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A technique involving matched asymptotic expansions is used to investigate the dynamics of a black
hole surrounded by an external background universe, according to the Einstein field equations. The
approximation scheme is valid provided that the background curvature is small compared to the
curvature near the event horizon of the black hole. In this case the background produces only small

perturbations of the basic Kerr geometry near the black hole, while the black hole only affects the

background metric slightly at distances of the order of the background length scale. These two

perturbation expansions are matched in some common region of validity. It is then shown that the

black hole moves approximately along a timelike geodesic in the background, and that its spin is

approximately parallel transported along the geodesic. The largest effects of the black hole on the

background and the largest distortions of the Kerr geometry caused by the background are analyzed in

some detail. The background curvature induces distortions of a quadrupole nature in the black hole;
these then slow down the rotation, so that the basic structure of the Kerr black hole changes over

long time scales. A similar approach is used to describe the behavior of a small black hole in a

background, under the Brans-Dicke field equations. In particular, it is sho~n that a black hole moves

on a geodesic in the Einstein conformal frame; this confirms a conjecture by Hawking.

1. INTRODUCTiON

In recent studies of black holes in general rela-
tivity, most attention has been fixed on the Kerr
family of solutions to Einstein's equations. One

attempts to give a physically realistic description
of a black hole by superimposing linear perturba-
tions on an asymptotically flat Kerr solution while
ignoring the presence of the rest of the universe,
However, one sometimes needs to understand the

way in which a black hole fits into the surrounding
spacetime; for example, it may be interacting
with matter of comparable or much greater mass,
in which case the perturbation approach just men-
tioned is inadequate, and one should take into ac-
count the motion of the black hol. e relative to the
matter. We present here a technique for dealing
with this type of situation.

Let us suppose that the true universe (3R,g,b)

can be regarded as approximately a background
universe (K„g,'~0') on which a black hole of ap-
proximate mass M has been superimposed in
some nonlinear fashion. We require that M be
small, in the sense that a typical length scale
M associated with the black hole «a typical
length scale of the background universe, as speci-
fied by its Riemann tensor invariants, say. This
condition will only fail to be satisfied in rather
extreme situations, where the shape of the black
hole is strongly affected by external gravitational
fields, and can be seen as part of a reasonable
interpretation of our assumption that a background
spacetime can be separated out from (3g, „'„). We

suppose that g, b and g,b' satisfy the Einstein equa-
tions with matter, except that (K,g„) is empty in
a neighborhood of the event horizon, and that

(SR„p,ob)) is empty in the region where the super-
imposed field is large; thus we are not concerned
with accretion problems, nor with rings of matter
orbiting near the event horizon. We must also
a,ssume that (SR,g„) and (%„g,',") can each be giv-
en some sort of null infinity so that the notion of
a black hole is meaningful. Our discussion will,
be concerned almost entirely with the behavior
of the gravitational field in a neighborhood of the
black hole, and we deliberately avoid any mention
of global questions. A rigorous treatment of the
problem is far beyond the scope of this work, and
we merely suppose that the true and background
universes are sufficiently well behaved in the
large that. our local considerations are valid.

At points which are separated from the black
hole by distances of the order of the background
length scale, the presence of the black hole will
make little difference to the background metric

This suggests that we treat the effect of the
black hole as a linear perturbation on g,b', at
least far from the strong-field region with length
scale M. Clearly a different description is needed
in the strong-field region. To motivate this de-
scription, we remark that the spacetime curva-
ture in the strong-field region is of order M ',
which is much greater than the background curva-
ture in a neighborhood of the black hole. If we
accept the indications of recent work that the
Kerr solutions are the only stationary vacuum
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black-hole spacetimes, and are stable against
small perturbations, then we are led to describe
the strong-field region as a Kerr solution which
is perturbed by the presence of the background.
It then becomes necessary to relate these two
descriptions of the gravitational field on the back-
ground length scale and on the black-hole length
scale. One achieves this by using the technique of
matched asymptotic expansions. This technique
was first used in general relativity by Burke' in
order to relate the nea. r-field region and the wave
zone in the problem of slow motion radiation, and
is a standard method of applied mathematics for
dealing with problems involving more than one
length or time scale.

In order to make mathematically sensible state-
ments about a perturbation problem of this type,
we must allow the "mass" M of the black hole to
become a small parameter, varying in some in-
terval [0, x). Thus, instead of making statements
about a fixed spacetime (9R, g„), we make asymp-
totic statements about the metric as M-0, which
one can then attempt to interpret in (K, g.,). Fol-
lowing Geroch, ' we consider a five-dimensional
manifold with boundary, 3l, which is built up
from the spacetimes (%„,g„(VI)) for M~[0, x),
where g„(M) is the metric corresponding to
"mass" M, and g„(0)=g,",'. More precisely, when
M =0 we should exclude from 9g, a smooth time-
like world line l, in (3g„g&", ), which will later
be seen to be a zeroth-order approximation to
the position of the black hole. It is required that
the contravariant metrics g' (M) define a. smooth
tensor field on X; this expresses the fact that the
black hole is only a small perturbing influence on
g. &,"far from the event horizon.

We shall introduce a coordinate system
(w, x, y, z, M) in an open subset of 0f such that the
excised line l, is given locally by x = y = z = M= 0.
Here v is a temporal coordinate and x, y, z are
spatial. Then as v, x, y, z- consta. nts, M-0 we

may give g„(M) an asymptotic expansion appro-
priate to the perturbation of g~", by the far field
of a Kerr black hole; this procedure will be re-
ferred to as the external (approximation) scheme.
We shall also require that as (v —~,)M ', xM ',
yM ', zM ' - constants, M- 0 for any time To,

the metric approximates that of a. Kerr solution
of mass M, where the usual Kerr parameter a
satisfies aM ' - constant as M- 0; this will be
referred to as the internal (approximation)
scheme. One carries out the matching by as-
suming that the external and internal schemes
each have wider domains of validity than those
just described which overlap in such a way that
both asymptotic expansions ean be used in an in-
termediate region where (7 —w, )M "', xM ' ',

yM '~', zM-'"-constants, M-0 (say). One can
then compare terms in the expansions and use
the resulting information to impose boundary con-
ditions on the two schemes. Thus, for example,
comparison with the external scheme in the match-
ing region will give us information on the interna, l
scheme at large xM ', yM-', zM '.

