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Beginning with the Bhabha first-order wave equation of maximum spin 1 [the Duffin-Kemmer-Petiau

(DKP) equation], where Sakata and Taketani (ST) separated out the "particle components" from the

built in "subsidiary components, " we derive for the first time the Hamiltonian equation for the

"subsidiary components, " and show that its solution is an identity in terms of the particle-components

solution. We then derive a set of general inverse and ST operators for arbitrary-spin Bhabha fields.

With these generalized operators we can discuss and understand the mass and spin composition of a

general Bhabha so(5) field, it being a particular sum of [2 && {2S + 1)] components for each particular

mass and spin (S) state, as well as built in "subsidiary components" for integer spin. We then can use

these general inverse and ST operators to (a) derive the general Bhabha Hamiltonian for arbitrary spin,

{b) decouple the "particle components" from the "subsidiary components" in the Hamiltonian equations

for integer spin {where, as was the case for DKP, we find that the Hamiltonian "subsidiary

components" solution is an identity in terms of the particle-components solution), and (c) decouple the

S + ~i (g) different mass states for half-integer (integer) spin. We discuss the physical implications of
this observation and other aspects of our results.

I. BACKGROUND AND INTRODUCTION

The Bhabha' ' first-order wave equations for
particles of arbitrary spin are given by

The above combined with the Cayley-Hamilton
theorem implies that the n„satisfy the character-
istic equation

(s n+lt)y=o II (n„—nI) = 0 .
n= -8

(1.5)

where g is either an integer or half-integer mul-

tiple of the mass, and the n„satisfy the algebra
(with unity I added by hand for integer spin)

[ [np~ nu] ~

nial

np ux nu

(1 2)

n~ ——j~, =-J,~, Z~, = —i[n„, n, ], Z„=O,

(1.3a)

[Jgb, +»d] ~ (5 CIM +5M'Iac bc ~a» a» ~bc)

(1.3b)

Ju~=- Jt„, a, b, =1, 2, 3, 4, 5 (1.3c)

meaning that the irreducible representations of

the n~ algebras have dimensions d, (8, S) labeled

by two numbers, S and S both integer or half-in-

teger, such that

[Our n„matrices will be self-adjoint, we will use
the metric ~„„relating four-vector quantities
x„=(x,ix,}, and S ~ n =8 qn~. ] The n„can be con-
nected to the algebra so(5} by the identification' '

2 1 1 2 1
n~ 4 4y -4 D. (1.5)

Combined with (1.2) this gives the Dirac algebra

r, r. +r, r„=2&„. .

For the ca.se 8 = 1 one has d, (1, 1) = 10 and d, (l, 0)
= 5, i.e., the spin (S) 1 and 0 representations of
the DKP equation, e„=P„, y =m, and the charac-
teristic equation is the well-known DKP relation

n„(n„' —1) -=P„{P„'—1) =O . (1.8)

Equation (1.8) combined with (1.2) gives the DKP
algebra

ln Eq. (1.5), the unity operator I technically must
be added by hand for integer-spin representations. '
Having noted this, we will use I and 1 interchange-
ably.

In the special cases of S =-,' and 1 the above sys-
tem reduces to the Dirac and Duffin-Kemmer-
Petiau (DKP)»' ' first-order wave equations. For
the case 8 =-, one has d, (-,', —,') =4, n„=-,y„, y =2m,
and the characteristic equation is the well-known
relation

S~S~O,
d, (8, S) =~» (28+3) (2S+1}

x[(8+1)(8+2) —S(S+1)J

(1.4a)

(1.4b}

Pj PvP), +P xPvPj =P }&jv+Pj &vz

Before going on, note that the Dirac equation
has [(2S+1)x2 (for particle-antiparticle)] com-
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—B,g =Hg = EP = [y~(y 5 +m} + eAp] g . (1.11)

However, the DKP equation has more than [2(2S
+1)J components in both the S = 1 and 0 represen-
tations. These remaining components are built in
subsidiary conditions which, however, do not have
to be put in externally as with other high-spin
formalisms. Also, because the DKP character-
istic equation (1.8) has some eigenvalues which
are zero, the P „do not have inverses, so that the
Hamiltonian equation must be obtained by using
the fourth component of the "consequent equations"
[Eq. (5.6) below with the minimal substitution
(1.10)] to yield'

PP4- P4i3

g
+mP, +eA,

(1.12)

ponents. Further, the members of the algebra,
y„, have inverses (themselves), so that one can
easily form the Hamiltonian equation, including
the minimal electromagnetic substitution

(1.10)

8 =half-integer:

That is, for S)1 the Bhabha system has multiple-
mass solutions. For example, when 8 is —,

' or 2
one has

y=2m, m, 8=2 .

(1.18}

(1.20a)

(1.20b)

(1.20c)

(1.20d)

to the DKP Hamiltonian equation. That is, by
writing

[The exponential part of g for a particular mass
state is' e""*, where P(j ) P(j ) =-y'/j'. ]

Returning temporarily to the DKP system, Sakata
and Taketani (ST)' ' observed that the Hamiltonian
formulation could be decoupled into two separate
equations by applying the operators S and (1-4),
where

ze
&pp(P p P~p p

—6p, Pv), (1.13) E = E(s)+E(-1 -s), (1.21)

[s„,s, ]=—feF„, . (1.14) H =sHs+SH(1 -s}+(1 -s)H s+(1 -s)H(1 -s),
(1.22)

Note that we also could have derived the Hamil-
tonian equation (1.13) by using the "first decou-
pling equation, "Eq. (4.14) of paper I,

one can rewrite the Hamiltonian equation as

E[sg] = [sH s +sH(1 -s) J g, (1.23)

(1.15)

In fact, in Sec. V we will use a combination of
both methods to obtain the Hamiltonians for higher
integer spins.

For 8&1 the situation becomes quickly more
complicated. First, from the characteristic equa-
tion, one sees that the algebra involves products
of n„up to order (28+1). (The explicit algebras
for 8 = z and 2 were derived by Madhava Rao. ')
Further, from (1.4a) each 8 algebra contains spin
representations of S =8, 8 —1, 8 —2, . . . (—,

' or 0 as
8 is a half-integer or an integer). Finally, by
inserting (1.1) into S,' '' times Eq. (1.5) taken in
the rest frame, one can see that for 8 &1 the free
Bhabha equation will no longer satisfy a single-
mass-value Klein-Gordon (KG) equation, but rather
will actually satisfy' the following equations.

8 = integer:

(1.16)

sH(l —s) g =56,s[sg],

( I -S ) Hsg = (I -S) 6,(1 - S) [(I - 4) g],
(1.25)

(1.26)

where 6, and 6, are to be determined. This is a
Peirce decomposition. ' The [(2S+1}x2] "particle
components" would be projected out by g. The
remaining "subsidiary components" would be pro-
jected out by (1 -S).

Since the number of particle components is 6 and
2 for the spin-1 and -0 representations, the sub-
sidiary equations contain 4 and 3 components.
Physical analogies to these components can be
made. For spin 1 consider the massive-photon"
Proca equation. There the six particle compon-
ents are proportional to mixtures of the electric
and vector potential fields E and A, while the four

E[(l -4) PJ = [(1 S)HS+(1--S)H(1-S)]g . (1.24)

Now by using the first decoupling Eq. (1.15) and a
second decoupling equation [Eq. (2.13) below], it
is in principle possible to decouple the two above
equations by writing
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subsidiary components are proportional to the
magnetic field B and the electric potential V. (See
Refs. 11 and 12 for the explicit DKP spin-1 cou-
pled solution. Reference 12 is paper I of this
series, which discusses C, I', and T for Bhabha
fields. ) For the spin-0 case the particle com-
ponents' " are proportional to mixtures of a Klein-
Gordon (KG) field and its time derivative, while
the subsidiary components" are the space deriva-
tives of the KG field.

