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We construct the Poincare generators for arbitrary-spin Bhabha fields. After showing that for high-spin

fields Hermiticity does not mean that the operators are self-adjoint, but rather satisfy Eqs. (2.16) and

(2.17) below, we observe that these generators are Hermitian in this generalized sense. We explicitly
demonstrate that the generators algebraically satisfy the associated Lie algebra for arbitrary
half-integer-spin representations, but only as an operator algebra on the fields themselves for integer-spin

representations. Specifically, of the six independent commutation relations [K, , K, ] = —i@'g&Jk is not
satisfied algebraically, and of the three dependent commutation relations [K, , 0] = iP,- is not satisfied

algebraically. By looking at the Sakata-Taketani decomposition of the Duffin-Kemmer-Petiau case, we

find that it is only the built-in subsidiary components, not the particle components, which need an

operator equation on the fields to satisfy the above two commutation relations. We generalize this

result and show that the particle components for arbitrary-integer-spin fields satisfy the commutation

relations algebraically. Finally, we comment on the interacting field case and problems associated with

high-spin interacting field theories.

I. INTRODUCTION

In paper I (Ref. 1) of this series we discussed
the C, P, and T transformation properties of
the Bhabha first-order wave equations for arbi-
trary spin

(' ~+ x) 4 = 0,

IJ P, J
= i& g»P»,

[Z, , K,. ] = i e, ,„K„,

[Ktv P&J =i5()H/c»,

[K, ,H] =iPi
v

[K;,K,. ] = —ie;,»8»/c.

(1.4e)

(1.4f)

(1.4g)

(1.4h)

(1.4i)

where the Bhabha algebra for representations up
to maximum spin 8 is defined by the equations' '
(with unity I added by hand for integer spin)

[[+v~ +v]~ +X] +v ~vk +v ~vX ~
(1.2)

( o vnI) =0.

[P, , P,. J=o,

[P;,H] =0,

[~,,H J =0,

[~~ ~g] =i&ay»~»

(1.4a)

(1.4b)

(1.4c)

(1.4d)

These include the Dirac' and Duffin'-Kemmer'-
Petiau' (DKP) equations as the special cases S =

&

and S = l. In paper II (Ref. 10) we discussed the
mass and spin compositions, the Hamiltonians, and
the general Sakata-Taketani reductions of these
equations.

In this paper, we will give the Poincare gener-
ators for the general Bhabha fields and prove that
they satisfy the Poincare commutation relations.
Specifically, if we denote the generators of space
translations, rotations, time translations, and
velocity translations as P, J, H, and K respective-
ly, then they must satisfy the following commuta-
tion relations among themselves:

P,. =P) = —i&, ,

~&iya(&i~&+ &s &y) = L'a+Sft i (1.6)

[We will hereafter set c =1 in Eqs. (1.4g) and
(1.4i). c»» 1 is useful when discussing expansions
in c' or nonrelativistic limits. Also, in the rest
of this paper we will use c = 5 =1. For a discus-
sion on the dimensions of Poincare generators,
see Ref. 11.]

Now, it is known that the nine Eqs. (1.4) a.re
not independent. In fact, one can easily show by
repeated use of the Jacobi identity that if one is
given the five equations (1.4a), (1.4e), (1.4f),
(1.4g), and (1.4i), then the three equations (1.4b),
(1.4c), and (1.4h) follow directly. ' Thus, only
the above-named five commutation relations, as
well as the sixth (1.4d), actually have to be
proved to show that the Poincare algebra is sat-
isfied. Further, one can give physical insight
into these six independent commutation relations.
Equation (1.4a) is a manifestation that space-time
is flat, Eqs. (1.4d), (1.4e), and (1.4f) show that
space is isotropic, Eq. (1.4g) "projects H out of

K," and actually it is Eq. (1.4i) which finally re-
presents special relativity.

The Bhabha generators which we will show sat-
isfy the Poincare commutation relations are

11
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yf =[l,. y. ]/(4i), i, j.k cyclic. (1.10)

Equations (1.7) are the half-integer- and inte-
ger-spin Hamiltonians which we derived in paper
II. The half-integer-spin Hamiltonian (1.7a) was
derived in Eq. (II5.2). The derivation was simple
since the half-integer-spin algebra matrices have
inverses. We demonstrated in Eq. (115.3) that this
Hamiltonian reduces to the Dirac Hamiltonian in

the case 8= ~. The integer-spin Hamiltonian
(1.7b) was derived in Eq. (II5.14), and we demon-
strated in Eq. (II5.15) that it reduces to the DKP
Hamiltonian in the case 8 =1. The operators Q

and 9, were derived and discussed in Sec. III of
paper II. The reader is referred there for a de-
tailed discussion of them, but we will also list
their more important algebraic properties when

they are needed, in Sec. V.
Equations (1.8) and (1.9) define the boost oper-

ators, which complete our definitions of the gen-
erators.

In Sec. II we wiI. 1 discuss the Hermiticity pro-
perties of Bhabha operators, and the Poincare
generators in particular. The way to properly
define Hermiticity for higher-spin algebras other
than the Dirac case has been subject to some con-
fusion since Kemmer' first pointed out the prob-
lem for spin 0 and 1. Qur discussion there will
concentrate on the origin of the confusion and the
resolution of the problem.