We have already given the physical motivation
behind the internal and external schemes, and it
remains to interpret the matching region in terms
of the fixed universe (Ãt, g„) as a domain in which
a transition is effected from the black-hole re-
gime to the background, on length scales between
M and the background length scale. This physical
point of view was adopted from the start by Man-
asse, ' who studied a special case of the problem
considered here, where the background (SR„g,", )

is a Schwarzschild metric, and a small Schwarz-
schild-type black hole falls approximately along
a radial geodesic L, of the background.

In See. II we shall discuss the asymptotic ex-
pansions and matching in some detail. This leads
in Secs. III and IV to the conclusions that the
zeroth-order world line l, is a geodesic in the
background universe and that, at the lowest order,
the spin of the black hole is parallel propagated
along l, in the background. We consider the dis-
torting effects of the background on the internal
structure of the black hole in Sec. V; these cause
the basic parameters of the black hole to change
over a sufficiently long time scale. Then in Sec.
VI we consider the situation where the small
black hole is essentially nonrotating, in which
case more explicit information on the internal
structure can be found. Section VII is devoted
to the per turbations of the background caused by
the far field of the black hole. In Sec. VIII we

apply the same methods to the ease where a small
black hole moves in a background universe, under
the field equations of the Brans-Dicke theory of
gravitation.

II. ASYMPTOTIC EXPANSIONS AND MATCHING

As remarked in the Introduction, we introduce
a coordinate system {7,x, y, ~,M) in an open sub-
set of the five-dimensional manifold X, such that
a certain preferred timelike line l, in (5R, ,ig„,' )

is given by x = y =z = M =0. Since the contravari-
ant metrics g"(M) are assumed to define a smooth
tensor field on X, we may make the asymptotic
expansion

g„(M)(7, x, y, z) = gt,"(7,x, y, z) + Mg,'~b'(7, x, y, &)

+M'g~", {i,x, v, z)+ O(M }

(2.1)
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R(o) 0 {2.2)

near L„where R„"is the Ricci tensor of g,,'.
Note that each(K„, g„(t}d)) may still contain
matter for (x, y, z) sufficiently small, even though
the one-parameter family of spacetimes satisfies

of the one-parameter family of metrics in this
coordinate system, This expansion is valid at
least as 7, x, y, z - constants, M-0, provided the
limiting field point does not lie on Lp and is to
be called the external (approximation) scheme.
In the external scheme, L, is singled out by the
fact that the perturbations g,",', g.", , etc. diverge
as (x, y, z)-(0, 0, 0), and for this reason lo must
be removed from X.

We assume that each metric g„(M) satisfies
the Einstein equations with matter, but that as
(7, x, y, z) —(7O, x„y„zo)s (7O, 0, 0, 0), M- 0 with

(x„y„z,) sufficiently small, then for sufficiently
small M we have empty space. In particular, we
assume that the background is empty in a neighbor-
hood of lp,

the condition above.
At present we do not impose any further con-

ditions on the components g,',",g.", , g,", , etc. How-

ever, any use of matched asymptotic expansions
in general relativity is bound to be heavily coor-
dinate-dependent, since one needs to fix a coor-
dinate system in which to accomplish the match-
ing; in our case (7, x, y, z, M) will be this common
coordinate system. So if we choose a convenient
coordinate system for the internal expansion,
then not only genuine physical information, but
also information about the coordinate system
will be communicated to the external scheme by
means of the matching. Here, for example, some
extra conditions on the components of g &b near
L p wil l later be seen to be enf ore ed by our coor
dinate choice for the internal expansion.

To specify the behavior of the metric near the
event horizon in the internal approximation
scheme, we use certain coordinates CV, R, 6), Q', M)
which will later be related to the matching coor-
dinates (7, x, y, z, M}. The internal expansion is
then

ds' =M'(Zd8' —2)( sin'8dR dP'+2dR dV+ Z ' [(R +)t')' —&)t' sin'8] sin'8dg" —4)tZ 'R sin'8dg'dV

—(l —2RZ ') dV'j+M'h, t, (MV, R, 8, P') dx'dx'+M h~', (MV, R, 6, Q') dx'dx'+0(M') . (2.3)

Here y is some constant, 0 &
y & 1. Also

Z(R, 8}= R'+)t' cos'8,

&(R) =R' —2R+ )t'.

This expansion is assumed to be valid at least
when (V, R, 8, P') —(V„R„8„$,'), M- 0, and

R, ~ o.R+, where R,=l+(l —)t')'~' and 0&n& 1.
We note that the lowest-order part M'( j of the
internal metric is just the Kerr solution, describ-
ing a black hole of mass M and angular momen-
tum y M' rotating about the axis 6 =0, where M V
is an ingoing Kerr null coordinate, MR is the
usual radial coordinate, and 0, p' are Kerr an-
gular coordinates.

The other important feature of this expansion
is the dependence of the perturbation terms h,",~,

h~', , etc. on the variables V and R. We see that
the internal perturbations are allowed to vary
on the same length scale as the dominant Kerr
metric, through the variable R . But the time de-
pendence of these perturbations, through the
variable M V, is in some sense "slow motion"
with respect to the Kerr metric; it is necessary
to impose this time dependence in order to match
to the external scheme. We prefer to remove a

constant conformal factor M' from g„{M)and to
regard the internal scheme as describing per-
turbations of a unit-mass Kerr solution of the
form

Mh ~~ '(0, R, 8, Q ') + M' V —h tt '(&u, R, 8, Q '}
~(d I a =p

+ M'h, ",, '{0,R, 0, Q')+0{8'),

where we have given the perturbation terms a
Taylor expansion. %hen viewed in this way, the
internal expansion will be called the quasistation-
ary scheme (QS scheme). The removal of the
conformal factor need not concern us until we
come to computations of surface area.