Sakata and Taketani' " explicitly obtained the
particle-components equation projected out by 8.
However, neither they nor, to our knowledge,
anyone else ever projected out the subsidiary-
components equation. This is a more difficult pro-
cedure, and will be done in Sec. II. We will find,
surprisingly, that even though this second equation
is necessary to have the ST system be manifestly
covariant, the solution to the subsidiary compon-
ents will turn out to be an identity in terms of the
particle components. We will comment on the
physical implications of this.

In Sec. III we will derive some important alge-
braic relationships concerning general inverse
and Sakata-Taketani operators. These relation-
ships are necessary for obtaining the general
Bhabha Hamiltonians and for obtaining the gen-
eralization of the Sakata-Taketani reduction in the
general Bhabha case.

In Sec. IV we will describe the reduction of an
arbitrary Bhabha equation into all of its mass and

spin states. This will show that the general ST
operators obtained in Sec. III are exactly mass-
state projection operators in the limit p =0, For
p &0„ the general Bhabha equation will mix up the
mass states contained in a particular Bhabha field.
Then one uses the general ST operators to decou-
ple the mass states by a Peirce decomposition, '
as was done by Sakata and Taketani' ' for the DKP
case.

In Sec. V we will proceed to obtain the general
Bhabha Hamiltonians for arbitrary 8. Having
these, we can describe the general Sakata-Taketani
reduction for an arbitrary Bhabha field in Sec. VI.
This will include the division into particle and
subsidiary components for general integer spin,
and the decoupling into specific mass states for
both integer and half-integer spin.

We will conclude in Sec. VII with a short dis-
cussion of our results. This will include a com-
parision of the general ST Bhabha reduction with
the particular ST reduction for the DKP case 8 =1.
We will also comment on ST reductions for the
Harish-Chandra modification"' "of the Bhabha
equations, where the a„, instead of satisfying the
so(5) characteristic equation (1.5), are forced to
satisfy

a ' '(1 —a ')=0 (1.27)

In paper III of this series, "we will explicitly
give the Poincare generators P, J, K, and H for
the general Bhabha case of arbitrary spin, and
then explicitly verify that these generators satisfy
the commutation relations of the Poincare group.
Interestingly, the commutation relations are sat-
isfied algebraically for half-integer-spin Bhabha
fields, but are only satisfied as an operator alge-
bra on the Bhabha fields themselves for integer-
spin representations.

We simply note here that the general Bhabha
Hamiltonians and general ST operators developed
in this paper are necessary to derive the results
in paper III.

Il. ST PARTICLE AND SUBSIDIARY REDUCTIONS OF
THE DKP SYSTEM

sFI(1 —s) 0 = —m 'BHe ' p~lsNJ (2.1)

Inserting this into Eq. (1.23) gives us the result

(2'.2)

(2.3)

(2.4)

= mp, + eA, g —p, y&~
' 8

1+g

1+q e
+P, t}m '(S & )' —P, —(S ~ B), (2.5)

where, from (1.14), B is the magnetic field, and
the spin S and q are given by

(2.6}

(2.7)

In obtaining Eq. (2.5) from (2.4}, the following
relations are helpful:

(2.8)

(P; P, +P, P, }=a,(S, S, +S,S, ), fi, u, cyclic

(2.9a)

(2.9b)

The final form of the ST particle components
comes from observing that among themselves the

A. Particle-components equation

As discussed in Eqs. (1.20)-(1.26), the key to
obtaining the particle components of the ST reduc-
tion, i.e. , Eq. (1.23), is to find the operator 8,
of Eq. (1.25), where H is the DKP Hamiltonian of
Eq. (1.13). For DKP, 8, is found by inserting the
"first decoupling equation, "Eq. (1.15), into the
left-hand side of Eq. (1.25), so that"
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surrounded operators

(2.10)

the particle components, goes to zero like ~p ~
a.s

p goes to zero. Therefore, the product XF is
finite, a fact which is clearest in the free case
when the product XY occurs in the Hamiltonian as

form a Pauli algebra and that this algebra com-
mutes with the surrounded spin algebra. Thus,
one has

(2.11)

Ke(A~=0) =EXY(1 —S)

E(s p) (a g) (1 —s) .
p p

(2.18a)

E4" =&z0s', (2.12)

X„=mr, +eAO —(7, +is,}(S ~ S +eS P}(2m) '

+ir, (S s )'m ' . (2.13)

{& ~ I8+ m) /=0 (2.14)

by (&, P, —m) P4' and rearrange terms to yield

(2.15a)

Y=[(S,)' —m'] '(- s, P, + iu) (~ P), (2.15b)

[(s, )' —m'] q ~0, (2.15c}

i.e., the "second decoupling equation. " For ref-
erence, the first decoupling equation (1.15) can be
put in the same form,

B. Subsidiary -components equation

Obtaining the subsidiary-components equation
is more complicated. From Eq. (1.24) one wants
to calculate the operator 8, of Eq. (1.26). To do

this, first multiply the DKP equation

In fact, one can also show in the free case that

XY(1-S)$=(1-4)g, (2.18b)

which means that Eq. (2.18a) is a manifestation
that the subsidiary-components solution is an
identity in terms of the particle-components solu-
tion.

The decoupling equations show that in the limit
p» 0, the subsidiary components are automatically
decoupled from the particle components. Further,
since the coupling is proportional to ~p" ~, the
coupling of the particle states of mass m with the
subsidiary components of mass ~ (see Sec. III B)
is singular as p-0.

However, if one had chosen to try to determine
(1 —S )He in Eq. (1.24) as being the operator
(1 —4) 8,(l —4) in Eq. (1.26) containing no time
derivatives, and in a manner which did not use the
singular operator, one would not succeed. The
best one could do would be to determine, after a.

great deal of algebra, that

(2.16a)

(2.16b)

Xe-Xe =(I - S) (E+h) (1 —4),
0-=(1 —S)h(1 —e) .

(2.19a)

(2.19b)

Putting (2.15) into (1.24) and (1.26) gives us the
subsidiary-components Hamiltonian equation

30+(I —4) g = E{1—e) g,
K~ =(1 —e)H[1+ Y] (I —e},

(2.17a)

(2.17b)

where H is given by Eq. (1.13). The subsidiary-
components Hamiltonian X~ cannot be considered
a Hamiltonian in the ordinary sense since it en-
volves the time derivative (or E) explicitly. The
solution to Eq. (2.17) must therefore be consid-
ered to be an identity in terms of the solution to
the particle-components Hamiltonian equation
(2.12). What has happened is that all of the physics
has been transferred into the particle components.
Be that as it may, one can obtain a fair amount of
physical insight by studying this equation in detail.

First note that the operator Y of Eq. (2.15b),
which couples the particle components to the sub-
sidiary components, goes to infinity as I/~p ] as
p goes to zero. On the other hand, the operator
X, which couples the subsidiary components to

Thus, the physics would still be the same (a solu-
tion in terms of the particle-components solution,
but not as transparent). The preferability of the
Eq. (2.17) viewpoint is that the free-case Hamil-
tonian (2.18a.) will turn out to be the formally cor-
rect Poincare Hamiltonian generator needed to
satisfy the Poincare commutation relations for
the subsidiary components [even though by Eq.
(2.18a) this Hamiltonian is an identity in terms of
the particle-components solution]. We will show
this in paper III."