In Sec. III we will discuss the Poincare commu-
tation relations for the special cases 8= ~ and 1,
i.e., the Dirac a,nd DKP cases. We will find that
although the commutation relations are satisfied
as an algebraic identity for the Dirac case (which,
of course, is well known), this is no longer true
for the DKP case. There the commutation rela-
tions are only valid as operator equations on the
DKP field. In particular, the commutation rela-
tions (1.4h) and (1.4i) can only be satisfied by

8 =H(tl + i ) = (x4 (8 ' n + )I ) )

half-integer-spin representations (1.7a)

H H=(n) =Q(s Z+y} —S,(e n)a, [1+}t '(s a)],
integer-spin representations (1.7b)

and

(1.8)

(1.9)

Equation (1.5) is the standard quantum-mech-
anical definition of three-momentum. Equation
(1.8) is the total angular momentum, the two
separate pieces being the orbital and spin angu-
lar momentum. For example, in the Dirac case,
where n„= ~ y„, the spin piece of the angular mo-
mentum is the well known

using the consequent equations (II5.5) and 'or the
free field Eq. (1.1).

In Sec. IV we will take a detailed I.ook at the
Sakata-Taketani (ST}version'3 "of the DKP case.
We will find that although the Poincare commuta-
tion relations are now satisfied algebraically for
the "ST particle components" generators the "ST
subsidiary components" generators still only sat-
isfy the Poincare commutation relations as oper-
ator equations on the field. This illuminates the
origin of the operator equations needed for both
the particular DKP case and the general integer-
spin Bhabha case discussed later.

In Sec. V we will go on to general half-integer-
and integer-spin fieIds. The conclusions of Sec.
III will remain in the general case. That is, the
Poincare generators (1.5)-(1.9) satisfy the Poin-
care commutation relations (1.4) algebraically
for half-integer-spin representations, but only
as operator equations on the fields for integer-
spin representations. Qne ha, s to use the "con-
sequent" and/or free field equations to satisfy
the relations in the integer-spin case. However,
as with DKP, we show that particle components
of the integer-spin generators satisfy the com-
mutation relations algebraically.

We should emphasize here that there is nothing
surprising in the Poincare commutation relations
only being satisfied algebraically for half-integer
spin. In general it is sufficient to have only an
operator algebra on a field. The fact that one needs
an operator algebra on the fields for integer spin
is just one more aspect of the more complicated
and less fundamental nature of integer-spin fields
and representations. Qther aspects are the lack
of n„ inverses and the built-in consequent equa-
tions for integer-spin fields we have discussed
at length in papers I and II.

In Sec. VI we will conclude with a discussion.
This discussion will first go over our results and
then mention their implications for the Foldy-
Wouthuysen transformations on general Bhabha
fields which we will present in paper V." We
will also comment on what changes are involved
when the minimal electromagnetic substitution

is included. This will bring up two fundamental
problems associated with high-spin field theories:
(1) Introducing minimal electromagnetic interac-
tions often destroys the second-quantized field
commutation relations of high-spin fields; (2}
even in the c-number theory, introducing electro-
magnetic interactions (minima. l or higher multi-
pole, depending on the type of field) will yield
noncausal solutions for at least some high-spin
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field theories. Causality will be discussed in paper
15

II. HERMITICITY

As we mentioned in paper I, the Hermiticity re-
quirement for Dirac operators turns out to be that
the operators themselves are self-adjoint. This
is because the field adjoint operator, q4 of Eq.
(I3.47), for the special Dirac case is q, =2o, = y„
the inverse of the y, density operator (the fourth
component of the current operator}. That is,

(2.8)

(2.9)

Equation (2.8) is trivial when one remembers
that

icity condition is called "pseudo-Hermiticity, "
and is related to the metric g4 n4. This aspect
will be covered in more detail in paper V.")

Now let us look at the Poincare generators.
Clearly for both integer- and half-integer-spin
representations we have

[~, ~.p, ]' =(n, ~,p, ],
[n...~.J'=In, .~,J

&8) = g a,8ydr X X P PJ' J f~ j (2.10)

g g4 {246/d7

y'(2) 8yd~

(gD)'8y'd7, (2.1)

It was Kemmer' who pointed out that this is no
longer true for higher-spin algebras since, as in
the DKP case, one then has

'$4&40 I, 8& g . {2.3)

Therefore, the general Hermiticity requirement
we need is that in some sense

where the factor ~ is absorbed in going from the
explicit Bhabha to the Dirac field normalization.
Thus, for Dirac operators Hermiticity demands
that

{2.2}

Equation (2.9) follows from Eq. (I3.47) and the
equation [(lI3.40) ]

[[~;,o, ],f(~,)]=0. (2.11)

It is the Hamiltonian which brings us to the
problem Kemmer referred to. First note that
for the half-integer-spin Hamiltonian of Eq.
(1.7a), one again has that

[q, a,H(n+-,')]t = [q, n, H(n+ —,')J . (2.12)

However, for the integer-spin Hamiltonian (1.7b)
one has

[q4 o~H(n)] t —[q~ u~H(n) ]= ( B ~ n)(8, t), )

+ (q, 8,){B o. ) . (2.13}

Despite Eq. (2.13), our prescription (2.5) can be
maintained by observing that if one uses the wave
equation (1.1), its adjoint Eq. (I2.45), and Eq.
(II3.23),

[n,&{,8))]'=[0.&(o.,8))] . (2.4) @480=0, (2.14)

For the DKP case Kemmer suggested that the so-
lution would be to interpret &(a, 8}) as being either
n48 itself, or some symmetric combination, like
(2)(n,8+8o.,). He felt that it should be clear
which solution to use in any particular case.

