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A two-channel Chew-Pignotti —type podel is constructed which describes the two-charged-particle

correlations and the rapidity-gap distribution for the nondiffractive component of the hadronic cross
section at high energies.

I. INTRODUCTION II. THE CONTEXT OF THIS MODEL

Although it is generally conceded that a multi-
peripheral or Mueller -Regge model describes
particle production in hadron-hadron collisions at
high energy, no detailed model has yet been pro-
posed to fit the data. ' Given the equivalence of the
models2 one should expect one model (i.e. , one set
of parameters) which would fit the gross proper-
ties of both inclusive and exclusive data. There
are many obstacles to overcome before this can
be done, although the outline of the solution of each
problem is known. The main problems are (l) the
Pomeron or la, rge rapidity-gap problem, (2) iso-
topic spin, (3) end couplings and baryon exchange,
and (4) thresholds in multiperipheral phase space.
In the next section 'hese problems will be dis-
cussed to explain the limits of application of the
present model; however, we now state that we are
considering a model of char ged -par ticle production
in the central region by the nondiffractive or short-
ranged component of the cross section.

The question which is considered is: Can a
simple generalization of a Chew-Pignotti (CP)
model' explain the high particle density and the
rather strong two-particle correlation (both mag-
nitude and correlation length)? That is, can such
a model handle clustering in a way which is con-
sistent with the data? Also the experimental
rapidity-gap distribution from the 200-GeV bubble
chamber data has recently become available and
is a sensitive test of whether any model is han-
dling clustering correctly. We will compare these
data to the model.

We will show that a two-channel generalization
of the CP model can describe adequately all the
presently known clustering effects seen in the
central region (except whatever actual production
of resonances exists). Before proceeding with this
model we want to consider quite precisely where
it fits, in the hope for a general model of the
Mueller-Hegge or multiperipheral type to explain
all the data.

It is now well established that the Pomeron
problem can be separated from the remaining
multiperipheral model. 4 The two -component con-
cept, ' diffractive+ short-ranged components, is
just this separation. The short-ranged or non-
diffractive component, which is about —,'of the
total cross section, is the zeroth-order term in
an expansion in the triple Pomeron coupling and
contains none of the self-consistency problems
this coupling causes for the total cross section.
In the remainder of this paper we will consider
only the short-ranged component of the cross
section, its multiplicity, inclusive distributions,
etc. This also implies that all the inclusive dis-
tributions should be normalized by the nondiffrac-
tive cross section instead of the elastic or total
cross sections as is now the practice.

At present it is not known whether isotopic spin
is more of an inconvenience or a real problem.
In an examination of a large collection of isospin
multiperipheral models Coulter and Snider' showed
that certain features of the data which are particu-
larly sensitive to the details of isospin in the mod-
els could be understood, but still other long-
standing failures of all isospin models remair'ed.
The most severe of these is the failure of all mod-
els to date to yield a pair of degenerate I=O and 1

traj ec tories below the leading I= 0 traj e ctory
which all models produce. The other problems
(e.g. , difficulty obtaining a positive correlation
between neutral and charged particles) probably
are related to this failure to obtain degenerate
I= 0 and 1 secondary trajectories. The more rea-
sonable (in other respects) models always seem to
yield the leading I= 1 trajectory between the lead-
ing and second I= 0 traj ectorie s.' ' Without thi s
degeneracy there is little chance of fitting corre-
lations, etc. , which depend on secondary trajec-
tories. We will avoid this problem in this paper
by only considering charged-particle data. Be-
cause we sum over neutrals and ignore the sign of

140



MULTI PERIPHERAL DESCRIPTION OF C LUSTERING IN. . . 141

the charge, isotopic spin i s not a useful concept.
End couplings, baryon exchange, and the ap-

proach to scaling will be neglected here by our
only proposing a model for the central plateau.
In the central region mostly pions are produced,
and for pion production it is believed that the ef-
fects of thresholds (or hard-core repulsion in the
langua. ge of the Feynman ga, s a,nalogy) are not very
important; hence we neglect them. At the end of
the paper we will return to this effect and find
that it is surprisingly small.