Finally we mention that limited though the
interpretation of this subsidiary-components
Hamiltonian was for the DKP case, even this will
not be possible for the subsidiary components of
Bhabha integer-spin fields when 8 &1. There the
decoupling equations will always involve at least
two mass states in such a way that an interpreta-
tion such as Eq. (2.17b) will not be possible. For
8 &1, there will be no subsidiary components Harn-
iltonian in the sense of Eq. (2.17b), only in the
sense of Eq. (2.19).
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III. GENERAL INVERSE AND SAKATA- TAKETANI

OPERATORS

A. Inverses to o(„

As mentioned in Sec. I, the DKP representation
of the general Bhabha algebra is such that the
P„do not have inverses. This is bothersome be-
cause it means the Hamiltonian equation cannot
be formed by directly multiplying the wave equa-
tion by (P, ) '. Rather, one must use the algebra
to end up with a Hamiltonian equation (1.12) ac-

companied by a. decoupling equation (1.15). The
reason the P„do not have inverses is clearly evi-
dent from Eq. (1.5): The n„have eigenvalues
8, 8 —1, . . . , —8+ 1, —8, which for 8 an integer in-
cludes the eigenvalue 0 ~ However, the eigenvalue
0 is not included for half-integer 8. Thus, for
half-integer 8, like the Dirac case, the n„have
inverses.

For the half-integer case we can calculate these
inverses by writing (1.5) in the form

S(n) -=(n ——,') .

"1'"2' ' ' '"a —'

eS+ 1 /2

S'(n, )S'(n, ) S'(n, ) +(-1) "/' II S '(n)I, -

n= 1

(3.1)

(3.2)

(3.3)

(a„) ' c(„=o.„(a„) ' =I,
we now take the last term on the right of Eq. (3.2}, put it on the left, divide out the numerical factor multi-
plying I, multiply the resulting equation by (a„) ', and find

1)~-(/2 22s+ ( 8 I/2
2

I
u

2
~ ~ ~ 2

~
~

t

$+ 1/2

nl &n2& '
nA -1

(3.5)

The sums of products of the S'(n„) in Eq. (3.2} can be understood as simply being the sum of all the prod-
ucts of the (S')'s in Eq. (3.1), taking k at a time, multiplying the factor (a„)' '' -' in the expansion of (3.1);
that is, they are the elementary symmetric functions. Since we want to find the inverse (o.„) ' such that

where only the first term is to be used for the
case 8 = 2. Specific examples are 0= (3.7)

8 = —.1
2 ~

g —3. .
2 '

g 5.

g 7 ~

4(y

—o( (a ——a +—)64 4 35 2 259
225 P P 4 P 16

28
6 4

( ( ()2 B~((X~ —21@~

987 2 3229
8 0 16

(3 6)

B. Sakata-Taketani operators

From Eqs. (1.20)-(1.26) one sees that the ST
decomposition uses combinations of P4' as oper-
ators to project out the mass eigenvalues w and

The operators themselves came from the char-
acteristic equation multiplied by P4. The general-
ization of ST, then, will be to project out the var-
ious mass states for both integer and half-integer
spin, and also to project out the "infinite-mass
subsidiary states" for integer spin. This can be
done by starting from the o4 characteristic equa-
tion (multiplied by a, for integer spin)

j= (0 (&r 1/2)

(We are using a, to build up our ST operators.
This is the most physically motivated method, al-
though in general one could use an arbitrary direc-
tion in four-dimensional space-time to build up the
operators, as was done for DKP in Ref. 18.)

The next step is to recall that since a4 is a gen-
erator of so(5), it can always be rotated into 2, ,
and hence can be put in diagonal form, with diag-
onal blocks SI, where S runs from —8 to 8. Deal-
ing with o(,', the blocks run from [0 or (

—', )'-] to 3'
times I, and represent the mass states or the
zero-eigenvalue subsidiary components. Our gen-
eralized ST operators, then, mill want to pick out
the various blocks and have them normalized to
unity. Therefore, if one just takes (3.7) without
the factor representing a particular mass state,
the remaining operator mill pick out just that
mass state (since the remaining factors piece-by-
piece project to zero the rest of the mass states).
The only thing necessary is to normalize. When
this is done, one has
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1
s~(s) = . II (n, ' —k'),

t 2 k= (0 or I /2)

(3.8a)
equations. " Going to the representation where a4
is diagonal we can write (no sum involved in the
i's or j's here or later —they represent compon-
ents)

(3.8b) ~+4~i j di i j~ (+&~i j i j (3.14)
i= (0 or 1/2)

i ~j

yielding the desired projection operator prop-
erties

s (S) & (S) =&; (S)s (S)

c;&=(d; —d&)' c, &
.

From (3.15) one sees that

(3.15}

Putting (3.14} into the basic double commutation
relation (1.2) with v =k and g = A. = 4, one has

Q sg(S) =f, (3.9b)

8,.(S) -=6,'(S) + a;(S), j ~0 (3.9c)
with mass states corresponding to (we use the
particle positive-sign convention)

9J'(S) ~ m=+ X/j . (3.10)

IWhen the reader is checking (3.9) for integer spin
he should keep in mind that in S, '(S) the factor
n, '/j' reduces to n, '/j' when multiplied by the
rest of the projection operator. ]

Specific examples of (3.8)-(3.9) are given below.

6=1: s, =(1- n, '),
2 ~

1

3. 1S = a'. ~, g, = —2 (n.' ——,'),

c;,=O, unless (d; —d,)'=1 or d;+1=d, .

(3.16)

Equation (3.16) tells us that n, has nonzero ma, -
trix elements only in the off-diagonal blocks where
n4 has its diagonal matrix elements changing from
some value 8 to a value 8+1. But starting with
integer-spin representations, these are the same
positions where n4' changes values, and hence
the same places where the nonzero matrix ele-
ments of the projection operators 8j change over
into the nonzero matrix elements of the projection
operators S&„. Thus, we can write the sum (I+n, )
for integer 8 as

+
cg Ss 1 C~

&. g, = a (n.' —k);

S = 2: S, = g (n, ' —4) (n, ' —1),
s, = ——, n~'(n~' —4),

(3.11) +
Cg 1 $g 2 Cs

C3

Note that the Dirac case (S =-,') is not included
in the above. This is because there is only one
operator for Dirac, and that is just unity project-
ing onto itself:

C2

+
C2 gl C1

1 ~0 1

8= — 8 =4m '=I1
1/2 (3.12)

i.e., for Dirac there are no extra mass states and
no subsidiary components. This case has the most
well-behaved algebra and solution, as is well known.

C. Commutation relations of the ~j ~ith theo'„

Because the 4j are composed of products of @42,

one trivially has that (always working in a given
representation 8)

(3.13)

The problem is to find the commutation relations
[S~, n„], k = 1, 2, 3. To find them, one begins by
using the trick"' "we used to find the C, P, and
T transformation matrices for general Bhabha

(3.1"l)

Note that 8ja~ only has the matrix elements of n,
contained in the rows where d j is nonzero and

n, dj only has the matrix elements of n„ in the
columns where &j is nonzero. Thus, &&a, would
only have the matrix elements c~. These matrix
elements would also be contained in n„d~ „but
in addition there would be the term cq, . One



1448 R. A. KRAJCIK AND MICHAEL MARTIN NIETO

could cancel that with 6s, a~, but then the extra
term c~, would be left over. By iterating down

the diagonal, it is clear that one in general ob-
tains a complicated set of commutation relations
involving all the dj(S) and any n, . Specifically,

8,(S)g. , (S) = 0 .