However, we will now proceed to show that
there is a way to resolve this ambiguity and to
give a general prescription. The prescription
will be that &(a,8)) should be interpreted as

&(o'.8))= o'.8.

then one has that the "expectation value" of Eq.
(2.13) is zero. That is,

C'in. .H( )]' ~ = ~'[n. .H(. )]C (2.15)

One can understand this by observing that if
instead of using the entire integer-spin Hamilto-
nianH(n) of Eq. (1.7b), one uses the "particle
components" Hamiltonian of Eq. (II6.13),

z36-Q( ~B (y+X) —Q(B ~ n)tlo[1+X (B ' o)J ~

(2.16)

This will yield the results that Hermiticity for
half-integer-spin representations requires that

[n. o, 8]'=[a.~.8], 3= n+-'

then one has

[q, a, BCp]'=[@,o, XJ,]. (2.17)
(2.6)

while for integer-spin representations Hermitic-
ity will require the weaker condition

V'[n. ~, 8]'C=C'[n, ~.8]C, 3= n. (2-7)

The weaker condition for integer spin is a mani-
festation of the built-in "subsidiary components, "
as we show below. (More commonly, this Hermit-

Thus, the fact that the complete integer-spin
Hamiltonian has pieces left over when compared
to its (@~ a4) adjoint simply reflects the presence
of the built-in "subsidiary components" Hamilto-
nian, which we showed in paper II to have had no
physical. content beyond that which results from
considering the "particle components" Hamilto-
nian alone.
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By taking the expectation value of the complete
integer-spin Hamiltonian one removes these ex-
tra coupled pieces, and the physical result is that
of the "proper" Hermitian operator in Eq. (2.17).
Thus, the definition of Hermiticity given in Eqs.
(2.6) and (2.7) is physically consistent and can
be used throughout. %'e also note that the above
results hold when minimal electromagnetic sub-
stitution is introduced, at least for all the half-
integer-spin and DKP cases (see Sec. VI).

Finally, when one considers the boost gener-
ators, "one has analogous results. That, is, for
the half-integer-spin case one has

H=P, (s 'P+») —(~ 'P) P,
K,. = x, H t.t, -+[P„. P,.] .

By then using the DKP algebra

+~~ &.~u =

(3.8)

(3.9}

(3.10)

a fair amount of algebra wil. l verify that the gen-
erators (3.6)-(3.9) algebraically satisfy all the
commutation relations (1.4) excePE (1.4h) and
(1.4i). The reason for this is as follows.

Because the I3„have no inverses, to obtain the
generator H (Sec. I of paper II) it was first nec-
essary to derive from the free wave equation,

[ z) a K, (n + z. )J
' = [z4 a K, (n +. —,' )], 8 = n + —, (& ~ P+ m) &""'= 0, (3.11)

(2.18)

whereas for the integer-spin case one gets

[z), a, K,.(n)]t —[z), a, K,.(n)]=(S a)(z), 8,)x,

+x, (z), 8,)(s a),
(2.19)

4 [z), a,K (n)]z g=g [z), a, K, (n)]g, 8 = n

(2.20)

and, from Eq. (5.39) below, the particle compo-
nents of K,.(n) are (z),a,)-self-adjoint.

III. DIRAC AND DKP SPECIAL CASES

A. Dirac case

The Dirac case is, of course, well known. "
Just to quickly review, the generators, when
written in terms of the common Dirac notation

(y„=2a„, m=2)t ), are

p, =p,. = —ga, ,

1~»= —z&,»(x~', + ~ y yz)

H=y (8 y+ m),

K, =xtH —tP; +» [y4, y;]

By then using the explicit Dirac algebra

x„x,+w. w„=2& j, p

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

it is a short exercise to verify that the generators
(3.1)-(3.4) satisfy the Poincare commutation re-
lations (1.4) algebraically.

a set of consequent equations,

l)KP (s .p)p (3.12}

and then to use only one of them, namely A. =4.
Equations (3.11) and (3.12) a.re operator equations
on the fields. But since it is only the commutator
of K with itself which carries the entire content
of special relativity [remember, Eq. (1.4h) can
be derived from the other independent commuta-
tion relations], one might expect that this is the
only independent commutation relation which can-
not be satisfied algebraically. Further, one
might also expect that one could use the wave
equation and the remaining three pieces of the
consequent equations,

e; S""'=(e,p, p;
(3.13)

to satisfy (1.4i) as an operator equation, and thus
indicate where the rest of the content of Eq. (3.12)
needed for covariance is used. As we will see,
this is in fact the case, and it singles out a spec-
ial useful role for the consequent equations both
here a.nd in Sec. IV. (We should add that in Sec.
V B, when we discuss the general integer-spin
case, it turns out to be algebraically simpler to
use the free wave equation instead of the A. = 1, 2, 3
consequent equations. However, after noting that
the consequent equations come from the free wave
equation, one can satisfy oneself that one is effec-
tively using those pieces of the free wave equation
necessary to make the procedure covariant. )

Using only Eq. (3.10}, the algebraic results of
commuting K with H and with itself are

B. DKP case

%riting the Poincare generators explicitly in
terms of the DKP notation (p„=a„",m=x "')
gives

[K, , H] = zP, +Gt »

[K;,K, J
= —i@;,»J» —x; G, +x, G;,

where

(3.14)

(3.15)

P'. =Pg = 'E ~g

g»= —ze;,»(x»&i+ p' p&)

(3.6)

(3.7)

(1 p, ') (e,. s p-p,.)- p,.(1 —p, ')(a ~ p+ m)

(3.16a)
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-=([Z, ,H] —if', ) . (3.16b) 8y= Y(1-8}q, (4.5)

This shows that Eqs. (1.4h) and (1.4i) are not
satisfied algebraically. Although (3.14) can be
derived from (3.15), it is much easier to obtain
(3.14) first. Given Eq. (3.14), Eq. (3.15) is most
easily obtained by explicitly writing K, in the
form of Eq. (1.8) and commuting it term by term
with K;.

Now consider the free equation (3.11) and the
x =1, 2, 3 consequent equations (3.13}. Multiply-
ing each on the left by (1 —P,'} and using an alge-
braic result from (3.10),

(1 —P.')P. = o,
one has

(3.17)

and we have the operator statements

[K;,H] y =iP; g (3.21)

[&i &/] 0 = ~&i/&~a t)' (3.22)

As already mentioned, in Sec. V B we will find
that the results of this subsection generalize to
arbitrary integer-spin Bhabha fields. That is,
all the commutation relations (1.4) are satisfied
algebraically for arbitrary integer-spin Bhabha
fields, except (1.4h) and (1.4i). These are only
satisfied as operator equations for integer-spin
Bhabha fields.