We assume that as (V, R, 8, P')- (V„R„8„$,'),
M- 0 with R p

& n R+, then for sufficiently small
M eachg„(M) is locally a vacuum metric; as
stated in the Introduction, we do not allow the
black hole to interact with matter too near the
event horizon. But we do tolerate matter in the
region R & nR, for example the matter involved
in a stellar collapse, if the black hole is the rem-
nant of a heavy star.

In order to relate the coordinates {V,R, 6), Q', M)
to the matching coordinates (7, x, y, z, M), we first
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define T and Q by

dV = dT+ (R'+ y')& 'dR,

d(I)'=dP+y4 'dR .
(2.4)

Mj,",~(O, R, 8, Q)+M~T —j l', '(e, R, 8, p)

This particular scheme is the most convenient
for computations of internal perturbations, since
we may use the work of Teukolsky' on perturba-
tions of the Kerr solution, which is expressed in
Boyer-Lindquist coordinates.

We then require that a=vp+MT for all R & pR+,
some p, where R & pR, implies that the point
(T,R, 0, Q) is outside the ergosurface of the un-
perturbed Kerr solution; here 7, is some back-
ground time. For u R, & R ~ PR „we choose 7
= ~(V, R, M) such that (~= const) labels a spacelike
hypersurface of (3g„,g„(M)) which enters inside
the unperturbed event horizon jR =R, ), and such
that the surfaces (7 = const) are carried into one
another by the integral flow of the time-transla-
tion Killing vector of the unperturbed Kerr solu-
tion. The behavior of v for R & nR, need not be
specified. We also require that x= r sin6) cosP,
y = r sin6sing, z =r cos0, where r = MR; this
completes the rules for the transformation be-
tween (V, R, 8, P', M) and (7, x, y, z, M)

We see that to each background time 7, there
corresponds a whole internal scheme. Also the
M dependence of the transformation T 7 p+MT
(R & JR+) explains the quasistationarity of the in-
ternal perturbations. More physically, we have
QS internal perturbations because gravitational
waves only need a time of order M to cross the
black hole, whereas the background is changing

When we transform to coordinates (T, R, 8, P,M),
the lowest-order term in the internal expansion
becomes a Kerr solution expressed in Boyer-
Lindquist coordinates. Moreover, when (T,R, 8, Q)
—(T„R„8„$,), M- 0 with R, sufficiently large,
we are still in the region of validity of the inter-
nal scheme. In fact we have a QS scheme in these
coordinates, where a unit-mass Kerr solution is
given perturbations of the form

on a time scale of order 1. Thus the black hole
can adjust its gravitational field on what it feels
to be a long time scale in order to cope with the
tidal field of the background.

For convenience, we chose that the rotation
axis of the black hole should in some sense "tie
in" to the direction 8/Sz a,t time 70 on the world
line lp. But we do allow the rotation axis at an-
other time ~, to "tie in" to another direction in
the background, A(8/8 x)+q(8/sy)+ v(a/Sz). This
can be expressed simply by rotating the dominant
Kerr part of the internal metric. We do not allow
the lowest order "mass" and "scalar angular mo-
mentum" of the black hole to vary with 7, for rea-
sons to be seen in Sec. V.

The matching of the two expansions is carried
out in some intermediate region, say where
M ' '(T —T ) M ' 'x M ' 'y M '~'z- constants
M-0. It will not be necessary to examine this
region explicitly, for we shall assume that all
functions in the expansions are so well behaved
that they can be developed in power series in the
appropriate radial coordinate R or r, for large
R or small ~, respectively. Thus a typical ex-
pression in the internal scheme appropriate to
time v, (with conformal factor M' removed) can
be analyzed into terms of the form
M'R'f (~„MT, 8, P), where i and j are integers,
i & 0, and we refer the metric to coordinates
T,M 'x, M 'y, M 'z. Similarly, we decompose
the expressions in the external scheme into terms
of the form M'r'g(7, 8, P), where k, l are integers,
k~ 0. The matching then equates the functions of
time and angle, while the exponents are related
by k =i —j, l =j. The internal and external ex-
pansions can be regarded as grouping these basic
terms with power-law dependence on M and a
radial coordinate in two different ways; one group-
ing may be much more convenient than the other
for the purposes of a specific computation.

The conditions i ~ 0, k ~ 0 show that 0+ l ~ 0,
i —j ~ 0. Conditions are also imposed on the ex-
ternal scheme by the fact that the dominant in-
ternal behavior is Kerr-type. This appears in
terms with 4 + L = 0, i.e. , in the part of

g „'(7,x, y, z) which is most singular as (x, y, z)
—(0, 0, 0), for each k. For example, we find by
examining the Kerr metric at large R that the
most singular parts of g, ', , g, ', ,g.& are given by

(2.5)

gt', ld d 'xx4r '@~8 X x&dx d7+[(4r —2y" lt&r )x x —
lt lt r '+(x&X&}(x"ll +lt x )r

+lt~lt&r 25 a]dx"dxa
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as (x, y, z)-(0, 0, 0). Here Greek indices run
from 1 to 3, ~-'=x, x'=y, x'=z, e z is the
three-dimensional alternating symbol, 5

&
is the

Kronecker symbol, and we use a Cartesian sum-
mation convention for Greek indices. Also X™is
the three-dimensional vector representing the
lowest-order spin of the black hole; thus y-=(0, 0, }t) when 7 = r, . The condition on the con-
ponents of the background metric for (x, y, z)
= (0, 0, 0) is just a coordinate condition which
follows, via the matching, from our coordinate
choice for the dominant Kerr part of the inter-
nal metric. But the conditions ong(b) and p-(b)

contain physical information about the far field
of the black hole.

Similarly, the background metric determines
those internal terms with i —j =0; these are the
terms which grow most rapidly as R -~ at each
order in the internal scheme.

11L THE LOWEST -ORDER INTERNAL

PERTU R!RATIONS

+ sin'8(R'+}t'+2}t'RZ-' sin'8)&f&f&', (3.1)

where Z, & are defined as before, we consider
the Kinnersley null tetrad l', n', ni', n&', where

i'=-({R'+X')~-', 1, 0, &~-'),

(R'+)t', —4, 0, }t-)/2Z,

»&':-(i}tsin6, 0, 1, i /sin6)/2' '(R+ i}tcos8)

(3 2)

Here L'n, = —1, m'~Xi, =1 and all other inner pro-
ducts are zero. We define the Newman-Penrose
quantity

0=( f2b~g 1 8l t Nl (3.3)

where C„,„ is the Weyl tensor of any spacetime
perturbed about the Kerr solution. Then 4, has
unperturbed value zero, and that part of 4, cor-
responding to the lowest-order perturbations is
gauge-independent, i.e. , independent of infinitesi-
mal coordinate transformations.