III. THE MOTIVATION OF THE MODEL

n(s) s ~ (2)

A similar result holds for the charged particles
produced and the /going cross section'

pch 1
I ch~

o"&& (s) ss

(3)

(4)

In the CP (single-channel) model P,„and P,„would
be identical; we introduce different symbols here
to be able to discuss each independently. We know
today that p „ is approximately 2.0 (remember,
this is the density for the nondiffractive part only),
but the asymptotic decrease of the prong cross
section is probably in the range'

0.0&P,h &0.2. (5)

That p,h is in this range is reasonable when one
considers the known Regge trajectories with inter-
cepts near 0.5 (P =2n —1). (Since neutrals have
been summed over, [P + (I-P)] & P,h

& P.') The
fact that P,„ in Eq. (3) and P,h above differ so
greatly means that there must be strong cluster-
ing of the particles in rapidity. For instance, if
we used a model with an average of two charged
particles per cluster and with clusters produced
independently in a multi-Regge amplitude with
4=0.5 trajectories exchanged we could fit both
the large particle density and the slow decrease
with energy of the prong cross sections, because

As mentioned in the first section the original
Chew-Pignotti model does not contain clustering.
Hence it has no correlations among the second-
aries. However, the need for some clustering
effect is more profound than this; it already exists
when one considers only the single-particle den-
sity. Assuming that the nondiffractive cross sec-
tion is nearly constant, CP found

p=1 —P

where p is the density of produced particles in
rapidity space and P determines the asymptotic
energy dependence of the exclusive (nondiffractive)
cross sections (modulo lns) by

Eq. (3) would now read

p.g
= 2(I-P.h) (6)

However, an approximately equivalent description,
by duality, is to use a two-channel generalization
of the CP model. Then P,„ is some sort of weight-
ed average of the two P's and P,„ in Eq. (4) is the
higher of them. This two-channel description has
the advantage over the resonance description of
producing two output Regge trajectories and hence
the exponential-type short-ranged correlations
predicted by Mueller and apparently found in the
data.

Thus we are led to consider a two-channel CP-
type model which has one input singularity at
P =0.1 (to fit the energy dependence of the prong
cross sections) and one lower. It must produce
one output pole at 1.0 (for constant nondiffractive
cross section) and one at 0.5 (to obtain the correct
correlation length). ' Beyond this we want the
charged-particle density and normalization of the
two-charged-particle correlation to be correct.
Finally we will check the entire description against
the experimental rapidity-gap distribution.

The two-charged-particle correlation

1 d'cr 1 dcr 1 do
o dydy, ody, ody,

has for its integral f;", where

f,'" =(n,„(n,h —1))-(n,„)'.
Since we are considering the above quantities for
the nondiffractive part of the data C'" (y,y, ) will
asymptotically only be a function of (y, —y, ) and
will be given by

(y y ) C el'& 3 2ll

where L, the correlation length, is

1L-==2
An (10)

if we fix the two output poles at 1.0 and 0.5.
Then

dy, dy, C'" (y,y, )

= 2LCoF,

where Y= lns is the total available rapidity inter-
val. Of course we expect constant and s " cor-
rection but the above gives the leading part (lns)
correctly. From the above it appears that we
should be able to determine C, experimentally
from either the two-particle correlation function
or from the multiplicity distributions. However,
two considerations make either of these determina-
tions difficult; we are not at asymptotic energies
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and most of the data are for all inelastic events
instead of just nondiffractive. The separation of
diffractive and nondiffractive cross sections is,
at best, difficult. One estimate given in Appendix
A leads to

This yields

f, all 422, (~1 ~2)(gll Z22)+4S12 0(1/y)1' 2 2(o., —o. )

(22)

Rnd

C, =1.3 +0.9 (12)
y 0(1/y)1' (n, —o. )' (23)

f,'" = (5.2 + 3.6) Y+ const,

which shows the large imprecision.

IV. THE CALCULATION

(13) We note that at first glance the diagonal elements
of G do not affect f;", but the off-diagonal element
does in a direct manner. Hence to have a large
f'," we need a large g». But for n, and n fixed

g» is limited to [see Eqs. (16) and (18)]

We name the multiperipheral channels 1 and 2

and the Mueller-Regge channels + and —.The
multiperipheral couplings and propagators are

a„--'(~. —o. ). (24)

To obtain the maximum values (and incidenta, lly,
simply the results) we take

PA++&075 (25)

Rnd

and fix

g„= ' = 0.25.
2

(26)
0

!

1/(~ P.) i-
We introduce the fugacity for charged particles,
u, and solve for the output poles by finding the J
value where

This also fixes g» =0.65 from Eq. (17). The only
undetermined parameter is g» (or P, ) and the f 's
are given by

hach

J 1 0 575 g22
2

Det [ 1 —w GE(J')] = 0 .