IV. ST REDUCTION OF THE DKP CASE

(1 —P,')(6 ~ P+ m) yo" = (1 —P,')(a ~ P+ m) ttD '=0,

(3.18)

(1 —P,')(a, a PP,.) ~'"'=0, i =1, 2, 3 (3.19)

so that

(3.20)

then the operator 8 can be decoupled into two dis-
joint pieces:

88$ = [88(1+X)8]8g, (4.6a)

(1 —8)ey =[(1 —8)8(1+ Y)(1 —8)](1 —8)q. (4.6b)

8 = P,
' = (Pg')', (4.7)

and from Eqs. (II2.16}and (II2.15) the decoupling
operators X and Y are

X= —i(p P)m-', (4 8)

," '(- ~ P) P «
p2

[p2 ~ m2]1/2

(4.9a)

(4.9b)

We have been calling the fields and operators as-
sociated with P4' the "particle components" and
the fields and operators associated with (1 —P,')
the "subsidiary components. " More specifically
still, if 6 is any of the DKP Poincare generators
[Eqs. (3.6)-(3.9)], then the particle components
of 8are

This is the Peirce decomposition discussed in

paper II.
From the above we might only say that any op-

erator can be decomposed into two disjoint pieces
associated with the square brackets in the oper-
ator field Eqs. (4.6). However, even though Eqs.
(4.6a, ) and (4.6b) were derived by and are oper-
ator equations on the fields, it is a consistent
statement to consider the decoupled operators
to be defined by the square brackets alone which
can then operate on the associated decoupled
fields 8q and (1 -8)y, respectively.

Specifically, and DKP operator can be decom-
posed into two disjoint pieces. The idempotent 8
is easily found from the characteristic equation
(1.3),

A. Particle and subsidiary components of DKP generators
6&'&=P,'6[I —t(p P)m-']P, ', (4.10)

Any operator 6 can be written in the following
form:

6 = 868+ 88(1 —8) + (1 —8)68

+ (1 —8)@(l —8), (4.1)

where 8 is again any operator. If 8 is idempo-
tent, then

(1-8)'= (1-8),
8(1 —8) =0.

(4.2)

(4.3)

Furthermore, if there exist decoupling equations
such that

g(P) g p
2

Ht '=mP, +P,(p P)(p P}m ',
K, =x;H —tP~ —iP P;(p ~ P)m

(4.12)

(4.13)

(4.14)

Similarly, the subsidiary components of a DKP
Poincare generator 6 are

8"'=(I -P;)t) I+ . ' ' (p P) (I-P;),

or (changing to the now more convenient notation
e('~ = x, )

(4.11)

(1 —8)g =X8$, (4.4) (4.15)
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or

J". =J,(1 —p'),

H(S) g (p ( )(p t )(1 p 2}
P p2 4

~(S) . ~(S) ]p(S)
'l

(4.16)

(4.17)

(4.18)

(4.19)

The peculiar properties associated with the op-
erator Hi ' have been discussed elsewhere (Sec.
IIB of paper II). What is of interest here is first
that both the particle and subsidiary components
of the DKP Poincare generators can be defined

by the formal procedure above. Second, being
so defined, each individual set formally satisfies
the Lie algebra, of the Poincare group in a way
that is understandable.

Bhabha fields and adds to our understanding of
the difference between integer- and half-integer-
spin Bhabha fields. Also, from the viewpoint of
paper II,"we might already have suspected that
the reason for the difference between the DKP
and Dirac cases [that is, the DKP commutation
relations (1.4h) and (1.4i) can only be a satisfied
a.s operator equations on the fields] is that the
P)„having zero eigenvalues, do not have inverses
and therefore have the associated "infinite mass"
subsidiary components. We have shown this to be
true. The ST decomposition decouples the sub-
sidiary components from the particle components,
and when this is done we find that the particle
components behave just like the half-integer-spin
field (which contains only particle components) in
that all the commutation relations are satisfied
algebraically. In this section the need for the op-
erator equations in integer-spin Bhabha fields
has been explicitly associated with the subsidiary
components.

B. The Lie algebra

Having the ST particle-components Poincare
generators (4.11)-(4.14) and the subsidiary-com-
ponents generators (4.16)-(4.19), one could just
take them and explicitly verify that they satisfy
the Lie algebra commutation relations (1.4), ob-
taining the conclusions we will come to below.
However, the simplest and most illuminating
method is to take the DKP commutation relations
themselves and decompose them into particle and
subsidiary components. This is done in the Ap-
pendix.

The results of this analysis are that the particle-
components generators now satisfy all the Poin-
care commutation relations algebraically, where-
as the subsidiary components remain the ones
which only satisfy the commutation relations
(1.4h) and (1.4i) as operators on the fields. Spec-
ifically, from Eqs. (A33), (A36), and (A37} in the

Appendix, one has

(4.20)

(4.21)

(4.22)

Further, it is also shown in the Appendix that
the consequent equations reduce to an identity
for the particle components, while they remain
nontrivial for the subsidiary components. In fact,
it is the subsidiary components of the consequent
equations which allows the commutation relations
(1.4h) and (1,4i) to be satisfied as operators on
the fields in the subsidiary case.

In conclusion, these results illuminate what we
will discover in Sec. V about arbitrary-spin

V. POINCARE COMMUTATION RELATIONS
FOR GENERAL BHABHA FIELDS

A. Half-integer-spin Bhabha fields

For the general half-integer-spin Bhabha fields,
the commutation relations (1.4) are all satisfied
algebraically, as wa. s the case for the specific
spin-z Dirac case. Explicitly demonstrating this
involves some extremely complicated algebra.
However, there are some useful tricks which
greatly aid one in this demonstration, and we
list them below.