In this section we shall show that the O(M) QS
perturbations are essentially trivial. This will
allow us to simplify both internal and external ex-
pansions by choice of coordinates.

We proceed by examining the linearized Ein-
stein equations for the QS scheme, and first re-
call the results of Teukolsky' on perturbations of
the Kerr metric. In the (unit mass) Kerr metric,
expressed in Boyer-Lindquist coordinates
(T, R, 8, &j&) as

ds = —{1—2R Z ')d T —4' sin 6 r, -'d T dQ

+24 dR +Zd6

The field equation for the lowest-order part of
4, is completely separable with respect to T, R,
6, Q. For stationary vacuum perturbations the
angular dependence in any mode is of the form
e' 'S(6), where

1 d . dSsin6-
sin6 d6 d6

)l&' 4 l'pl cos 6
+ 8+2 — . , — . , —4cot'6 $=0.sin'6 sin'6

(3.4)

This equation has eigenvalues a= (L —2)(L+3)
for L& 2, L& ~»&~, and eigenfunctions S(8) =,Yl. (6),
the spherical harmonics' of spin weight 2. The
radial equation is

+
d

'+6(R —1)
o'w dw
dR

+',[ '}tm'+4i }t»(&R—1)]h ' —&jW=0.

(3.5)

This is a hypergeometric equation, with regular
singular points at R =R = 1 —(1 —

X ), R+ p
and

As R -~, a solution of the radial equation be-
haves either as R ' or as R

We apply this to the perturbations at O(M) in
the QS scheme. As follows from the remarks on
matching near the end of the previous section, the
O(M) QS metric perturbations cannot grow any
faster than R as R -~, when referred to coordin-
ates T, R sin6 cosg =X, R sin6 sing = Y, R cos6 '

= Z. Moreover, the part growing as R is deter-
mined by the 3I'r' terms in the external scheme,
i.e. , by the first derivatives of the background
metric on l, . Provided the functions involved
are sufficiently regular, the O(M) part of 4'„due
to the lowest-order QS perturbations, will then be
O(R ') a.s R-~. Hence in each mode, specified
by (I-, n&) the radial function W~(R) must be
O(R ~ ') as R-~.

The argument now takes a different course ac-
cording as ni c 0 or m = 0. Suppose first that mco.
Then it may be verified that

W (R) =constx(R -R ) ' &~(R -R, )
~-"&~

x F I.—1, 4+1 —2y; 2J+2; +R -R+

(3.6)

where y =i »&}t/(R, -R ) and F[, ;; ( is the
standard notation for the hypergeometric function. '
Before imposing the boundary condition that the
perturbations be regular at R =R+, we remark
that the Kinnersley tetrad becomes singular as
R -R, . A tetrad which is regular near R =R,
has been described by Hartle', in particular
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E' = E'
H 2{g2+X2)

ma ma Xi sin 6)
La

&2(R+iy cos8}

where L'„, n„', m'„, m~ is the Hartle tetrad. We
transform the O(M) part of 0'„ to this tetrad, and

find' that in the (L, m) mode it behaves as
)'m

e @ Y (
+

where (8, Q') are Kerr angles which are well be-
haved near R =R, . To find the behavior of Wz(R)
as'-8+, we use the re).ation'

F(A, B;C; g] jl'(C)

(- g) "F[A, 1 —C+A;1 —B+A; g ']+ (- () F[B,1 —C+B; 1 —A+B; g '],
(3.8)

which is valid for application to (3.6) as R -R, .
Altogether, this shows that the O(M) part of 4',
in this regular tetrad contains a term which be-
haves as (R -R+)' '&~ in the (L, m) mode as R
-R„unless 4'0 0 in this mode. Since the QS
perturbation must be regular at R =R „and
mc 0, we must have 4, —= 0 in this mode at O(M).

Now suppose that m=0 and that the perturbation
is regular at A =8, . The boundary condition as
R -~ again implies that Woz(R} is given by (3.6),
where now y =0. Suppose that the constant in
(3.6) is nonzero. Then instead of (3.8) one may
use a more complicated formula' to show that
4, will be nonzero on the horizon at O(M) in the
Hartle tetrad. But arguments which will be elab-
orated in Sec. V show that the horizon shear and
hence 4, on the horizon must be zero for station-
ary axisymmetric perturbations. We conclude
that 4, =-0 at Ogle) is the axisymmetric modes
also.

Hence 4'o-:0 at O(M) in the QS scheme. By a
slight modification of Wald's theorem, ' which
states that 4, gives an almost complete descrip-
tion of vacuum perturbations of the Kerr metric,
we find that the O(M) QS metric perturbations can
be described, after a coordinate transformation,
merely by changes in the mass (unperturbed val-
ue 1) and angular momentum (unperturbed value

X, directed along 8=0) of the Kerr solution. We
shall suppose that these coordinate transforma-
tions, one of which exists for each background
time 7, labeling a QS scheme, can be fitted to-
gether so as to define a coordinate transformation
(7, x, y, z, M) —(7', x', y', z', M) on the five-dimen-
sional manifold X, which preserves the proper-
ties of the asymptotic expansions that we have
so far assumed. It will follow from our consid-
erations in Sec. V that the O(M) perturbations in
the QS mass and QS scalar angular momentum
are independent of the background time 7' along
the world line L, . We ca,n now choose to ignore

these perturbations, since in a physical. context
they would correspond to a small error in our
estimate of mass and angular momentum, which
can easily be reabsorbed.

Thus we can assume that (r, x, y, z, M) have been
chosen so that all O(M) QS perturbations have
been eliminated. The QS perturbations are now
M'j, ~&'(O, R, 8, P)+O(M'); we shall see in Sec. V
that j~t, ~ in general describes nontrivial internal
per turbations.

