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Supersingular quantum perturbations
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A perturbation potential is called supersingular whenever generally every matrix element of the

perturbation in the unperturbed eigenstates is infinite. It follows that supersingular perturbations do not

have conventional perturbation expansions, say for energy eigenvalues. By invoking variational

arguments, we determine the asymptotic behavior of the energy eigenvalues for asymptotically small

values of the coupling constant of the supersingular perturbation.

I. INTRODUCTION

It is quite common to study an interacting quan-
turn system by perturbation theory which express-
es various properties of the full Hamiltonian
X =X, +A.V in terms of those of the unperturbed
Hamiltonian X,and perturbation V by power series
in the coupling constant X. In addition to count-
less problems of practical importance studied in
this fashion, significant theoretical knowledge and
insight is available for the quartic anharmonic
oscillator defined in suitable units by the Hamil-
tonian

X = P'+x'+ Ax',

where p = —fs/sx. In particular, it is known that
the power series in A. that defines the energy lev-
els for A. &0 is asymptotic, even though it is not
eonver gent, and, moreover, that ce r tain re sum-
mation techniques (e.g. , Pade approximants) lead
to convergent expressions for the energy levels. '
Essential for any such calculation are the matrix
elements of the potential in the unperturbed eigen-
states, and for perturbations that leave discrete
levels isolated from the continuum it has been
stated by Kato that the series solution is asymp-
totic whenever the matrix elements of the poten-
tial can be defined.

In the present paper we consider quite a differ-
ent situation. By a supersingular potential we
mean a potential so singular that generally every
matrix element of the potential is infinite unless
prohibited by symmetry considerations. As an
example of this type we mention the Hamiltonian

X = P'+x'+ A.e" (2)

for which no conventional perturbation series ex-
ists. Our aim in this paper is to determine the
leading asymptotic behavior of the energy levels
of supersingular perturbations as a function of
asymptotically small (positive) p.

Quite generally, let us suppose that u denotes
an eigenstate of Xo with energy E and g denotes

an eigenstate of 3C=X, +XV with energy E(A) We.

assume that P is associated with u in the sense that
/goes touandnot, for example, toanother eigen-
state of X, as A. -O. In a one-dimensional space
such as we consider, it is necessary that u satis-
fy Dirichlet boundary conditions at the singular
point of V, i.e., u=O at the singular point. Then
for some X, &0 and all A, 0 & X& Ao, t u*gd x»»0,

and it follows that

e(X) =-E(X) E-
f »»( C3-X )gdx

fu*gdx

Xfu*Vgdx

fu~ydx

e(X) =K(- Ink)'~» exp[-(-Ink)'~ ], (4)

with an undetermined constant K, 0 & K & ~. In

principle, our method determines the constant K,
but generally we only obtain an upper bound.
More precisely, an equation such as (4) means
that as x-O,

e(X) exp[{—lna)""J/{—Ina)' » -K,

but we prefer the heuristic form (4). It is note-
worthy that relations (4) or (5) apply only to the

ground state of Eq. (2); different asymptotic ex-
pressions apply for each of the excited states. '

In See. II we study a rather large class of un-
perturbed Hamiltonians and supersingular poten-

Consequently, whenever J u*Vudx/f u&dx =~ the
leading behavior of e(A. ) is stronger as A. -O than
A. [i.e. , e(A)/A. -~], but is not stronger than 1

[i.e. , e(X)P~J. In fact, since we have imposed
Dirichlet boundary conditions we will be concerned
with continuous perturbations for which e(a)-0.'

For the particular case of Eq. (2) we have shown
that the energy deviation e(A.) appropriate to the
ground state is given for asymptotically small A.

by the relation
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tials of the general form

X= p'+ u(x}+A.V(x),

each of which has a discrete spectrum. We con-
sider various expressions for w(x) and for V(x)
that may have supersingularities either at x =~
or at x = 0 (which is representative of a supersin-
gularity at any finite x), and we determine expres-
sions for the asymptotic form of the energy devia-
tion in each case.

In Sec. III we report the results of a numerical
study that provides a satisfactory numerical con-
firmation of the asymptotic energy deviation for
the ground state in the case that w(x) =x' and V(x)
= ~xj ", n ~ 3, and when we restrict x so that
0&x&~. This calculation also yields values for
the constant of proportionality [analog of K in Eq.
(4)] that may be compared with our estimates in
this case.

II. ANALYTICAL RESULTS

In evaluating the right-hand side of Eq. (3), one
might attempt to approximate g by a WKB-type
solution' of the form

where w(x) and E(X) have been neglected relative
to wV(x) since a solution is required in the region
where XV(x) is very large. The condition for the

validity of this solution is

[xV(x}]"'» V' x)
V(x}

However, if one adopts the WKB solution the in-
tegrand u~Vg is, for small A. , a strongly peaked
function having its maximum generally where

[.V(.)) t = -'"'.
4 V(x)

It is therefore clear from condition (8} that WKB
does not provide a good solution in the region of
interest.