First recalling the fundamental algebraic double
commutation relation statement (1.2),

(1.2)

we note the following:
(i) One can use the double commutation relation

(1.2) withparticular values of p, v, and A. to either
reduce products of three n's to a single u, or
else to change the orders of particular products
of n's. This latter operation often is helpful of
itself or in conjunction with trick (ii), which fol-
lows.

(ii) Especially in commutation relations involv-
ing J's and K's, complicated sums of products of
three and four u's will often occur. By using the
algebraic identities below, these sums of products
can be reduced to combinations of the double com-
mutation relation (1.2), and therefore to single
sums of n's:

(5.1)
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(5 2)

QP~Q~ ~&Pro QP~Au ~OtP Qa

+ap ay~ nv aa

[t... t,.] = [[u„,u.], [u, , u. ]1

= [[n „,u, J, u p]n. + n p[[u „,n, J, u. ]

Cl~, Q~ ) A~ Qp —Ot~ A~, Ap, Hp

In the rest system the 8,. (S) project out the mass
states )t/j for ja0, and project out the subsidi-
ary "infinite mass" components for j =0. In Eqs.
(3.21) and (3.22} of paper II we also defined the
operators $,. (S) and Q(S) by

0;(S)u, =n, &, (S) =-8, (S}, Owj =1, 2, . . . , S
(5.8a)

(5.3)

(iii) In commutation relations involving e,,„
either explicitly or because they involve J„
which contains e;,.„ in its definition (1.6) in the
form

8O(S) C, (S) =0,

Q(S) = + R,, (S) .
j=1

(5.8b)

(5.9)

Jl, =Ei,.„A;B (5.4)

J~=A;B,. —B,. A;, i, j, k cyclic. (5.5)

(iv-a) In commutation relations involvingH
and/or K, where the operators contain (n„) ', a
useful device is to multiply terms on the left by
I = (u~ ')u~ and/or on the right by I = u~(u~) '.
Then one can use tricks (i) and (ii) to change the
positions of the z4's in the I operators so that
they cancel the (n, } ' matrices in the H and K
operators.

the above tricks will often be easier to use if one
just dispenses with the e's, and writes the oper-
ators in an explicit (i, j) index form, like

&480 =8ON4 = 0, (5.10)

n4Q = I —80, (5.11)

Deleting the label S for a particular Bhabha
algebra, these operators, specifically Q and 8„
are the quantities in the integer-spin Hamiltonian
(1.7b). We therefore list a, series of equations
involving Q and 8, which were derived in Sec.
IIID of paper II, and which constitute a new trick
for integer-spin calculations in place of (iv-a).

(iv-b) For integer spin, in place of (iv-a) the
following equations are useful for explicitly ver-

ifyingg

the Poincare commutation relations:

B. Integer-spin Bhabha fields
8OQ =0, (5.12)

6, (s) =
H(s

.
)

II (u, ' —&'),
II(S,I)

(5.6)

Demonstrating the commutation relations (1.4)
for the integer-spin Bhabha fields is even more
complicated than for the half-integer-spin fields,
simply because the integer-spin Hamiltonian
(1.7b) is much more complicated than the half-
integer-spin Hamiltonian (1.7a}. To perform the
demonstration, one first proceeds with the alge-
bra as in the half-integer-spin case. However
although one can still use tricks (i), (ii), and (iii),
one cannot use (iv-a). The reason for not using
(iv-a) is, of course, that (n, )

' does not exist for
integer-spin fields. In its place one has the oper-
ators Q and 8„which were defined in paper II"
and which take the place of (n, )

' in defining the
mass content of the fields.

We first quickly recall from Eq. (II3.8) the de-
finitions of the operators 8,.(S):

0 =H, u~(I —u, '}, (5.16}

0 =80nq8, , (5.14}

0 = S,u ~(u4 —Q), (5.15)

o=[[u;, u, ), &.1, (t, j)&4 (5.16)

o = [[u;, n, ), Ql, (~ j)& 4. (5.1V)

Equations (5.16) and (5.17) follow immediately
from the definitions of Q and 8, coupled with the
useful special case of (1.2),

(t, j)« (5.18)

Having the tricks (i), (ii), (iii}, and (iv-b), one
can explicitly verify that all the commutation re-
lations (1.4) are satisfied algebraically excePt
(as for DKP) the relations (1.4h) and (1.4i).

Starting with (1.4h), one finds, after algebraic
manipulation, that

H(s, j) = II (j ' - I') . (5.7) [K, ,H] = —[H, x, JH+[t4, , H]

can be put in the form

(5.19)
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[K, ,H] —iP, =.[Qo., a, +a,n, Q —. Qn, Q —2(1 —8,)o,](s ~ o. +y)

+y '8,[(S a)a; —(e a)a, n, o'.,+o., (S o}](S a+y)

+[(1-8.)~, -X '8. a&(s ~)-X 's, ]80(s o'+X)

=G,
(5.20a)

(5.20b)

[K, ,H] y(S = n) = iP, y(S = n) . (5.22)

Finally, note that with our generators the result
(3.15) coupled with (3.16b) is in general true.
That is, given that H is not a functional of x„, ex-
plicitly putting K; and K, in the form of Eq. (1.6)
into the left-hand side of Eq. (1.4i) yields

[K, , K.J = —fe....Z, +x, jfP,. -[K, , H]}

—x, (iP (
—[K;,H])

;)p J~+x; G, —xy Gs (5.23)

Since the DKP case is a special case of (5.20),
we know that we must use at least the free wave
equation to obtain our final result. For DKP it
was also useful to use the A. =j = 1, 2, 3 consequent
equations, but these, one must remember, come
from the free equation and the DKP algebra. How-
ever, for the general Bhabha integer-spin case,
since the consequent equations (II5.5) are rather
complicated, it turns out to be easiest to work
with the free equation alone.