We also define

(3.21b)

(3.22)

Then, since Eqs. (1.5) and (3.8} for j=0 give us
that

S an integer. (3.18) 8,(S}o., = a,8„(S)= 0, (3.23')

Equation (3.18) is simple only for the DKP case
S =1, as then there are only two 6, . For S =2
there are three & j, and matters rapidly become
more complicated for S &2. We al. so note that

since our argument hinged only on making a par-
ticular n„diagonal, we could get the same type of
commutation relations if we made our projection
operators out of an in general different o,

„,
than n„

as was done for DKP in Ref. 18.
For half-integer spin S, there are no commuta-

tion relations as Eq. (3.18). This is because the

central blocks corresponding to Eq. {3.17) have

two spin- blocks, so that they look like

we have from Eqs. (3.9b) and (3.21)-(3.23) that

o, Q(S) =I —8„(S) . (3.24)

g„j(S)g„~(S)=0, j 4k

and also

(3.25)

8„(S)j {S)= 0

Equations (3,22) and {3.26) immediately give

8 (S)Q(S) =0 .

(3.26)

(3.27)

Further, by the same type of reasoning that leads
to Eq. (3.9a), one has

'Nte ca.n also show that

0=8 (S)& (I- ~,') . (3.28)

(3.19)

This additional piece mixes all of the matrix
elements together so that one can only derive the
identity

For X=4, Eq. (3.28) follows from Eq. (3.23). For
A =k =1, 2, 3, refer back to Eq. (3.17). 8,o.„will
only keep the elements c, on the upper-left-hand
side of the 8, submatrix, and the corresponding
element &, on the lower right-hand side of the
matrix. But since (1 —n, ') is zero in the two 8,
boxes, the multiplication of the matrix with only

c, and &, by (1 —n, ') on the right is zero. Further,
since 8„has a factor (I- a,-') in it, Eq. (3.28) also
implies that

0 = 8,(S)a „8,(S) (3.29a)

In fact, for every integer j, 8j(S) has the factor
(I- a,-') in it, except for 8,(S). Therefore, we can
also write

D. Other useful operator relationships

(3.20) 0=8o(S)n&8j(S) y ~1

A similar result is

(3.29b)

ln this subsection we will discuss other oper-
ator relationships that will be useful both in this
paper and in paper III.' Note that the results of
this subsection also hold with the order of the

operators reversed because all the operators are
self-adjoint. ISee, for example, Eqs. (3.21) and

(3.23) below. J

We start by defining the operators Z,. (S):

0 = 80(S) n x) o', —Q(S) ] (3.30)

0 = 8 8 (S) &~ I (S —1)' —o',
' I,

0 =8g(S) n„8 (S), j 4S —1

(3.31)

(3.32)

By the same method one can demonstrate for S
an integer and k = 1, 2, 3 that

I
g, S integers

g, (S)o, = a, g,, (S}=8, (S),
04j=1, 2, . . . , S

(3.21a)

0=8j(S)a~8;(S), i 4j+1 (3.34)

For half-integer S, equations similar to (3.31)-
(3.34) have the added complication of the two
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central 8, t, (s) blocks shown in Eq. (3.19). When

this is taken into consideration, similar methods
as above allow one to demonstrate for half-integer
8 that

of the particular algebra having dimensions d, (s, S)
given by

d, (S, S) = —,
' (2S + 3) (2$ + 1)

O 8=&(S)n, [(S-1)'- n, 'J, S ~-,'

0=8'(s)n, 8, (s), j +S —1, S &&

(3.35)

(3.36)

x[(s+1)(6+2) —S(S+1)J (4 1)

8 ~ S ~ 0, both integers or half-integers. (4.2)

0=81(S)n.[(j +1)' —n, 'J[(j —1)' —n.'], j &2

(3.37)

i tj+1
0 =8t(s)n~8g(s),

(3.38)

To understand the mass and spin content, one
first recalls the results of Eqs. (1.16) and (1.17),
concerning the multiple-mass Klein-Gordon equa-
tion, that the Bhabha fields satisfy the following.

8 =integer:

0 = X[0—X'] [4 —X']

Finally we note a result which is useful for com-
muting spin operators with operator functionals
of n, . From (1.2) we have that

x[(s-»' -X'iiS' -X'](F;

S = half integer-:

(4.3)

[ [n;, n, ], n, ] = 0, i, j e4 .

But this means that

(3.39)
o =[l —x'] [-; —x'J

x [(S—1)' & - X'] [S' - X'J 0 . (4 4)

[[n;, n, ],f(n, )]=0, i, j &4

or, in particular,

[[n, , n, ],8,(S)J=O, i, j~4

[[n, , n,.J, 8, (S)J=O, i, j~4

i, j~4.

(3.40)

(3.41)

(3.42)

(3.43)

These identities will be useful in deriving the re-
sults of later sections, and also in paper III."
IV. MASS AND SPIN SPECTRUM OF BHABHA'S EQUATIONS

As stated in Sec. I the Bhabha algebra corre-
sponds to the general so(5) algebra, with a par-
ticular explicit algebra being labeled by the num-
ber 8, and the various irreducible representations

Equations (4.3) and (4.4) yield the mass, and also
spin, eigenvalues that are contained in a particular
Bhabha field. The question to be answered is:
Under what circumstances do particular eigen-
values hold? To solve this question one proceeds
to decompose the so(5) algebra into its subalge-
bras. One decomposes an individual so(5) repre-
sentation into a sum of so(4) representations [or
equivalently o(4) or Lorentz-algebra representa-
tions], and then into sums of so(3) representations.
This decomposition is unique and complete.

The easiest way to do this decomposition is to
use the Gel'fand pattern which uniquely labels the
decomposition of the algebra so(2r) into so(2r —1)
~ ~ ~ into so(3) into so(2). As clearly explained by
I ouck and Galbraith, the pattern is

l2r, 1

l2r

l2, 2 2r, r -], l2r „

(4.5)

l4. 2

where the l&, are the integers {or half-integers)
which label the so( j) representations. We are
concerned here with only the bottom piece of the
pattern. The two numbers l, , and l, , are what we

have been calling 8 and S.
Given a particular l, , and l, „ this particular

so(5) irreducible representation (irrep) decom-
poses into the unique sum of so(4) representations
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d, (z, „z, ,) =(z, , +1)'-(z, ,}' . (4.8}

Note that for 14, 40, there is a second represen-
tation with the same dimension, labeled by /4

and —Z~, . This is the so(4) doubling, "and if
instead of so(4) we consider o(4) or the Lorentz
al'gebra, this doubling is taken care of and the
representations have dimensions

dz(Z, „Zz,) =[2 —&(Zz„o)][(Z, , +1)' —(Z, ,)'],
(4.9)

l, , - l4, - l, , - l4, ~ 0 . (4.10)

The o(4) irreps are single-valued only for Z4, =0,
and otherwise are the sum of the two so(4) repre-
sentations

(z, ,„z, ,) =(z, , „z, ,) (z, „—z. ..),
z,', = fz, , f~o.

(4.11)

(4.12)

On decomposing so(4) into so(3) one ha. s the
rule'

z. ..- z, , - fz, , f
- 0 ,

with the dimension given by

d, (z, ,}=(2z, , +1) .