This yields

P, (~) + P;(m) ~o (u)

where

(15)

(16)

Rnd

= (a., —0.65)'. (28')

Rnd

p, (zo) = p, +wg;, (17)
Thus we see clearly that (with the previously

imposed constraints) a large value of g» is re-
quired. If we take g» —-2.85 we can obtain

An(7$) = [(p, (u)) —p (K)) + 4ul g, ']'",
The physical output poles are n, and o. evalu-

ated at m =1; as explained earlier these will be
set equal to 1.0 and 0.5, respectively.

The asymptotic form of the multiplicity mo-
ments, f;, where

ch—2—=48
Y 7 (3o)

f =(ni) Pay

f'," =(n,„(n,„—1)) —(n,„)'

(19)

(2o)

which is quite close to our estimates of the experi-
mental numbers. This means that the lower input
singularity is quite low,

2 I 2 +22

are found by differentiating a, with respect to u.
That is,

(21)

If we look for a real Regge pole to produce such a
singularity it would have to have an intercept near
4= —0.55, perhaps a daughter of the 4=+0.5 tra-
jectories. Instead this is probably some average
of various low-lying singularities.
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Notice from Eqs. (27) and (28) that a, lthough we
can comfortably fit the data, they border on being
impossible to fit. If as the present imprecise ex-
perimental values of f;" and f;" for the nondiffxac-
tive cross section get more precise we find that
the slope of f'," vs Y becomes greater than 5.0
while p,„remains at 2.0 or less, then this type of
model is in trouble. That is, there is a limit to
how large the two-particle correlation may be in
this model and the present data, indicate that this
limit is essentially reached.

V. THE RAPIDITY-GAP DISTRIBUTION

( ) g -( p —Bg) ~ -( + —&2)r+ e2 (32)

where A; are given in Appendix B.
Notice that since P, is so low we expect a sharp

decrease for small r,
dn

e -3.I.r
dF

(33)

By the rapidity-gap distribution we mean the
distribution in rapidity difference between neigh
boring final-state particles (when ordered in
rapidity). Each 2-n event contributes to the dis-
tribution n —1 times. This distribution is inde-
pendent of the two-particle correlations since it
receives contributions only from rapidity differ-
ences between neighboring particles. If we assume
that a multiperipheral model is correct, this dis-
tribution is probably as close to directly measur-
ing the kernel as any measurement one can imag-
ine. For a single-channel model it is just the ker-
nel, and for a multichannel model it is, of course,
determined by the kernel.

Since we are only considering charged particles
we use instead the rapidity interval between two
consecutive charged particles independently of
whether there are intervening neutral particles.
Because we are interested in the distribution in
the central region we neglect the leading charged
particle on each end in the rapidity space. This
means we have no contribution from the two-prong
events and the n-prong events contribute n —3
times. Since at FNAL energies almost all dif-
fra, ction is single diffraction this cut practically
eliminates the contribution from the rapidity in-
terval across which the Pomeron connects. The
other intervals in a diffractive event are expected
to be typical of nondiffractive events so that we
should obtain the same distribution as for the non-
diffractive or short-ranged component of the cross
section.

In Appendix B we show that the rapidity-gap
distribution asymptotically can be written in the
form

Using the values chosen previously, namely
n, =1.0, n =0.50, P, =P, =0.75, P, =0.10, and

P, = —2.10, gives

dn—=0.20e ""+2.40e "" (34)

IO'
-dn/dr

Ioo

IO'

IO

IO 0 I.O
I I

2.0
Rapidity Difference, r
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FIG. 1. The rapidity-gap distribution for charged
particles in the central region. The experimental dis-
tribution is from the 205-GeV/c bubble chamber data
on particle production in pp collisions. The bin size is
first 0.04; then for x&1.2 it is 0.08. The theoretical
curve is from Eq. |'34) in the text. The dashed lines show
the contribution of the two terms individually.

In Fig. 1 this prediction is compared to the ex-
perimental distribution obtained from the 205-
GeV/c data on particle production in PP collisions. '
The experimental distribution is expected to have
attained its asymptotic value only over a range of
x from r = 0 to some finite value, which from the
data appear s to be 2.5 or 3.0. Thus our asymp-
totic distribution should agree only over this range,
which it appears to do reasonably well. In par-
ticular the rapid decay at low x is found in the
data and it also appears to have another part which
decreases more slowly.