Writing the free equation (1.1) in the form

(s ~+x)t= 6. ~4-0 (5.21)

and putting it into the right-hand side of Eq. (5.20)
operating on the field, one finds with the aid of
(i)-(iv) that the three square-bracket terms in
(5.20), which as a result of Eq. (5.21) are now
all multiplied on the right by n4, are then all in-
dividually zero. Therefore, we ha ve

st &=8,8(I+X,)8„
S~ =1-8„
X~= —8.(s o)X '

(5.25}

(5.26)

(5.27)

Therefore, the particle components of the arbi-
trary integer-spin generators are

Pt &=P,(1-8,),
Jt '=Jq(I —8,),
H"'=[Q(s ~+X) -Q(s '~}8.X '(s o)](1-8.}

=Q{' 'o+X) -Q(' '98.[I+X '(S 'o)]

(5.28)

(5.29)

(5.30}

K, = x H —tP '+ (I —8,)[o.'„n;](I —8,)

—
X ~. o.,8,(S ~){I—8,). (5.31)

Now one can directly follow from the beginning
of the Appendix, with $

= Pand Eq—s. (5.26) and
(5.27} substituted for the first lines of Eqs. (A7)
and (A8). One proceeds to Eq. (A17), showing
that the first five independent commutation rela-
tions [in fact, all the first seven Eqs. (1.4a)-
(1.4g)] are satisfied algebraically for the parti-
cle components.

Going on to the generalization of Eq. (A16),
where now G; is given by Eq. (5.20), one can
show that

particle components 9 ' of an integer-spin opera-
tor 8 are given by

Thus, putting (5.20) and (5.22} into (5.23) gives G(&) PI (5.32)

[K;,K, Jy(3 = n) = .—f ~ ...Z, q(S = n) . (5.24}

C. Particle components of integer-spin Bhabha fields

From the results of Sec. IV, one might suspect
that the particle components of the Poincare gen-
erators for arbitrary integer-spin Bhabha fields
no longer need the operator equations on the
fields, but rather satisfy the Poincare commuta-
tion relations algebraically. Indeed, this is the
case. One could show this by direct algebraic
manipulation, but an easier way is to use the
method of the Appendix which directly general-
izes from the DKP case to arbitrary integer-spin
Bhabha fields.

By recalbng Eq. (II6.12), one first has that the

+ &4 a3~O+HO ni n

[&,8„K,]=8,{-(s o)~,x,[I+(s ~}X-']

(5.33)

+~ ~ (s '~)x ')

+&.(s &)8a (s ~)X '

One can then show that

(5.34)

Actually, this demonstration is algebraically
similar to showing that G; p =0 after Eq. (5.21).
There the trick of having a, multiply G; on the
right was used. Here, multiplying G; on the
right by (1 —8O} = Qn4 is useful.

Continuing, the equations which are generaliza-
tions of (A20) and (A21) are

[8,K;]=x;]o,(S a)8, +8,{& a)o.,[I+{6 o.')y '])
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[(1+X )g, K,.]=a (8 &)8+,.

+ n, (~ n)8~;(~ n)y ',
(5.35)

which in the special DKP case trivially reduces to
the sum of Eqs. (A20) and (A21). Combining all
the above, algebraic manipulation using Eqs.
(5.10)-(5.18) allows one to show that

[A-„[(1+X,)a„Z,])( '=0,

meaning we have demonstrated that

(5.36)

(5.37)

Because of its dependence on the other commuta-
tion relations, this also means that

[fftP ( ff(P (] P(P&
t

(5.38)

This completes our proof that. the integer-spin
particle-components generators of Eqs. (5.28)-
(5.31) satisfy the Poincare commutation relations
algebraically and further elucidates the role of
the subsidiary components of integer-spin Bhabha
fields.

In this last respect, one can verify that the par-
ticle-components generators (5.28)-(5.31) now all
satisfy the Hermiticity condition (2.6) instead of
the weaker condition (2.15). Tha, t is,

[n, o(. &"']"=[(} ~ 8"'] (5.39)

VI. DISCUSSION

In this paper we have shown that the Poincare
generators for the general Bhabha. field defined
in Eqs. (1,5)-(1.9) do indeed satisfy the commu-
tation relations (1.4). For half-integer-spin re-
presentations these commutation relations were
satisfied algebraically, whereas for integer-spin
representations they [specifically (1.4h) and (1.4i)]
were only satisfied as an operator algebra on the
fields themselves. One can understand this last
result. Remembering that (1.4h) is dependent on

(1.4i), and (1.4i) contains, as we noted earlier,
the content of special relativity, one appears to
be saying that the operator algebra on the fields
is necessary in the integer-spin representations
because these fields contain built-in subsidiary
components. In fact, from our detailed discus-
sions of the ST decomposition of the DKP case
and the general integer-spin particle components
one can see this is true. There we found that the
particle-components generators satisfied the com-
mutation relations algebraically, but the subsidi-
ary components only satisfied (1.4h} and (1.4i) as
operators on the fields.

We wish to point out that although our work in
this series has concentrated on representation-

independent analyses, any particular Bhabha field
can be studied by using known explicit formulas
for arbitrary representations of the so(5) ma-
trices."" Also, we remind the reader that
there exists a vast literature on the Poincare
structure of high-spin field equations, of which
we just cite a, few examples. "" (Also, - see be-
low. )

A future step is to show that there exist "uni-
tary transformations" which diagonalize the gen-
erators we have derived, and to show that these
diagonalized generators have their particle and
antiparticle components "separated. " That is,
we will soon, in paper V,"perform Foldy-
Wouthuysen transformations" on the generators.
This process is more complicated than in the
Dirac case, primarily because of the nature of
the field inner-product space, as was indicated
in our discussion of Hermiticity in Sec. II of this
paper, but also because of the presence of multi-
ple-mass solutions.