A more useful approach to determining g is pro-
videdby variational methods. We will assume
the ground state solution iI is of the form g(x)
=q(x)u(x), where u(x) is the solution to the unper-
turbed problem, and we will determine g(x} so as
to minimize the energy E(A}. The amount of in-
formation derived from this method depends on
the choice of parameters used to describe q(x).
We will use a simple expression for q which al-
lows us to determine the functional form f(a) of
the A. dependence for the leading term in the ex-
pansion of e(A), but gives only an uPPer limit on

the proportionality constant K [i.e. , e(A.) & Kf (X)].
To choose an appropriate form for q(x) we need

ws(x/x, ) =0, x&x,
x&xo

and requiring

q(x) =1, x&x, —&

=0, x~x, .

(14)

(1 5)

With these modifications the argument in the two

cases is similar. We discuss the singularity at
x = 0 in detail, pointing out the corresponding re-
sults for a singularity at x =~ where appropriate.

Our objective is to evaluate the leading term of
the A. dependence for the expression

to know something about the effect of our perturb-
ing potential A V on the solution. Characteristic
of the supersingular potentials is an extremely
steep region near the singularity and a negligible
slope some distance away from the singularity.
The details of this steep region depend on the
particular potential but its existence is common
to all such potentials. Therefore one is led to
approximate these potentials by adding an infinite
wall to the problem whose location x, is deter-
mined by the potential. Noting that to be dimen-
sionally consistent with the ever-present p' part
of the Hamiltonian K„A.V must have the dimen-
sions (length} ', we determine the point x, at
which the perturbation begins to look like an in-
finite wall from the condition

A. V(x,) = 1/x, ' .

The problem is now reduced to finding the eigen-
vectors of the Hamiltonian K = K, + A V, with an in-
finite wall introduced at the point x, . As discussed
above, we will assume a solution q to this prob-
lem of the form

y(x) = q(x) u(x),

where u is an eigenstate of 3C„and we will deter-
mine q by variational means. Far away from xo
we expect g= u and q= 1. At x„&(x,) =q(xo) =0
because of the infinite wall, so q(x) must drop
from 1 to 0 over some region & near x, . We dis-
tinguish two cases, according to whether the sin-
gularity is at x=0 or x=~. In the first case, the
problem is approximated by adding to the Hamil-
tonian a left wall w~(x/xo) of the form

w~(x/x, ) =~, x&x,
=0, x&x,

and assuming q has the form

q(x) =0, x&x,
xox +

A singularity at plus infinity is treated similarly
by adding a right wall w„(x/x, ) to the Hamiltonian,
where
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e(~) =E(X) E,-
f"y*[3C+wi(x/x, )]gdx

J g*gdx
(16)

We first consider the integral in the numerator of
Eq. (16) and take g to be real:

J
OO Xo+ 6

y*[3C+w~(x/x, )]y dx = [(g')'+ q'w]dx
Q XQ

+ {'u')'+ u'u dx
Xo'

q'=1/4
(18)

Here we have used the definition of q to separate
the domain of integration into appropriate regions.
Since xo+& is a small number, the second inte-
gral is very nearly the unperturbed eigenvalue E.
In the last integral the integrand becomes very
small far away from x, and we may replace the
upper limit by some appropriate "large" constant
c ~ To evaluate the first integral we note that, by
our definition of q,

+ y'XVdx .
XQ

(17) in the region between x, and x, + &, giving

Xp+ 6
[(q')'+ q 'u]dx =

"o+ ~
(q u' + 2qq'uu'+q "u'+q'u'w) dx

= A[A u'(x, )' + 28 (1/4) u(x, ) u'(x, ) + C (1/&') u(xo)' + A u(x, )'w(x, )], (19)

r q*[3C+ w~ (x/x, )]q dx ~ E + &[u'(x, )-" + u(x, )'w(x, ) ]
0

1
+ 2u(x, )u'(x, ) + —u(x, )'

C

+ A. u'Vdx .
XQ

(20}

Choosing ~ to minimize this expression we find

1 u'(xo)

(
+ u)(xo) . {21)

where we have introduced the constants A, B, and
C to take into account the details of the shape of
q'. {Although the optimum shape of q could in
principle also be determined by variational meth-
od, fixing the values of A, B, and C, we have
considered only a linear dependence of q on x.
This gives an upper limit of —,

' for the value of A,
2 for B, and 1 for C. We will therefore choose
A =B =C = 1 for the remainder of our discussion,
noting that we have thus determined an upper limit
on the proportionality constant K in what follows. )