IV. EQUATIONS OF MOTION

The elimination of the O(M) QS perturbations in
the previous section has a,iso the merit of remov-
ing all terms in the external scheme which behave
as M'r'g(r, t), Q), where A;+1=1. In particular,
we see that the background metric is diag(- 1, 1, 1, 1)
+O(r') near /„so that l, must be a timelike
geodesic in (3)f„g,',"), i.e., the lowest-order ap-
proximation to the path of the small black hole
in the background is always a geodesic, regard-
less of the black hole's rotation. The argument
in Sec. III can be regarded as showing that were
the world line nongeodesic, then the structure of
the gravitational field near the unperturbed event
horizon [R = R]w+ould be disa, strously altered by
the perturbing effects of the background.

We mention two other types of argument which
might be used to show that t, is a geodesic. One
might assume that the spacetimes (6)l„,g„(M))
each contain matter in a region [R & some con-
stant], such that the energy-momentum tensor
T"{x')can be approximated by a distribution

fd7Mu'(7)u'(r ) 5(x', y'(7)), where I, =[y'(7}].
and (vu) =(d/d7)y'(7). The geodesic property
then follows on using the conservation equation
T",= 0, where the subscript vertical bar denotes
covariant differentiation with respect to the back-
ground; this argument was given by Robertson"
in a discussion of the motion of test particles.
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Alternatively, one may work with the empty
space field equations for the external scheme.
If one examines those parts of the O(M) linear-
ized external field equations which are most sin-
gular as r - 0, one again finds that l, must be a
geodesic. An argument of this type was first giv-
en by Infel. d and Schild. "

We remark that, in order to produce a "pole-
dipole" test particle, which deviates from geo-
desic motion as a result of spin forces, accord-
ing to the Papapetrou equations, "one expects to
have to scale angular momentum as O(M) rather
than O(M') as here in the limitM-0. This scal-
ing is not appropriate to rotating black holes,
since the Kerr parameter a (in the usual nota-
tion) should remain less than M. In some sense,

the rotation of the black hole will affect its mo-
tion with respect to the background at O(M) and
higher orders. But at these orders the internal
structure of the black hole cannot be ignored,
and it does not seem feasible to give precise
geometrical expression to the statement that
"the black hole deviates from geodesic motion. "

So far we have not considered the time depen-
dence of the 3-vector y which represents the
spin of the black hole in relation to the back-
ground. We now show that the 4-vector X', with
components (0, X ) in coordinates (7, x, y, z), is
parallel propagated along the geodesic l, in the
background. For let us consider the empty space
Einstein equations, linearized up to order M2 in
the external scheme:

0= R~& =R~s + z M[g,
i

+lgq t~ g, b ia-g g'&r ](p) I r (1)d (1)d (»jd (1)d

~2 J-' r (2)d, (2)d (2) 1
d (2)d

L~ Lga jbd+gb ] ad gab ]d g d)ab l

(1)de (1) + (1)de (1) (1)de (1) (1)de (1)+ ~ Lg gab de+g gde ] ab g gad )be g gbd
j
ae J

~ —'r2 (~)«, (~), 2 (» 8 g&~] 2g&»~'+ & L g Idgab je g jdgae, b g ]dgbe ~a

(1) j d (1)e (1)d, (1)e (1)d (1)e (1) (1)de
gab ge jd+ ga jbge jd+ gb lage jd+g«jag jb

2g(~)~~ (~)l~+2g(~)i~ t'~)e
] j+O(M') .id (4.1)

Here Rt,", is the background Ricci tensor (=0 local-
ly) and we raise indices of varied quantities with
the background metric. Thus

(1)d (P)«(1 etcga —g gae ~ e C. (4.2)

This expression for variations in the Ricci tensor
can be derived using Eqs. (7.3) and (7.4) of Ref.
13.

Referring to our Eq. (2.5), we see that the most
singular terms in the O(M') external field equa-
tions behave as r 4 as r -0, The O(r ~) part of
these equations is already satisfied, since covari-
ant differentiation may be replaced by partial dif-
ferentiation in considering these terms, which
only involve the most singular parts of g.", , g,', .
So for these purposes we may replace the back-
ground by Minkowski space, and take the space-
times (3)t„,g„(M)) to be exactly Kerr solutions,
while preserving Eq. (2.5); i.e. , our O(M')O(r 4)

external equations agree with those for an exact
Kerr family where they are satisfied.

In considering the O(M2)O(r ') part of the ex-
ternal field equations, we use the fact that the
O(M) QS perturbations have been removed. This
shows that the next terms beyond Eq. (2.5) in
asymptotic expansions of g(,', g(', ),g(', as r - 0
are respectively O(r '), O(r), O(1). Then the

O(M )O(r ') part of Eq. (4.1), with a=0, b =P,

gives

0 =r '(- 2X"X"x8r2 —X"x X~r 2X x"Xar2

+8X x )(&x)'x')

&x, with X" =(d/dr)X (7). Hence

(4.3)

X =0 (4 4)

Thus y' has constant components, say (0, 0, 0, y),
in coordinates (7, x, y, z), and is parallel propa-
gated along l p with respect to the background.
The remaining O(M')O(r ') external equations
are now satisfied by an argument like that in
the previous paragraph.

V. EFFECT OP BACKGROUND
ON INTERNAL STRUCTURE

We now examine the QS perturbations given by
M'j t", (O, R, 8, P). Since we have removed the O(M)
QS terms, j(", describes the largest deviations of
the structure of the gravitational field near the
event horizon from that of a Kerr solution, due
to the distorting effect of the background universe.
We shall see that j,b is essentially determined
by the Riemann tensor of the background on lp.

Let us decompose the background Riemann ten-
sor on l, into its electric and magnetic parts"
with respect to u', where u' is the velocity vector
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of I„—= (1, 0, 0, 0) in (7, x, y, z) coordinates on K, .