The continuation of the sharp exponent rise
down to very small x is surprising. Hard-core
repulsion (multiperipheral phase-space cutoff) is
expected to cause dn(dr to have a dip at y =0.
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There appears no indication of this for ~ down to
0.04. (Finite experimental resolution could fill in
the dip at x= 0, but it would not produce a sharp
peak. ) This lack of repulsion, if true, indicates
that complex poles probably are not important in
the nondiffractive cross section. "

Before concluding we must point out what may
be an important failing of this model. By using
Eq. (21) to obtain the asymptotic form of f;" we
find that asymptotically f;" = —3f',", which dis-
agrees with the experimental f'," at present ener-
gies. " However, we must remember that this
prediction is for the nondiffractive component only,
while the data are strongly affected by the diffrac-
tive part. Also, each successive f;"seems. to
need higher energy to approach its asymptotic
form, so it may be too early to reach any con-
clusion about the asymptotic form of f;".

Except for this possible source of trouble we
have a model which appear s to de scr ibe correctly
the clustering effects in the charged-particle pro-
duction cross sections, both inclusive and exclu-
sive.

relations due to diffraction. If we assume that
these are charge independent and noting that A
is essentially constant at 0.3 a 0.1 we subtract
this value we get for the short-ranged part alone

R,h,h(00) =0.4+0.2. (A4)

For the entire inelastic cross section p,„(0)
= 1.66,"but we estimate that for the nondiffrac-
tive part

p,„(0)= 1.8 a 0.2 .
This yields

C, = 1.3 + 0.9

and hence, using Eq. (11),

f ',"= (5.2 a 3.6)Y,

(A5)

(A6)

(A7)

a very imprecise value and not very different
from taking the experimental result directly.

If we try to get f;" from the multiplicity distri-
butions we are in even worse trouble because of
diffraction. An attempt at a linea. r fit to f, vs Y
gives a range of slopes of perhaps 1.4+ 0.5."

From charge conservation we have"
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APPENDIX A: ESTIMATING THE EXPERIMENTAL
VALUE OF Co

C,„,h (y, = y, = 0) = 1.38 + 0.16 (A1)

at 205 GeV/c.
Perhaps a better estimate may be obtained by

carefully trying to correct for the various "per-
turbing effects. " If we use the CERN ISR data"
and try to fit A,„,»

C(y, y2)

p(y, )p(y~)
'

to an e ""I '2 form we get a higher value for
Achch (00) than experimentally found, perhaps 0.7
instead of 0.6. Thus we take

(A2)

A,h,h (00) = 0.7 z 0.1 . (A3)

However, this still contains the long-ranged cor-

The easiest way to find C, is to find C'"(y, = y, =0)
directly in the two-charged-particle correlation
results. For instance, Singer et al. give"

where Q is constant. Taking p =(0.9+0.1), which
is the slope of f, vs Y, we get for the linear part
of f;"

fch 4f-
-2p + 2 —74y2 2 (A9)

However, the presence of diffraction makes f,
increase like Y' even if f,„,„„;;;=0. Some have
a,rgued on the basis of duality that fj d'ffis indeed
zero, and the entire increase we see in f, is due
to diffraction. ' ' This would mean

ch

-2p = 1.8+ 0.2.
Y

(A10)

APPENDIX B: THE RAPIDITY-GAP DISTRIBUTION

If A„(y„y„.. . , y„) is the probability of producing
n charged particles with rapidities y, & y, & ~ ~ ~ &y„
then our rapidity-gap distribution is

Hence, we must conclude that the presence of the
diffraction makes it almost impossible to get f',"
for the nondiffractive component from the unsep-
arated multiplicity distributions, and we thus re-
turn to our estimates from the two-particle corre-
lations. Notice that it would be quite useful to
separate the cross sections over a wide energy
range into diffractive and nondiffractive compo-
nents using a unique prescription.
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oo tl 2

(a —S)—=gP dyf dy, f.dy;fdy„, f dy d„(y„", y:„y( r+y, ;.„,y. ).
e=4 i=2

(B1)

In our multiperipheral model we have (since we
are not interested in the end particles we fix them)

&.=5(3»)»(32-$ )GF(33-32) "F(y.-x. )

( 1/(J- o.)
4)(J) =

i

o

1/(J- ) j
(B12)

x D5(Y- y„),
where E and G are matrices. To simplify the
algebra we transform to the J plane. Let

(B2)