(4.13)

(4.14)

One can already see that the so(3) irreps corre-
spond to spin states. Further, since from Eq.
(4.11) the double-valued d4~ representations cor-

labeledbyall those irreps with l, , and l, , satisfy-
ing

(4.6)

z, , - fz, , fo-o,

both integers or half-integers as Z, , (4.7)

The dimensions of the so(4) representations are

respond to a sum of two so(4) representations,
the decomposition into so(3) representations will
be doubled, so that one will have (2) x (2Z, , +1)
states giving 2 for particle-antiparticle times
(2Z, , +1}for spin Z, ,

In Table I this decomposition has been done ex-
plicitly for the half-integer-spin representations
up to maximum spin 8 =-,'. The first columns list
the possible so(5} representations and their di-
mensions. Next come the o(4} representations and
their dimensions that a particular so(5) repre-
sentation decomposes into, and the number of so(3)
representations of dimension (2Z, , +1}that an
individual o(4) representation decomposes into.
Finally, the mass of a particular o(4) representa-
tion [including all the particular so(3) irreps that
it contains] is given in the last column. We now

describe how the mass values are obtained.
The basic idea for finding the mass states was

first given by Bhabha, ' and in Table I we have
explicitly extended his idea to higher spin. The
key is the realization by Bhabha' that if one puts
a4 into block diagonal form, then each eigenvalue
block of n4 contains a distinct number of complete
so(3) spin representations. Further, if a spin
irrep is in an n4 block with eigenvalue S, it must
also be in all the blocks +S, S —1, . . . , —S+1, —S.
This allows you to find the mass states.

As an example, consider the so(5) representa-
tion (~, ~). There are 8 spin-(~) irreps, so these
can be placed in each of the a4 eigenvalue blocks
with an extra set in the + —,

' and --,' blocks [see
Eq. (4.15)]. [The reader might think that they
could also all be put in the two +& and —

& blocks,
but because each row of so(3) states in Table 1

must have the same mass, the distribution turns
out to be unique. ]

Blocks contain the
so(3) spin irreps:

3 +

(4.15)

The four so(3) spin-~ irreps and the four so(3)
spin-& irreps are put in the n4 blocks from + &

3to —~.
Now we can see the mass eigenvalues. Bemem-

ber, the mass eigenvalue is given by X/j, where

j is the eigenvalue of the a, block. (For definite-
ness we are keeping the sign of the mass positive.
The negative eigenvalues correspond to the anti-
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TABLE I. The mass and spin decomposition of half-integer Bhabha fields up to maximum spin & . The columns
show (1) the so(5) representation, (2) the dimension of the so(5) representation, (3) the o(4) irreps that a particular
so(5) irrep decomposes into, (4) the dimensions of the o(4) irreps, (5) the number and spin content of the so(3) irreps
that a particular o(4} decomposes into, and finally (6) the mass of the o(4) irrep (and its component so(3) irreps) in a
particular row. See the main text for a more detailed discussion.

(g, S) d5

Number of so(3) spin
representations with dimension

(2l3i+1), for l3 i=
5 7

(l4 f l42) ff4 2 2 K 2 Mass

Number of so(3) spin
representations with dimension

(213 f+1), for/& f
——

d5 (l4 f l ) d~ — —
2 2 Mass

f 3

20
3 3

(2, 2) (- -)3 f

i(- —)

12 2 2

12 2 2

2x

2X/3

2x

2x/3

(-, , —,) 1607 5 {--)7 5

(2 2)
? 3

i(- -)
5 5

(2, 2)

(2,y)

(- -)5 i

28 2 2 2X/5

2 2 2 2X/3

12

20

24 2 2 2

2X/7

40 2 2 2 2 2X

(- —)
5 5

(—-')5 3

(—,, —,) 40
1

(- -)5

(T 2)
5 3

{--)5 f

(- -)5 3

(- -)5 f

(- -)3 3

(2 2)

(p, P)

(——)
3 f

i(- -)

12

20 2 2

24 2 2 2

20 2 2

12 2

24 2 2 2

12 2

4 2

24 2 2 2

2X/5 7 3

2x/3

2X

2X/3

2X/5

2X

2X/3

2x/5

(- -)7 3

7 i

(2, 2)

{y,—,)

3 3
(2, 2)

3 f
(—-)

7 f
(2, 2)

5 f(- -)
(- -)
i i

(——)

2 2 2 2X

40 2 2 2 2 2X

20

24 2 2 2

12 2 2

2X/3

2X/3

2X/7

2X/5

24 2 2 2

14 2 2

2X/3

2X/5

2X/7

40 2 2 2 2 2X

(2, 2) 1207 7
(—-)7 7

(2 2)
7

(- -)7 3

(y, 2)

16

36

2 2X/7

2X/5

2 2 2 2X/3

40 2 2 2 2 2X

particle masses. )
Looking at Eq. (4.15), we see that only a single

so(3} spin- —, irrep is in the $ eigenvalue block.
And, indeed, in Table I there is a row in the de-
composition of the (3, S) =(—;, ~) so(5) representation
that has only one so(3) irrep, for spin —,'. There-
fore, this state has the lowest mass eigenvalue,
m=2}(/5. Carrying on, one sees that the —, eigen-
value block of o., has -„-;, and —, so(3) spin states
[the complete ($, —,') o(4) irrepJ. Therefore the

mass is 2X/3. Finally, there are two mass states
with m=2)(: the (~, —,'} o(4) irrep with so(3) spin

states —,
' and 2, and the (~, ~) o(4) irrep with so(3)

spin states of —, and —,.
The same procedure can be done for all of the

so(5) irreps, and Table 1 lists the results for all

the half-integer irreps up to 8 =-', . The mass-spin

content in Table I can easily be generalized to
8 &-,' from the form of the triangle and cut-off tri-
angle patterns in the table.

The physically interesting things to note are
that for a given so(5) irrep labeled by (8, S), (1) 2

is the maximum spin contained in the representa-
tion, (2) the masses go from y/8 up to 2X for half-
integer-spin irreps (to y/0=~ for the integer-spin
irreps we shall come to next}, and (3) the lowest
mass state y/3 will contain a single spin state S.
(Bhabha' noticed this last point by looking at the
nonrelativistic limits of his equations. )

Therefore, we now see that our operators 8&(S)
are projection operators for the so(5} algebra
labeled by g onto the mass states with m= X/j.
Further, if the so(5) algebra is broken down into

the particular so(5) irreps (g, S}, then the 8&(S),
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with n, given in the (6, S) irrep, picks out the mass
state }(/j only in the (6, S) irrep. Thus, 8, (S) ef-
fectively becomes labeled 8,. {8,S). Finally, by
coupling these mass projection operators with a
set of spin projection operators, one can pick out

any particular mass and spin state one wants from
the general set of Bhabha equations.

Going over to the more complicated integer-spin
representations, we look at Table II. The layout
is similar to Table I, but there is a problem with

the 0-eigenvalue block of n4. This block has a
mass eigenvalue m=}(/0 =~, and corresponds to
the subsidiary components that are eliminated by
the Sakata- Taketani process. Because this e4
block has eigenvalue zero, not + some integer or
half-integer, it contains only single so(3) blocks.

Looking at Table II in detail, the (0, 0) so(5) irrep
is, of course, the trivial, identically zero irrep.
(1, I) is the DKP spin-1 irrep, with the indicated
m=y spin-1 state and the four subsidiary com-
ponents. [However, recall the physical content
of the two sets of components and how they are
obtained, as described in the paragraph below Eq.
(1.26).]