Thus we define the electric tensor
and q'"' is the totally antisymmetric tensor such
that q""= (-g ") ' ', where g ' = det(g„"). Then

Eac abed + Eca{0) b d (5.1) (5.3)

and magnetic tensor
rh {0)+ac ~ Gab Cghcd+ + +ca ~

(5.2)

where C,'„'d is the background Weyl tensor on l„

so that E„,H„define three-dimensional symme-
tric tensors E z,H which give a complete de-
scription of the background niemann tensor on
l 0 in vacuo. We now decompose

E~ = (y0 0

(0

0 0 0 0 1) (I i 0)
—1 0 i+a, ( )'~~ 0 0 i +a2(2)'~ i —1 0

0 2] (1 i 0 l,O 0 0)

(I —/' 0 (0

0 0 1 1

+ a, (-,')'" 0 0 —i l+ a, (2)'~' —i

0)
—1 0

o 0$

(5.4)

where n, = n„n, = u„and the e are, of
course, functions of 7. Similarly, we decompose

H„z in terms of coefficients p (- 2 & m & 2). This
provides an analysis of C,'„', into parts with con-
venient rotational properties.

Now the arguments of Sec. II show that the O(M')

QS metric perturbations are O(R') as R-~ when

referred to coordinates (T, X, Y, Z}, and that the

matching determines the M'B' parts in terms of
those parts of the background metric which be-
have a.s r' as r-0. We then find that at O(M')
in the QS scheme

and computing 40 for the background.
Hence the I.= 2 modes will in general be present

in 4o at O(M'). Now when n~wo, it may be verif-
ied that a solution of the radial equation (3.5) for
L = 2 which satisfies the boundary conditions of
Sec. III at R =R, is

W2 (R) —(R R )- -vm(R R )- +x

R-Rx + 1, 3+2@,—1+2@,

(5.S)

m= 2

(a„+iP ),Y, (6, (b)+O(R ') (5.5)
When n2=0, two linearly independent solutions of
the radial equation are

as A —~, where

,Y,'(8, P) =6 sin'(9,

,Y,"(6, d&) = —2v 6 sing(cosg+ 1}e"'@,

,Y,"(6,4) = 2&6(2 —sin'6+ 2 cos6)e'" ~

are spin-weight-2 spherical harmonics. Note
that the limiting value Q", 2(a + iP ),I; (6, Q)
is just what would be found by "matching out"
the Kinnersley tetrad to large R, giving in

(r, x, y, e) coordinates

I'-=(1, sing cosP, sing sind, cosg),

n'= 2(1, —sing cosp, —sing sing, —cosg), (5.6)

1
(0, cos(9 cosf, cos(9 sing, —sine)

(5 6)

((u' —2(u + ),')'
(5.9)

For the first,

40=0,

and for the second,

(5.10)

40 = constx sin'6} (5.11)

at 0(M ) in the Hartle tetrad of Sec. III, on the
unperturbedhorizon(R =R,). Infact, theboundary
conditions on the horizon imply that we only need
consider the first solution. To find the boundary
conditions, we follow Hawking and Hartle" and
consider the Newman-Penrose" equation

2
+ ~ (0, —sing, cosp, 0),

do—= 2 pG + (3E —E' )0' + 4 0 ' (5.12)
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Here

p ——t, .f, nz ma
r

{5.13)
aa (')

= 2e(') 0("+e"'
ds 0 {5.21)

is the convergence of the null geodesic generators
of the event horizon, with tangent vector f' = dx'/
ds. Also

0 = —l, .~ns'm

is the shear of the horizon, and

e = —~ (l, ~n' l' -m, , rrr' l'}

(5.14)

(5.15)

l'= l'„+O(M~),

This implies that

s = V+ 0(M')

rr' = rr H + O(M'), m '
ruH +=O(M') .

(5.16)

(5.17)

(apart from a constant), where V is the null Kerr
coordinate which measures "group time" along
the null generators of the unperturbed Killing
horizon. We write

p = p"'+ Mp("+ m'p("+ ~ ~ ~ {5.18)

for the perturbed convergence, and similarly for
0, c, % p. Then

p(" =o 0("=o (1 2 )1/2

4g

Since the perturbations are O(M'), we have

p(1) O (1) &(1) —0

Then Eq. (5.12}gives

{5.19)

(5.20)

The vectors I', n', m', n~' form a null tetrad. We
a,ssume that m' and ~~' are parallel propagated
along the horizon generators, so that e =e. These
conditions are satisfied by the Hartle tetrad for
the unperturbed solution, so that we may take

~'=K +(uK +0+'), (5.22)

where u =)t/2R, is the angular velocity of the
Kerr horizon, K' is the time-translation Killing
vector, and K' is the rotational Killing vector
of the Kerr solution. Since p a,nd 0 represent
the variations in the intrinsic horizon metric
as the generator t' winds around the horizon,
p('~ and 0(2~ must be zero for our nI =0 mode.
Equation (5.21) then shows that qrt" =0 on the
horizon. Thus only the solution W =- const of the
L=2, m =0 radial equation is acceptable.

We can now write the L = 2 parts of 0 0 in the
Kinnersley tetrad at O(M') in the QS scheme to
be

Now it is already implicit in our approximations
that the position and shape of the event horizon
are in some sense differentiable functions of the
spacetime metric. We shall further suppose that
the structure of the perturbed event horizon in

the QS scheme can be determined from the purely
local metric perturbations. This is plausible at
least at order M2, where the perturbations are
stationary, since in a stationary metric a,n event
horizon has a local characterization as a station-
ary null surface. At order M' (i &2), the proper-
ties of the event horizon should not vary a.t a rate
faster than V' ' as V- ~, in order to comply with
the requirement of quasistationarity, and so
should also be determined locally. Hence for an
L = 2, m =0 mode at O(M'), the horizon should
undergo a stationary, axisyrnmetric perturbation.
But the null generator

(~= -2, -1,1,2)

( m+ Pm) ( + 'Ym)(R+ -) ym(e y)(ft ft )-r-ym(ft ft )- +y
481'(-1+2y )

&& F 1, 3+ 2y~) —1+2ym,
' (5.23)

Here we have used Ref. 7 to find the asymptotic
behavior as P -~ of the hypergeometric function
in Eq. (5.7), together with the boundary conditions
(5.5). Further, Eq. (5.5) shows that the f-»
parts of kp at' O(M ) are O(R ) as 8 —~ . By an
argument as in Sec. III, these L&2 parts must
be identically zero. Thus Eq. (5.23), by Wald's

uniqueness theorem, gives almost all the infor-
mation about the 0(M') QS perturbations. We see
that the largest internal perturbations due to the
background are caused by conformal curvature
orl ~ 0 and are of a quadrupole cha rac te r .