With these substitutions, Eq. (17) becomes

Substituting Eq. (20) into (16), and using Eqs.
(10) and (21) to express x, and & as functions of
A, we now have the desired expression for e(X),

e(x) ~ 2u(x, ) (lu'(x, )l+ [u'(x, )2+ u(x, )'w(x, )]'~']

C

+A. u Vdx.
Xp

(23)

[The absolute value sign on u'(xo) has been intro-
duced to emphasize that this solution is indepen-
dent of whether the point of singularity is a left
or a right boundary of the domain under consider-
ation. ]

In general, the contribution of the final term in
Eq. (23) is O(x), which is negligible relative to
the first term and it may therefore be dropped.
For most of the remainder of this section we as-
sume that this is the case. However, in Eqs. (31)
and (32) we discuss a particular V(x) for which
this term plays a significant role.

For the case of a singularity at ~ the sign of q'
changes a,nd the last term in Eq. (20) becomes

When similarly treated, the normalization in-
tegral

Xp

u Vdx, (24)

(22)

yields a lower-order correction and may there-
fore be ignored in the above treatment.

where c is now some appropriate "small" number
[again this term is O(X) and in general negligible].
Repeating the above argument and noting that
-u'(x, ) = lu'(x, )l yields
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e(A) & 2u(x, }((u'(x, )[+[u'(x, )'+ u(x, )' zu(x, )]'~'}

rO

+A. u Vdx.
C

(25)

For n & 3, the integral contributes one term of
order A. and one which behaves like xp = A,

'
Therefore, whenever o &3, Eq. (29) is valid,
with a slightly larger upper limit for K and

For an infinite square well we can compare the
predictions of Eq. (23) with the exact calculations.
We let w(x) be

Qx) =0, 0&x& L

x&0, x&L (26)

and ask for the change in the ground-state energy
level when we introduce an infinite wall w~(x/x, )
near x =0. The exact calculation gives

2m'

(L —x )2 L2 L~ (27)

From Eq. (23), taking u(xo} = (2v/L)'~2 sin(vxo/L)
= (2v/L}' '(vxJL), we find

8 L3 xo Kxo ~ (26)

e(X) = Kx, (Z), (29)

with K & 16/Wv = 9, whenever the last term in (23)
y jr2can be ignored. For V(x}= e'~' this becomes,

using the definition of x, from Eq. (10),

e(X) =K/(- 1nw)'~' . (30)

Another example of this case is given by V(x)
=1/jx~", a & 3. This case is interesting in that
the contribution from the last term in Eq. (23) is
not negligible, and in fact for n =3 it is the dom-
inant term. When we evaluate this term for n =3
we get, using the value x, = A. from (10),

C

e(A) =Kx, + A u'Vdx
ro

4 ' 1 4=Kx +A. —dx= — A. ink. +O'A, .

(31)

This is in agreement with the form of Eq. (27),
and gives an upper limit for K equal to 4m times
the true value.

We now consider the more general case where
w(x) =

I
xI' for various values of ( and perturbations

singular at the origin or infinity. Since the exact
form of u(x) is known for $ =2 we will treat that
case first. For a perturbation singular at the
origin [e.g. , V(x) =1/~xj, V(x) =e'~* ], Dirichlet
boundary conditions require that we use the first
excited state of the harmonic oscillator, u(x)
= (2/v'~')xe * ~' for our unperturbed ground state.
Substituting this expression into Eqs. (21) and (23)
and using the approximations, valid for small xo,
u(x, ) = (2/v ' )x„u'(x,) = 2/v ' ~, we find 4 = xo and
thus

e(~) =K~'~t" -'& . (32)

u(x) =x ' 'exp[2/(f+2)x","' 'j
giving

e(&) =Kexp(4/($+2)[x, (&)J" "~'}.

(34)

(35)

If w(x) =C/x' ($ =-2), the solution u(x) is a Bessel
function which behaves near the origin like
Ax'" "' "~ ' giving

e(~) =K[x.(~)]""'"". (36)

For perturbations singular at infinity, we con-
sider only the case w(x) =x', with $&2. For f, &2
the WKB method gives

u(x) =x '~'exp[-2/((+2) x""'~'] (37

and we have from Eq. (25)

e(&) = Kexp[-4/($+2)x, '~ " '] (36)

Other choices of w(x) may be treated in the same
manner.

III. NUMERICAL RESULTS

In this section we discuss the numerical deter-
mination of values of e(&) for the case w(x) =x',

For 2&a&3, the O(X) term dominates, in agree-
ment with Kato's predictions for a perturbation
with finite matrix elements.

We remark that inverse power potentials fre-
quently arise in scattering theory' in which the
Hamiltonian reads p'+ a/~x~". Simple rescaling
(x-Sx, p-S 'p, S '=~A. ~) recasts this relation
into the equivalent form jul'~t' '(~p+1/(x( ),
which exhibits the complete dependence of the
Hamiltonian on A. for any at 2.