However, first the question arises as to what
happens to the results of this paper when minimal
electroma, gnetie substitution is introduced into
the problem. ' Then the best way to proceed is
via a Lagrangian second-quantized technique ~

(Remember, however, that then we would be
talking about the entire system of coupled fields,
as the interacting fields can transfer energy and
momentum, such as in the Compton effect. ) Hav-
ing obtained the coupled field generators, in prin-
ciple the most straightforward way to proceed
would be to directly verify that they satisfy the
Poincare commutation relations. However, sim-
ply by first observing how complicated our free
case demonstration was, and then by observing
how much more complicated the Bhabha gener-
ators become in the presence of electromagnetic
interactions (an example is Kemmer's form' of
the meson pieces of the DKP coupled generators
I' „and M;&), one can quickly satisfy oneself that
although this would be an impressive exercise,
it is probably not the way to proceed.

The clearest and most pragmatic way to proceed
probably is to follow the discussion of, say, Jauch
and Rohrlich" for the Dirac case. In fact, corn-
bined with our results here, the Jauch and Rohr-
lich argument may carry over directly. The in-
teraction Lagrangian gn~A~g contains no deriva-
tives, so that, as with Dirac, the momentum op-
erator for the coupled fields has the same form
as for the free fields. Therefore, since one
knows that the Poincare commutation relations
are true for the free fields, if one can also show
that the commutation relations for the second-
quantized Bhabha fields g and g are preserved
for arbitrary spin in the interacting case, this
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will imply that the Poincare commutation rela-
tions (1.4) remain true in the second-quantized
interacting case.

Showing that the field commutation relations
are preserved for high-spin Bhabha fields is im-
portant in its own right. Johnson and Sudarshan"
(JS) long ago showed that they are not necessarily
preserved. In particular, they found that the
standard equal-time (anti-) commutation rela-
tions and relativistic covariance are not compati-
ble for certain second-quantized spin--', fields
with an external minimally coupled electromag-
netic field. They found this property for both the
Rarita-Sehwinger" spin- —,

' field and a mixed spin
(a and ~) field invented by Bhabha" and discussed
by K. K. Gupta. " However, as has been emphas-
ized, ""this mixed field of Bhabha is not a par-
ticular case of the general Bhabha fields we have
been discussing. It is another field. For exam-
ple, the spin--,'Lorentz-group content is not that
which we discussed in detail in paper II,"but
rather that of the Rarita. -Schwinger (RS) field. ~o

Thus, as Wightman" has emphasized, it is of
interest to discover which field theories preserve
the field commutation relations and which do not.
One spin- —,

' field which fails to do this is that of
S. N. Gupta. " S. N, Gupta and Repko" have also
proposed that the difficulties in the RS formalism
can be removed by using a nonstandard definition
of the canonical field variables. However, Main-
land and Sudarshan" have disputed the significance
of this result by constructing RS Poincare gener-
ators and using them to transform the interacting
field variables covariantly. Their claim is that
this shows the normal Rarita-Schwinger problems
are not due to using incorrect quantization (i.e.,
using the wrong canonical field variables). But
in any event, it: clearly is of interest" "to study
whether general Bhabha fields have the JS prob-
lem.

W'e should also mention a recent and related
discovery concerning problems with high-spin
interacting field theories, even in the c-number
theory. Velo and Zwanziger" discovered that
noncausal solutions result when minimal electro-
magnetic substitution is introduced into the Rarita-
Schwinger spin--,' theory and the tensor spin-2 the-
ory. They also found that the spin-1. Proca sec-
ond-order field equation has noncausal solutions
when an electric quadrapole interaction is intro-
duced, but that minimal electromagnetic coupling
caused no problems in the solution for spin-0 or
spin-1 second-order fields equations.

Thus the question arises as to what happens
when interactions are introduced into general
Bhabha fiel.ds."' %|ghtman~ has partially an-
swered this question by showing that the DKP

spin-0 field has noncausal solutions with dipole
interactions, and that the DKP spin-1. field has
noncausal solutions with an electric quadrapole
interaction (just as for Proca). However, it re-
mains an incompletely answered question as to
whether causality breaks down when minimal elec-
tromagnetic substitution is introduced into an

arbitrary- spin Bhabha field.
We will discuss both the JS and the c-number

problems ~n paper IV."
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APPENDIX: ST GENERATORS AND COMMUTATION
RELATIONS

Reca11 from Sec. I that there are only six inde-
pendent commutation relations among the gener-
ators of the Poincare group. " Further, from
See. IIIB the rxlgeb~aic results for these six com-
mutation relations in the DKP case are

[P, , P, ] =0,

[~,~, ] = i&,»~»,

[J;,P,. J
= ie;,»P»,

[z, , ff, ] = i ~ ...z, ,

[Z, , P, ] = i5,,.ff,

[K;, ff, J
= - i ~;,» 4» —x; G,. +.»;,. G, ,

(A1}

(A2)

(A4)

(A5 }

where the DKP Poincare generators are given by
Eqs. (3.6)-(3.9) and G; is given by Eq. (3.16).
Next, note that both the particle and subsidiary
components of an operator 6 have the same form:

6&'-' = a, 6{1+X,)e„,

where ( =P, S,

(A7)

(A8}

—i(p ~ P}m-' (=P

. (m+ f3~Ep)
)p2

(A9}

Thus, if 6, and 6, are any two DKP Poincare
generators, then the ( components of the commuta-
tor of 6, with 62 can be written as
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[e„e,]('-)= [e('-), e(')] -(e„[a„e,Jj
'"