We may now argue as in Ref. 15 to find the
lowest-order rates of change of area and angu-
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lar momentum of the black hole. First, Eq.
(5.23) and the remarks in Sec. III show that the
lowest-order C0 on the horizon is

2-surface. When Eq. (5.32) is integrated over this
surface, we find

(2) (R, -R )4

768(R, )2

dA(V) M
av

(2) r(2) aA+O(M5), (5.34)

y(2)
g(2) 0

in~~ —2e(') ' (5.25}

Hence

(, ) (R, -R )'
192R,

x Q ((2 +i p),Y, (8, 1t1') .
I'(3+2y )

m=-2 ™

x Q (o( +ip ) 2Y, (9, 1f1').
I'(3+2y )

(5.24)

Then Eqs. (5.21) and (5.22) show that when 4'2("

has e' @ dependence on Q',

where the derivative term has vanished since the
perturbation is quasistationary. Here fdA( )

refers to the unperturbed instantaneous horizon
metric"

(R,'+ )(2 cos'0)
(5.35)

Using Eq. (5.26), we find in the QS scheme

M4(1 2)-1l2 2

yv
= j5& X X

(I n I
'+

I p I
2) n(' [I + )(2(m 2 —I ) ]

(5.26) x [4+y2(n(' —4) J+ O(M'} . (5.36)

We also need the Newman-Penrose equation (in
vacuo)

—=p +00+(6+6)p.0p
2s

(5.27}

Hence

d ")
2~ (0) (2)

ds
(5.28)

But p(2) will be periodic along a generator as it
winds around the horizon. Thus

p(2') P

Similar ly,

{3)
=2~(') p"'.

Qs

(5.29)

(5.30}

p(3) =p (5.31)

Then Eq. (5.27) shows

But we expect that p(2~ will be O(s) as s-~, since
the O(M') QS perturbations are O(V} as V-~.
Hence also

To find the real increase of area, we suppose
that the hypersurfaces of constant 7 were chosen
to coincide with hypersurfaces of constant V near
the horizon. The only differences between the
real and QS rates of change of area are caused
by the time rescaling (by factor M) and the con-
formal factor M2 removed from the internal me-
tric perturbations. Hence if A(T) is the real area
at time v, then

d A(T} dA(V)
dv
™

dv
(5.37}

R (0) bcd R (0)
1 abc» 4

As written, the rate of area increase depends
on the a, P, which were given a somewhat ar-
bitrary normalization. We can rewrite the ex-
pression in terms of invariants, and so remove
any such arbitrariness. Recall that u' is the unit
tangent vector to the geodesic l0 in the background.
and let z' be the unit spacelike vector in the back-
ground into which the spin direction ties. Define

a ("
~(2) ~(2) + 2&(0) p(~)

cfg
(5.32)

B =R{ ''"u u R{ ' u'u
2 ub ud aecf u u'

R{0')abed Z u R(0) Zeu f
3 c d abc f 4 (5.38)

If we consider the area A(V) of the instantaneous
horizon at constant V, then

"''u z u R 'u'z ug
b c d aefg

d A. (V} = —2 pAA, (5.33)
—R(0)abed z u z R {0)

5 b c d aefg 7

where the integral is taken over the instantaneous
where R,'„» is the background Hiemann tensor on

/0. Then
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d&(V) &s '2 2-v2= —,", mM )('(1 —X') '~' [—(1+ 3X')B, + 16(1+ 3y.')B, —6(1+ 3g')B, —3(8+ 29'')B, —15X'B,j+ O(M')

(5.39)

0 we suppose that the Kerr solution is stable,
then secular effects such as area increase must
correspond to variations in the basic parameters
of the Kerr solution over a long time scale. For a
Kerr solution with mass p and the usual spin
parameter a, the area of the instantaneous event
horizon is

~ = «gl. g+(y'-a')"'l. (5.40)

da (1 —g')"' dA

dV Bwy dV
(5.41)

We see that the presence of the background always
forces the black hole to lose angular momentum.
Also the mass of the black hole changes by a
fraction of O(1) on a background time scale of
O(M '), while the angular momentum changes by
a fraction of O(1) on a T scale of O(M '); this

So if we know the lowest-order time dependence of
A and I". say, we also know how a varies at the
lowest order. An argument is given in Ref. 15.
which shows that the mass is constant at O(M')
for QS perturbations with our parametrization,
provided the perturbations are asymptotically flat,
being caused by a distant matter distribution.
Clearly, our QS perturbations are not asymptoti-
cally flat [see (5.5)], so that the argument cannot
be used as it stands. But the mass and angular
momentum changes are being caused by purely
local effects near the horizon, for which the far
field is irrelevant. Since these local effects can
presumably be simulated by asymptotically flat
perturbations, the mass is constant at O(M') in
the QS scheme. Hence all the area change at
O(M') is caused by the change in a. Hence, in
the QS scheme

justifies our assertions in Secs. II and III about
the time dependence of low-order mass and spin
terms.

The secular changes on the horizon at 0(31'}
in the QS scheme are determined completely by
p" and o"~ We expect the parameters (0, Q

' —~V}
labeling an unperturbed null generator to change
on a V-time scale of order M ", as the horizon
evolves. Because the perturbations are quasi-
stationary secular effects in p"', o' are averages
of some function of P', taken over many revolu-
tions of the null generator around the horizon.
Thus secular effects depend only on 0 (at the
lowest order). The "rings" of null geodesics at
constant 0 will slowly be moved through new

values of 0. In particular, the polar geodesics at
0 = 0, w will remain polar at the lowest order.
This makes it hard to assign a direction to the
angular momentum "hange of the black hole. If
instead one tries to use the external scheme to
define the direction of change of angular momen-
tum, no obvious local geometrical definitions are
apparent; the situation is similar to that in Sec.
IV respecting the deviation from geodesic motion.
It may only be possible to make sensible state-
ments about vector angular momentum change
under certain extra global conditions.

