (pv, E,h)=1. Since Vz(x) is odd under
charge conjugation,

(4)

Also, spin 1-yy is forbidden by gauge invariance
and Bose statistics, so that (Ol A(0)l yy) =0 in the
barycentric frame, the Lorentz-covariant state-
ment of which is

(o I &a(o) I rr) = QBD/s,

D=q &ola{0)lr»,

Q =q+q =P+P,

$ Q2

q and q are the photon momenta and P and P are
the neutrino momenta. . Equations (3)-(5) along
with the Dirac equation for the neutrino spinors

modified local V —& theory, consider the possibil-
ity of a neutrino mass as large as its experimental
upper limit.
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FIG. 1. Feynman diagram for ~—» to lowest order
in G and e. Wavy lines are photons, solid lines electrons,
and dashed lines neutrinos. Momenta and polarization
vectors are indicated.

CD

O

I-

yield

M =W2Ge m v ' (1+y5)v D/S .
To lowest order in e, D is associated with the

Feynman diagram of Fig. 1 and given by

QgN8 pc Yp8-
(2m)' (0"+m' —ie)(A'+m' —ie)(B'+m' —ie)

(3
O

O
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FIG. 2. Energy-loss rate as a function of neutrino rest
energy. The experimental upper limit on q at T =3.po K
is Q =3.

A =k'+q,
B=k' —q

where m is the electron or muon mass. The inte-
gral appears to be logarithmically divergent, but

by using the relation

i() = (g —im) —(P+ im) +2im

and evaluating some traces it can be written as the
obviously convergent integral

D m 6'
g

E'
P q ~ q g E ~ c1P gI ~

The cross section is given by

m, ' 1

Bq,q, (2~)'

where Q „ is a sum over photon and neutrino helic-
ities. I readily find that

d4k'I = 16,((k" +m') [(k' +q'+m']
(2m)'

By means of the well-known formula
=—0 4&10 ' cm'. (12)

1 1 1( 8+i')ZdZ
P +ie

I find with & = ~, + z2 + &, that

1 d~ld~2d~3 . 2 ~1~2I= —
2 ',' ' exp ir m'+S

7T
' r

For S«m2, this is easily evaluated as

Taking m, = 1 MeV for muons and S= (3 MeV)', a
typical S value at 10"degrees Kelvin, yields a
cross section of 3X10 "cm'. This is much larger
than the cross section produced by the IVB (inter-
mediate vector boson) nonlocality" and is at least
comparable to that produced by a nuclear Coulomb
field. ' It is therefore of some interest to calcu-
late the contribution of this process to the stellar
energy-loss rate.

The energy loss per unit volume per unit time,
Q, is given by



NONVANISHING NEUTRINO MASS AND THE PROC ESS yy - vv 149

&& [exp((u, /KT) —1] '.
Changing integration variables to

(13)

Q = 4 ', ' 2v ((u, + (u, ) [exp((u, /KT) —1] 'd'k, d'k,
(2m)'

x= ((u, +(u,)/2m„,

y = (u, —u&, )/2m, ,

z = v S/2m„

and performing the z integration yields

(14)

Q = (0.5 && 10' erg cm ' sec ')(T/T, )'R,

T, =10' 'K
(~2 ~) 1/2

8 =os dx dyx x2 y2 en("'~)/2-1 -1 eg("-~)/'-1
1 0

~2 2 I/2

x~(g' g)'"(x' —y' —1)'"—ln 1+ . . . q = 2m, /KT . (15)
X

Numerical integration of R (Ref. 21) yields the neu-
trino mass dependence of the loss rate shown in Fig. 2.
The peak value of Q/(T/T, )' is therefore about
2 x 10'0 erg/cm' sec. While substantially greater
than the rate produced by the IVB nonlocality,
this is still two orders of magnitude below the
principal conventional mechanisms at a tempera-

ture of 109'K.
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