The (1, 0) so(5) irrep has two particle compon-
ents and three subsidiary components, but they are
obtained by the ST process of combining states
[as also indicated below Eq. (1.26)]. More spe-
cifically, because the so(5) irrep (1, 0) has no

doubling, obtaining the two particle components is
not the simple particle-antiparticle statement of
having doubled spin-0 states. What happens is that
the single spin-0 piece of the o(4) (0, 0) irrep com-
bines with the spin-0 piece of the o(4) (I, 0) 4-vec-
tor to form the particle components, and the spin-
1 piece of the o(4) (1, 0) 4-vector becomes the sub-
sidiary components. Thus, any time we obtain the
combined o(4) irreps (1, 0) and (0, 0), we list the
mass as a mixture of y and ~.

The rest of Table II is obtained as was done for
Table I, except that the single so(3) irrep states
will be infinite-mass subsidiary components. Also,
when we have an so(5) irrep of the type (8, 0},
again the lowest mass state will have spin zero,
but the mass will be }(, having come from o(4)
(1, 0) and (0, 0) irreps as in the DKP spin-0 case.
The rest of the irrep will be called infinite-mass
subsidiary components, even though some doubling
could be done. We do this because the (8, 0) irreps
can never have all the mass states, as is possible
for every (6, S &0) irrep.

Finally, we can now see that our general ST
operators 8, (g) or 8~(S, S) reduce to mass-state
projection operators onto the mass states It/j for
the so(5) algebra 3 or the so(5) irreps (3, S), re-
spectively, when p=0. This is simply because
when p =0, the Bhabha equation reduces to

TABLE IL The mass and spin decomposition of inte-
ger Bhabha fields up to maximum spin 3. The columns
are the same as in Table E. See the main text for a more
detailed discussion, especially concerning the "infinite-
mass" subsidiary components.

(s, s)

Number of so(3) spin
representations with dimension

{2L& &+1), for I&& ——

g EL ) + 0 1 2 3 Mass

(0, 0}

(1, 1) 10

(1, o)

(0, 0}

(1, 1)
(1, o)

(1, 0)
(o, o)

6
4 1 a

1 1
a

{2,2)

{2,1)

(3, 3)

35

35

14

84

(2, 2)
(2, a)

{2,o)

(2, 1)
(2, O)

(1, 1)
(1, 0)

(2, o)
(1, 0)
(0, o)

{3,3)
(3, 2)
(3, 1)
(3, o)

10 2

16 2 2

9 1 1 1

16 2 2

9 1 1 1
2

4 1 1

9 1 1 1
4 1
1

14 2

24 2 2

30 2 2 2

16 1 1 1 1

x/2

X

X/2

jx
) oo

X/3
x/'2

x

(3, 2) 1O5 (3, 2)
{3,1)
(3, O)

(2, 2)
(2, a)

(2, o)

24
3{) 2

16 1 1
10
16

9 1 1

2 2

2 2

1 1
2

2

1

x
x/'2

x/3
x

(3, 1) 81

(3, o)

(3, 1)
(3, o)
(2, 1)
(2, o)
(1, 1)
(1, o)

(3, 0)
(2, 0)
(a, o)
(o, o)

30 2 2 2

16 1 1 1 1
16 2 2

9 1 1 1
6 2

4 1 1

1 1
9 1 1 1
4 1 1
1 1

x

x/2

x/3

(~,~, +X) 4 =0,
and the solutions are the uncoupled mass states.

However, when p &0, then the full Bhabha Eq.
(1.1) is to be used, and one can see from Eq. (3.17}
that the n, will couple (i.e. , mix up) the different
mass states. In this case one must use the gen-
eralized ST operators in a generalized Sakata-
Taketani reduction to decouple the mass states.
This is what will be discussed in Sec. VI.
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V. THE HAMILTONIANS

The Hamiltonian for a wave equation is that oper-
ator (H) which satisfies the eigenvalue equation

(5.1)

where Eq. (5.1) is to be obtained from the funda-
mental wave equation (1.1). It will turn out to be
trivial to obtain the Hamiltonian for half-integer-
spin Bhabha wave equations such as the special
Dirac case. However, the procedure is compli-
cated for integer-spin Bhabha equations, as is al-
ready known from our previous remarks about the
special DKP ca,se.

right-hand side, one obtains the consequent equa. -
tions

For the case 8 = 1, when g =m, HP =m'g, and one
has the a, obeying the DKP algebra Eq. (1.9), Eq.
(5.5) reduces to the DKP consequent equations

yDKP (g, p) p yDKP (5.5)

Now we are ready to obtain the Hamiltonian. The
trick is to realize one can write the Hamiltonian
equation as

A. Half-integer-spin equations

As already mentioned in Sec. IIIA, the e„have
inverses given by Eq. (3.5) for half-integer-spin
representations. In particular, the matrices e4
have inverses. Thus, by simply multiplying Eq.
(1.1) by n»

' one immediately has the Hamiltonian
equation (5.1), with H given by

(5.2)

Note that for 8=-,', one has o=-,'y, g =-, rn, and

n4
' =4a4=2y4 yielding the Dirac equation

The second term on the right-hand side of (5.7)
comes from the consequent Eq. (5.5) when v=4.
In that case, by using the free Eq (1.1.) a part of
the second term in (5.5) can be rewritten as

Then, rearranging terms gives

Hg'=y»(& y+m)g' . (5.3)
+x '(x' — )n, )4 (5.9)

B. Integer-spin equations

The complication for the integer-spin equations
comes about because, as explained previously,
there are no inverse matrices for these repre-
sentations. Thus, one cannot simply multiply
Eq. (1.1) by n»

' to obtain H. However, it is pos-
sible to define a Hamiltonian using a generaliza-
tion of the method used by Kemmer' for the DKP
equation.

First we must obtain the Bhabha "consequent
equations, "which are the generalizations to arbi-
trary 3 = integer of the Eqs. (2.14} in paper I (Ref.
12) for the DKP 3 =1 case. Remember, the conse-
quent equations are built into the system from the
beginning and are not external constraint equations
that have to be imposed from the outside as, for
example, in the Rarita-Schwinger case.

To obtain the consequent equations, one first
multiplies the wave function by the fundamental
algebraic commutation relations (1.2), and then
multiplies this by ~„~q, yielding

[2(S o)n. (S o) —(S o)(S o')o'. —n.(S o)(S n)](}

By then using the free wave equation (1.1) to elim-
inate the factors (& n) in the first and third terms
on the left-hand side and the first term on the

Now multiplying (5.9) by 8, eliminates many of the
pieces (including the troublesome term with the
U} because from Eq (3.23} .one has 8,a» =0. Fin-
ally, using the commutation relations (1.2} to re-
write the term in the square brackets,

s»8, /=8 (s ~ a)a, [1+(&~ Z)X '}(l, (5.10)

To get the first term on the right-hand side of
(5.7), start by taking the free Eq. (1.1) with the

(S»a») piece on one side, and multiply it by the
sum of all the , of Eq. (3.21):

Then by using Eqs. (3.19)-(3.22) one has

(5.12)

Again, for the special case 3 =1, Eq. (5.14) re-
duces to the DKP Hamiltonian. This is because
then t»(= P», 8, =(1 —P»'), and using the DKP alge-

Thus, by inserting Eqs. (5.10) and (5.12) into
Eq. (5.7), one has the Bhabha Hamiltonian equa-
tions for arbitrary integer spin,

(5.13)

H =t»((S ~ ++X) —8,(~ o.)a»[I+X '(5 a)J . (5.14)
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bra Eq. (1.9) to rewrite the last term in Eq. (5.14)
yields

H(8=1}=H" '

E(8,) g = [8)Hgi+ giH(I- 8i)] g, (6.6}

E(I 8,) y-= [(I-g,)H(I-. 8,) +(I 8,)H-g, ]. p .