-(e„[x 8, e.]j'z) . (A10)

[8., K;1= ((p. P), P.j;, (A20)

[Xz az. , K;] = —i (p ~ P)P, x; —P~(p ~ P)x;(p ~ P )zzz

Also, by interchanging 1 and 2 and reversing the
order of the commutators in 1 and 2, and thus it is straightforward to prove that

(A21)

[e„e.]"-' = [e(",e("1+(e., [az e Jj"-'

+(g, [x,a, , e, ]j«&. (All)
(K, , [as, K;]j( )+(K, [X 8,K;Jj( ) =0. (A22)

What is interesting about Eqs. (A10) and (All) is
that if 6, or 6, are such that either one satisfies
the conditions

[8„e,] = [X&8&,e„]= 0, r = 1 or 2

then

[e e ](z) —[e(n eH)]

(A12a)

(A12b)

and the DKP commutator between 6, and 6, trivi-
ally splits into two disjoint pieces, $ =P and E

=S
Now look at the first five independent commuta-

tion relations given in Eqs. (Al)-(A5). Note that
each contains either P or J in the commutators.
But both P and J satisfy Eq. (A12a). (For P this
statement is obvious. For J, if it is not imme-
diately clear, note that the X& contain the scalar
products p p and p P, so that either directly or
using the commutation relations, the result holds. )
Therefore, regardless of the ultimate form of
the generators P',.", J,.~', H~'-', and K~'-, one has
by inspection that both the particle and subsidiary
components of the DKP Poincare generators sat-
isfy the first five independent Poincare commuta-
tion relations algebraically. That is,

Consequently, by Eq. (All), the last independent
commutation relation for $ =P becomes

[K(P) K(P)] — z'& J(P) (A23)

From Eqs. (3.16) and (4.15) one finds that

G;'" = z[(P P)P PJ(1 —P.-') .

Also, with

[8., K;]=- ((6 P), P.j.;,
(A25)

(A26)

[Xsas, K;]= &,
' ' (p p)(p P}P,x;

(zzz+ P, E~)

—(p P)P. x; ™&,' ' (p P)

—im P~ x; s~ ~ (p ~ p), (A27)

This implies that the particle-components gener-
ators defined in Eqs. (4.11)-(4.14) satisfy the en-
tire Lie algebra of the Poincare group alI, ebrai-
callg. ,

Now consider Eq. (A6) for ]=S. The subsidiary
components of this equation are

[K;,K.] = —i@;. J( ) —x G( )+x. G( ' (A24)

[P('), P,'."-)] = 0,
[J(z) J(t)] —z e J(z)

[J(z) P (6)] —z &, P &z)

[J(~.) K(.)] —z'e K(.)

[K' ', P,"-'I = z 5;,ff"),

(A13)

(A14)

(A15}

(A16)

(A17)

one can eventually show that

(K, , [8„K,]j ")+(K, , [X,a, , K;Jj "'

=z(p P)x, , [(p P)P;-P;](1-P,')

where E =P or S.
The last independent commutation relation, Eq.

(A6}, will not be as easy to work since K does
not satisfy Eq. (A12a).

Consider Eq. (A6) for )=P The partic. le com-
ponents of this equation are

-(~-i). (A28)

Equations (All), (A24), (A25), and (A28} then
yield

[K. K ] = —ie, J"'+ (p p) —x G
I

[K;,KJ' '= —ie J ' —xG '+x G' '

(A18)

1(,p)
(P P G(s)X.

But from Eqs. (3.16) and (4.10) it is easy to show
that

(A19)

It is also easy to show that

(A29)

Thus, the subsidiary-components generators de-
fined in Eqs. (4.16)-(4.19) do not satisfy the Lie
algebra of the ~oincare group algebraically but,
as we will see momentarily, only as an operator
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equation.
Before continuing, note that in this case the com-

mutator of K',. andII can be derived from Eq.
(A29) in exa.ctly the same way" that it is derived

in the absence of the additional terms depending
upon GI '. Form the commutator of Eq. (A29)
with PI', ' and use the Jacobi identity with Eqs.
(A15) and (A17} to yield

I

[ff(s) ff(s)] 'p(s) (P ( (P P 1 g(s) i, 5 ) [ff(s) H(s)] p(s) (P P (P P) 1 t (s) [
i 1 i p2 i ]

i&
]

i & i p2 j

Since i, j, and k are arbitrary,

[ff(S) ff(S)] p(S) I (P P)(P () 1 G($)
p2 i

(A31)

or

g(s)q 0
i

(A35)

Putting Eq. (A35} into Eqs. (A31) and (A29) imme-
diately yields the predicted results

Up to this point we have seen that the subsidiary-
components independent commutation relation
(A29) which corresponds to (1.4i} and the depen-
dent commutation relation (A31) which corres-
sponds to (1.4h) are not satisfied algebraically.
However, we will now show that they are satis-
fied as operator equations on the fields by find-
ing the subsidiary components of the consequent
equations (3.12). For A. =4, Eq. (3.12) reduces to

[zI",H&" ] g, zpi=" y, ,

(A-I', Z, ']q, =

(A36)

(A37)

The particle components of the consequent equa-
tions (3.12) are also of interest. They reduce to
the identity

(A38)

(A39)

8,"'0 =-E,(P )i)(P 0)P '(l-P.'}0.
H ~gs

0s-=(1 —ii.') 0,
while for A. = i =1, 2, 3, it yields

P,'"~. =(p ~)e;(1-~,')&, ,

(A32)

(A33}

(A34)

where -8, has been replaced by H ' of Eq.
(4.13) in order to simplify the results for X=1,2, 3.
Thus, the particle components are not burdened
by a consequent equation, so that one could have
expected that the particle-components generators
would satisfy the Poincare commutation relations
algebraically.
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