For a perturbation singular at infinity the ap-
propriate unperturbed solution is u(x)
=p ' 'e ' andwe find

e(A} =Kx, (A.}e "o'"", (33)

with K&2(1+&'2)/Vv =2.7. An example of this case
has already been given in Eqs. (2) and (4).

In general, it can be shown that whenever
w(x) =x', with g & -2, the lowest-energy unper-
turbed solution obeying Dirichlet boundary condi-
tions at the origin behaves like u(x) =x for small
x. Therefore Eq. (29) holds for perturbations
singular at the origin whenever w(x} =x, $& -2.
For $ & -2 we can use the WKB method to obtain
an approximate solution near the origin of the
form
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TABLE I. Ground-state energy levels (less 3) e(A) of the Hamiltonian P~+x~+A/~x~~, for
0&x &~, for indicated A, and n values.

3.0 3.5 4 p 4.5 5.0 5.5 6.0

0.01
0.005
0.0025
0.001 25
0.000 625
0.000 312 5

0.075 83
p.044 91
0.025 88
p.014 53
0.008 16
0.004 71

0.134 86
0.089 85
0.059 12
0.038 30
0.024 02
P.014 53

0.205 27
0.148 39
0 ~ 106 70
0.076 24
0.054 01
0.037 07

0.280 32
0.214 46
0.163 45
0.124 26
0.094 03
0.070 40

0.356 80
0.283 54
0.225 38
0.178 70
0.14143
0 ~ 11144

0.432 33
0.353 65
0.289 27
0.236 84
0.19347
0.157 71

0.505 74
0.423 02
0.353 95
0.296 19
0.247 88
0.207 39

e(A.) =KA.c (39)

predicted analytically (for a&3), we used the
linear least-squares method to fit the data to the
equation

lne(&) =C in&+lnK.

For & = 3 the data were fitted to the equation

e(&)/& =K in' + C.

(40)

(41)

Here we have kept the & term from Eq. (31), al-
though the ~ln ~ term is dominant asymptotically,
because the ~ term does not become negligible
until &~ 10 ', which is smaller than the values
we have used.

In Table II the values of K and C numerically
obtained for various values of o.' are displayed,
along with the analytically predicted values for C,
namely 1/(n —2), for && 3. We find reasonable
agreement between the analytical and numerical
values of C (about le/a) and values of K which are
well below the upper limits found in Sec. II.

V(x)=1/~x~ for several values of o&3 and com-
pare the results with the analytical expressions
given by Eqs. (31) and (32).

Using a computer program kindly supplied by
H. Ezawa, we have applied the Milne method' to
find eigenvalues E(&) of the equation 3cg =E(&)g,
where 3C = P'+x'+&/~x~ ', for various values of
& and o. The resulting values of e(&) =E(lb.) —E
(with E =3 for the ground state) are listed in Table
I.

In order to determine values of K and C which
best fit the equation

singularity. This correspondence between the
eigenstate g of & and the eigenstate u of &, is
defined by the requirement that $ —u as ~ —0. In

a one-dimensional space, this requirement is
satisfied for (, the ground state of &, by choosing
u to be the lowest-energy eigenstate of &o which
satisfies Dirichlet boundary conditions at the point
where V is singular.

The use of this formula has been demonstrated
in several particular cases for &, = P'+~x~ ".

, with
various choices of $ and perturbations V' singular
at either x =0 or x =~. In the case of &, =P'+x',
V =1/~x~, a&3, we have confirmed these results
by a numerical calculation reported in Sec. III.

Techniques such as those developed here may
possibly be extended to higher-dimensional prob-
lems and to excited states. It would be interesting
to look for a practical iterative procedure to deter-
mine higher-order terms in the development of
the energy in ~. Application. of such results could
be made in singular perturbation theory and per-
haps in quantum field theory.
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TABLE II. Coefficients K and C for best fit of data of
K&c

1/(~ —2)

IV. SUMMARY

We have derived a general formula for the as-
ymptotic behavior of the lowest-energy eigenvalue
E(lw) of a. one-dimensional Hamiltonian 3C=3C +X V

(with V being a supersingular perturbation) which

may be applied whenever the behavior of the cor-
responding eigenstate u of &o is known near the

3.0
3 ' 5
4 p

w. 5
5.0
5.5
6.0

—2.100 00
2.665 66
2.006 08
1.765 68
1.677 00
1.650 11
1.652 55

' Fit to e(A.) =KA. lnA. + CA. .

—2.198 39 ~

p.640 23
0.491 57
0.398 05
0.335 41
0.290 66
0.257 16

0.666 67
0.500 00
0.400 00
0.333 33
0.285 71
0.250 00
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