= p (s p'+ m) —(s ' (T) (I

Vl. SAKATA- TAKETANI REDUCTION FOR

THE GENERAL BHABHA EQUATION

(5.15)
(6.7)

This means that the two operators needed to de-
couple the jth mass state are the 6j and ej satisfy-
ing

can be written as

8
E +8) P= +8, H Qg)

j= hf j=M j= hf

0, 8 an integer

8 a half-integer.

(6.2a)

(6.2b)

Equation (6.2) can be written as 8+1 (8+ —,') sep-
arate equations for 8 an integer (8 a half-integer),
of the form

t 8

E(8))g = 8)Hgq+8)H Q 8» (I, M cj aS .
A=M; 0&j

A. Method for a general ST (Peirce) reduction

From the material between Eqs. (1.20) and (1.26)
of Sec. I, the generalization of the ST reduction in

the DKP case to all Bhabha systems is now clear.
One uses the projection operators derived in Sec.
III to perform a Peirce decomposition into the
different mass states as was done for the DKP
case. In particular, the Hamiltonian equation

(6.1)

8&H(I-gj) itj =8, 8qg)g,

(I—8,)Hgig=(I —8&) 6, (I—8,) g

(6.6)

(6 9)

The particle-components equation is (6.7} with

8, =8,. [In the DKP case the operator (1-8,}—= 8
= P,'. J To obtain the operator 8, of Eq. (6.9) we
need to derive the "first decoupling equation"
[the generalization of Eq. (1.15} in the DKP caseJ.
This is obtained by multiplying the free Bhabha
equation (1.1) by 8, and using Eqs. (3.23} and (3.29)
to yield.

As a matter of fact, the use of the single-mass-
state reduction is the most useful, especially for
the integer-spin case. There, one can use this
method to decouple the "infinite-mass subsidiary
components" from the "particle components, "
which contain 2 &&(28+ I) for each mass and spin
state, as explained in Sec. IV. This is what Sakata,
and Taketani did for the DKP case, and which we
now do in Secs. VIB and VIC for the general in-
teger-spin Bhabha case. Then we will proceed
to discuss the decoupling of specific mass states
for both integer spin and half-integer spin.

B. Reduction of the general integer-spin case
"particle components"

The reduction into 8+1 (8+-, ) uncoupled mass-
state equations is done by finding the 6, such that
the last term on the right-hand side of Eq. (6.3)
can be written in the form

8

k=N; 0& j
(6.4)

I= +8, (8) (6.5)

to write the two equations to be solved as

Inserting Eq. (6.4} into Eq. (6.3} completes the ST
reduction of the general Bhabha equation into its
component mass states.

If one is only interested in decoupling one mass
state from the others, then the process becomes
simpler in principle, as only two operators of
the form (6.4) have to be found. In particular, if
one is only interested in decoupling the jth mass
state, then one can use the identity

= —X 8o(s ' &) (I- 8,) it'

X(I-80)g— (6 ~ 10)

Inserting this "first decoupling equation" (6.10)
into the second term on the right-hand side of Eq.
(6.7) with j = 0 yields the "particle-components
equation" for 8 an integer,

E(I 8,) tl =3cp(I —8,) |(—
Zp=(I 8,)[H Hg (e o.)-X-']-(I g ) .

(6.11)

(6.12)

Using Eq. (5.14) for H, and the operator relation-
ships in Sec. IIID, K& can be explicitly written as

&~=[0(s &+x) —Q(s &)g.x ']('I —8.)
= q(& ~+X) - q(s ~) 8,[I +X-'(5 a}] . (6, 13)

Note that the particle-components Hamiltonian is
symbolically the same as the complete integer-
spin Hamiltonian Eq. (5.14), only 8, becomes Q
and a, becomes 8„respectively, in the second
part of the right-hand side. Also, for the DKP
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case Q = I8, and 8, = I- P,'. Then Eq. (6.13) re-
duces to the Sakata- Taketani particle-components
free Hamiltonian, Eq. (2.4), with A q=0.

C. Reduction of the general integer-spin case
"subsidiary components"

(1 —8,) P+(Z —Y) (1 —8,) {{= Yg,g,
Y=(s,'-X') '(-s,@+X)(s ),
z = (s.' —x') ' (- s, ) x( .—0 .

(6.15a)

(6.1 5b}

(6.15c)

Equation (6.15) is analogous to the "second decou-
pling equation" (2.15}, except that there remains
the extra (Z —Y) (1 —8,) term, which is algebraic-
ally zero in the DKP case. This term prevents
the clean reduction of the subsidiary components
that was possible for DKP. To understand more
clearly why the (Z —Y) term does not allow this
decomposition, let us just try to decouple the sub-
sidiary components from the 8„p =m, state.

Following the same procedure as was used to
obtain (6.15), except that instead of multiplying by
(S,Q - X) (1 —8,) one uses (&,Q —X}8„oneobtains

To obtain the "subsidiary components" equation,
we first derive the "second decoupling equation"
by multiplying the free Bhabha equation (1.1) by
(I-g,). Again using Eqs. (3.23} and (3.29), this
yields

(I- 80) g = - X
' [6,o, + (I 80) (6 -o') (I- 80)

(s &)8,]4 (6.14)

Now, if we multiply Eq. (6.14} by (&,Q —X), use
the algebraic results of Sec. IIID, and rearrange,
we have

Now, the extra term is partially eliminated,
since

Z8, =0 . (6.17)

However, the term involving Y8, is not zero. Thus,
once the algebra involves 8& with j» this simple
decoupling cannot be done, and the subsidiary-
components Hamiltonian cannot simply have the
form Eq. (2.17}, as was the case in DKP.

However, one can still use Eq. (6.14) to place
the subsidiary-components Hamiltonian equation
into an identity. A fair amount of algebra allows
one to obtain

The particle-components equations (6.11) to
(6.13) can be further reduced to obtain the indi-
vidual mass-state equations. One starts with the
analogs to Eqs. (6.6) and (6.7), noting that the
subsidiary components have already been decou-
pled. The two equations are

Egq P = [HJXpg)+8~X@(1 —8) —80)]g, (6.20)

E(1 —go —gq) g = [(1—80 —8,) X~(1—8, —Hq)

Xs Xs=(1 —80) [E+h] (1 —8 ), (6.18a)

h=II[1 —X '(S ts)] —X '(S. n) o', (S ts)(& o),
(6.18b)

with H again. given by Eq. (5.14}. Then, as for
DKP, one can show algebraically that

0 = (1 —8O) h(1 —Ho), (6.19)

meaning Xs is an identity in terms of the particle-
components solution.

D. Single-mass-state ST reductions for integer spin

8,$+Zg, g = Y(8, +8,)g,
Y=(&,' —X') '(-&,~, +X)8,(s ~),
z=(s.' —x') '(-s.)x( .—0) .

(6.16a)

(6.16b)

(6.16c)

+(1-8,-8,)X~H, ]g . (6.21)

Explicitly putting Eq. (6.13) for X~ into Eq. (6.20),
and using the results of Sec. III to eliminate most
of the terms, one is left with

Eg~{{'=(X(R~H&)+(0,,8,)(S o) [8„,(1 —5(j, 6)}+8, ,(1 —5(j, 1)}]}( .

Equation (6.22) clearly shows that in the limit
p = 0 the 8~ are mass projection operators. In
this case only the g term remains on the right,
and because of the definition of P& in Eq. (3.21),
we see that

&~8~=(+1/j) 8,', (6.23)

the sign depending on which of the two 8& blocks
one is in. Thus, the mass is X/j.