(n —3)—(r, Y) =h(r, Y). (BS)

(B4)

1 C+ f~ C+t o

h(r Y') — d J' dj e~~ h)( r y) + ty

(2vi) c i~ c-—i~

Then

x h(j, J). (B5)

h(j d)=f dy drs(Y-r)e """"'
0 0

Then from the normalization of dn/dr we have

dn h(r, Y)
dr ' rdrh(r, Y)

'

0

We now define the double Laplace transform of
h(r, Y) with (j —1) the conjugate variable to r and

(J-1) the conjugate to Y-r [one can also say
"(J-1)conjugate to Yand (j-J) the conjugate to
~71 ~

p(j„j,) =& 4'(j )rc'(j.)&. (B13)

In a similar manner we see that the quantity we

want, h(j, J), is

h(j, J)

DEJ GEJ "GEjGEJ GEJ D
N=O m=0

=Dr~ F(J) ' —G] 'GF(j )G(F(J) ' —G] 'D

=i(.rC(J )SrGF(j )GS4'(J)rh

Here S is the J-independent orthogonal matrix
which transforms from the multiperipheral to the
Mueller-Regge picture. It is not difficult to gen-
eralize when one uses the multiple Laplace trans-
forms introduced above that the unintegrated ex-
clusive cross sections may be written in the form
of E(I. (B7) except that the E's each have different
arguments (which are the conjugate variables to
rapidity differences). A similar statement holds
for the unintegrated inclusive cross sections. For
instance, the double transform of the single-
particle density with j, the conjugate to y and j2
the conjugate to Y-y is

x h(r, Y). (B5)
C (J)I'S F(j )Sr@(J)i( . (B14)

P„(J)= ~'c (J)[rc (J)]"z,
where

(B8)

Notice that h(J', J') is just the (single) Laplace
transform of J"dr h(r, I') with (J- 1) the conjugate
variable to Y. The transform of an n-prong cross
section is just

o "ch(J) =DrF(J)[GE(J)]" 'D, (B7)

where F(J) is just the Laplace transform of E. As
explained in Pinsky, Snider, and Thomas an inte-
grated n-charged-particle inclusive cross section
(Laplace transformed) is given by"

Notice that

h(J, J)=~'e (J)re(J)~ —~'e (J)~+D'E(J)D

so that its transform is asymptotically (n -3)o",
as expected (see Ref. 15).

If we only want the asymptotic (in Y) contribu-
tion we keep only the leading (+) pole in the 4)'s
which gives

h(j,J)„„,„=i).,4 „(J)[SGE(j )GS]„(J)d3„.
(B15)

Transforming back and dividing by the asymptotic
integrated h yields

Z =S'D,

l =S~GS, (Blo)
dn e "+ ' "[S GF(r)GS]++

(r)asym =
++

(B16)

and

C(J)=Sr[E(J) ' —G] 'S. (B11)

The explicit form of 4)(J), the Mueller-Regge
propagator, is

Thus to obtain an equation for the rapidity-gap
distribution we are going to need the matrix S, so
we might as well also find the equivalent elements
of the Mueller-Regge description of the model.

For completeness we will obtain S for the more
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cos8 —sin8 )
S=

~

~

!

sin8 cos8 )
where

(B17)

general case than when P, =P,. S has the form

ch
1

y Y++ (B24)

Notice that using these we may check the equa-
tions in the text for the multiplicity moments since
in the Mueller-Regge formalism we have

1/2
p ~ 1/2

(B18) and

and

A useful identity is

sin6) coso =
4n

We obtain the elements of I',

I'=
i

Y-+ Y-- j
by using the above S in Eq. (B10) to obtain

(B19)

(B20)

fch 2Y
2

Y Aa

Using the above form of S we find that

[S GF(r) GS ]„= [(o, —P,)(n, —P,)' e

This allows us to write

dn ( i g -(&+-By)» g -(~+-82)»
2

(B25)

(B26)

(B27)

Y++ ~ [All(++ p2) + 2(~+ p2)(~-+ Pl)-
+ a~, (o'. p, )], - (B21)

with

(o'. p, )( -o. p,)'-
(~, -o. )Y"

=r ~ = "(p, -p, ), (B22) and

and (o., p, )( .n-p, )'-
(o'. —n )Y-. - (B29)

[S»(o'. -P2) -2(n. P2)(c.--P,)
Q

+All(++ pl)] (B23)
with the denominator y„Ao. determined from Eq.
(B21).
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