For p &0, a X/j mass state is coupled to X/( j+ 1)

(6.24)

Equations (6.24) and (6.25) are easily solved to
give the decoupled mass-state equations

mass states, with special cases for j ={1or S).
Thus, for S mass states there will be an 8 xS ma-
trix equation to solve to decouple the mass states.
To see how this is done, we first consider the
special case S =2. Then we have

Eg, tj =[X(k,g, )+(C,g,)(S o')8, ]0,
Eg,k = [X(k,g.) + (&.8,) (S o) 8, ] 0 .
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E(8,0) =8,[X(k,g, }+(K,g, )(S ~)(E —Xe„) '(R,g, )(a n)8, ](8,0), (6.26}

&(8,0) =8,[X(k,g, ) (&,8,)(a n)(&-Xk, ) '(k, g, )(a n)8, ](8,{t) (6.27}

Thus, what we see is a system of two equations
which remind one of the ST system of equations for
the DKP case. The second term on the right-hand
side has two factors of (a o.), separated by an en-
ergy denominator. The generalization to S &2 is
clear. One will end up with terms having up to 8
factors of (a ~ a), separated by energy denominators.
They will come because in a chain sequence all
the mass states will be coupled, and uncoupling
them involves eliminating the mass states one at
a time.

E. Single-mass-state ST reductions for half-integer spin

Starting with Eqs. (6.6) and (6.'7), we want to
calculate 8,H8, and 8,H(E 8/} for. som-e half-in-
teger j. Taking H given by Eq. (5.2) and using
Eq. {3.38), we have

g,H8, = 8, [~. '(X + a &)]8,

=X(n '8, )+ n, '8${S'o!)8/6( j, ) (6 28a)

Similarly,

8,H(1-8,}=(rt, '8, ) {& ~) [8„,(1-6(j,6))

+8, ,(1-6(j, 2))],
(6.28b)

so that

&8, $ = (x(a, '8, )

+ ( n, '8/) {a o') [8,„(1 —6( j, 6) ) + 8,. 6{j, ';)

+8,—,(1-6(i, -')) ] /t

Looking at (6.29) when p = 0, we see that the 8,.
again become mass-state projection operators. In
that case, only the first term survives, and

o., '8,'= +(1/j)8,*, (6.30)

which are easily decoupled to yield the equations

the sign depending on which 8, box one is in, so
that the mass is X/'j.

When p &0, we see that a particular 8, in general
couples to the 8»„with special restrictions for
j =(—,

' or 6}. Thus, one ends up with an (6+2)
&(8+-,') matrix equation to solve for the 8+& indi-
vidual uncoupled mass states.

To see how this is done, consider the special
case 8= —,. The two equations are

Eg /. 4 =
I X(o.. '8 /. ) + ( ~ '8

/ ) { ' ~) (8 /. +8 /. ) ] & ~

(6.31)

Eg, /, g =[X(o., '8, /, ) +(a, '8, /, ) (a a) 8, /, ]y, (6.32)

Eg, /, 4=( . '8, /, )(x+(a )[1 (&-x . ') '(, '8, ,)(a )])8, ,4, (6.33)

Eg, /, 0=(o. '8, /, )(X+ (a o')[&-Xtt. ' —tt, '8, /, (&. tr)] '(o'. '8, /, )(a o')jg, /. tl . (6.34)

It is thus clear that, in general, if one is decou-
pling (8+ —,') mass states, one will have terms in
the decoupled equations with powers of (S* n) up
to order (6+-,'), and that between each of the fac-
tors (a n) there will be energy denominator oper-
ators, such as those in Eqs. (6.33) and (6.34).

VII. DISCUSSION

The calculations performed in this paper have
made clear the mass and spin content of the gen-
eral Bhabha equations and algebras. Specifically,
as discussed in Sec. IV, in a given so{5) repre-
sentation, the mass eigenstates are decoupled in

the rest system and each mass state has in gen-
eral more than one spin solution. Outside of the
rest system, the different possible mass states

of a particular Bhabha equation are coupled, and
to decouple them one uses the generalization of
the Sakata- Taketani reduction, which has been
the main theme of this paper.

Further, the physical significance of the built-in
subsidiary components for integer-spin systems
is understood as being the "infinite mass" solu-
tions to the equations. They are there simply be-
cause the algebra matrices for integer spin have
some eigenvalues which are zero, as does any
integer so(5) angul. ar momentum matrix.

It was also of special interest to find out that
when a Sakata-Taketani reduction is made, de-
coupling these "subsidiary components" from the
"particle components, " then the separate subsid-
iary-components Hamiltonian equation is an iden-
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tity in terms of the particle-components eigen-
value E. That is, all of the physics of the Hamil-
tonian formulation of integer-spin Bhabha fields
is placed in the "particle components" alone by
the ST decomposition.

This enlightens an interesting calculation by
Iachello. " Recall that it has recently been
found" "that when there is symmetry breaking
(the initial mass m is not equal to the final mass
g) in meson current processes, then the descrip-
tion of the process using the DKP formulation no
longer yields the same results as the standard KG
description. Iachello" calculated some of the same
symmetry-breaking meson current quantities
using the Sakata- Taketani particle components
(i.e. , what is commonly called the Feshbach-
Villars equation") and found that the same new

results obtained using the DKP equation were ob-

tained using the ST equation. In particular, using
Eqs. (2.7) and (5.1) in paper I (Ref. 12) for the
DKP and ST free solutions, one can verify
Iachello's result that the expectation value of the
density operator (fourth component of the current)
is

(p) (PP q)DKP

1 1 mE'+ pE
2V (EE')~~2

(7.1)

If one writes this result in the rest frame of the
initial particle (E =m), then one has that the cru-
cial quantity in the large parentheses is

(
mE'+ pE

1/2 1 /2 (m +E') +, , (m-E')(-m+ p}, 1

—fP'Z P (m + p.j
(7.2)

8HC(g) pS -& (7.4)

8, would project out the particle components of a
single spin and mass. The high dimensional 8p
would eliminate the equivalent of the rest of the
Bhabha multiple mass and spin states (leaving

The two quantities in the square brackets of (7.2)
are those which produce the different results for
the DKP formulation of K» decay. Explicitly, they
are the quantity (m + p)/(m' ~'

p, '~') = 1.22 which
makes the Cabibbo angle smaller, "and the quan-
tity (-m + g)/(m + p) which adds the factor"
(- 0.57) to what one would have thought was the
symmetry-breaking parameter (.

We can also comment on the type of ST opera-
tors one would have if the Harish-Chandra alge-
bra relation Eq. (1.27) were used. We now can
easily see that the relation (1.27) demands that
the a„are the y„(not —,'y„) for the Dirac case, that
they are the P „for the DKP case, and that for
higher spin the relation will have only three eigen-
values. In particular, the eigenvalues will always
be 0 and +1 (as for DKP). Thus, the two Harish-
Chandra ST operators would simply be

(7.3)

the single one desired) as well as the equivalent
of the infinite-mass subsidiary components in the
integer-spin case. However, as we have pointed
out, it has proven difficult"' " to try to define a
consistent arbitrary spin set of equations based
on the Harish-Chandra condition (1.27).

Finally, since we have obtained the general
Bhabha Hamiltonians, H, for both half-integer
spin [Eq. (5.2)] and integer spin [Eq. (5.14}j, the
other Poincare generators (P, T, and K) are easily
defined for an arbitrary Bhabha field. We can
thus now show that these generators satisfy the
expected Lie algebra. This will be done in paper
III '
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