Our knowledge of p"-' and a"' allows us to write
down the perturbed intrinsic horizon metric at
O(1Vi'-} in the QS scheme corresponding to the
nonaxisymmetric modes. Let us use coordinates
x'= 0, x' = Q, x'= V on the horizon, and assume
(making a gauge transformation if necessary) that
the generator l'= (S/BV)'. For the unperturbed
horizon, we would have Q = P —~V. Then the
perturbed intrinsic degenerate metric can be
written

+„~2 ~ ( n eim(4i+&u')+ n
—im(4+uY)) d82

fm= i,2)

+ 2M', n„+ Q ( n e'"'@'~"'+ n„e ' ' '" ') d8d j)
{m = 1.2)

(m = 1,2j
(5.42}

Here the unperturbed terms

f» = R, '+ X'cos'8,

(B,'+ g')'sin'6
(R '+ g'cos'0)

(5.43)

and fill 'Pl12 +2 (m= 0, 1, 2) are functions of 0,

rn= 1„2, we recall that p and u on the horizon are
quantities depending only on the intrinsic geometry
of the null surface" and can be computed from Eq.
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(5.42) by embedding the null surface in a space-
time with an extra null coordinate V' such that the
spacetime metric is given by the addition of an
extra term -24Vdl" to Eq. (5.42). Examining the
Hartle tetrad on the horizon' we see that

m = . +O(M'),6 1

v 2(R, + iy cos0'}

Write

o(2) Q Z (0}et
ill 3

)m = -2, —1, 1,2j
(5.45)

Then by computing p and 0 as above from Eq.
(5.42), and considering modes with m = +1, m = +2

in isolation, we find that

2(R ~
—Eg cos0)

m = ~ '.
(

, ,
)

+ O(kl'),

m" = O(M').

(5.44}

Also

~ (R,2+ y2)'sin'0 n„+ (R, '+ y'cos'6)' n22= o,
ni= l. 2. (5.45)

isa ni+R, —igcos0) @nrem(R, —iitcos9)'
4(R, + ix cos0)' '' 2(R, + iy cos0}(R,'+ X') si n0 " 4(R, '+ g')'sin'0 (5.47)

rn~ '» ~(R, —fit cos0} im~(R, -i~ os0}
4(R, + iy oc0)s™nil 2(R++ iy cos0)(R+ + X )sin0 4(R+ + y ) stn'0

Hence, for ra = 1, 2,

i(R, + ilt cosB)' i(R, —ix cos0)'—
m+» Z. +

re ud teal (d

(R, '+ }t')(R,+ ix cos0)sin0 (R, '+ g')(R, —i g cos0)sin0-
m&u(R, —ixcos0) m&u(R, + iycos0)

(5.49)

i(R + y )sin'6 i(R '+ y2)2sin'0

mes(R, —ill cos0)' m&a(R, + iy cos0)'

One may then use Eq. (5.26) for o"' to find (slightly lengthy) expressions for PL» Jll Pl22 (rn= 1, 2). This
approach does not give us 0n», n», n22

Vl. THE NONROTATING CASE

In this section we examine the internal structure in the case where the small black hole is Schwarzschild-

type. More precisely, we assume that the black hole is rotating so slowly that y = 0 and that the O(M) QS

perturbations of the Schwarzschild solution are zero [so that there is no perturbation among the Kerr fam-

ily at O(M)]. We may than apply well-known results on Schwarzschild perturbations to find the QS metric
terms m'q'. -",(0, R, e, y).

If we adopt the gauge condition of Begge and Wheeler, " then in Schwarzschild coordinates (T, R, 0, p),
stationary perturbations can be classified by angular numbers (I., m) and into modes of even or odd parity,
where in an even (L, ~n) mode

R'K1 L

R2sin'HEI L

(6, 1)
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and in an odd (L, m) mode

1 8 . a
h, —Y~ singh, —Y~sing '8(+ 'Bg

(2)
2ab

1 a 1 a
h() Yl. — . h ~

—Yp
sing '

B(IJ) sing

8 . 8
h, —Y~ singh, —Y~sing 'Q 'Bg

(6.2)

msingh, —Y~0gg L
msingh, —Yl1 gg I.

Here Y~(8, P) is the usual spherical harmonic, and

H„B» H» K, h„h, are all functions of R. We
shall only be interested in the L = 2 modes.

Stationary Schwarzschild perturbations have been
discussed by Vishveshwara;" in the even case
the field equations implyH, =B, =H, H, =-O, where

dH 2 2 d8
R R dR~

—+ 1 —— H =0 (6.3)
4 L(L+ 1) 2

A4

and R~ =A+2 ln(A -2). The boundary conditions
at the horizon require

work of the previous section, we first specify our
normalization of spherical harmonics:

Y', (8, P) =3 cos'8 —1,
Y,"(8,P) = v 6 sin8cos8e"~,

Y', (g, Q) = v 6 sin'ge' '~ .
(6.11)

4'~= —2M'
( ),Y2(8, Q)+ O(M ),

and for a.n (L = 2, m) odd mode,

(6.12)

Then for an (L =2, m) even mode, in the Kinnersley
tetrad

H-0 as R-2.
Hence

H=C R(A —2)

(6.4)

(6.5)

1 dh() 2

2 R(R —2)

+ O(M').

Altogether,

(6.13)

for some constant C, when L =2. We find K from
two of the field equations ' M (C~-3iD ) 2 Y, (8, Q)+ O(M').

m=-2

dK dH 2

dR dR A(A —2)

(R- 1)——(R —2) —+ 2(H-K) = 0 .
dK dH

dR dA

(6.6)

(6.14)

Comparing this with the asymptotic behavior of
4, as R- ~ in Eq. (5.5), we find

Hence, when L=2,

K=C (R'-2}.
For odd stationary perturbations, hl 0 and

d h~ 2 dh~ L(L+1) 4 2
dR~' A dR~ A R . A

(6.7)

(6.S}

The boundary conditions at the horizon require

h~-0 as A-2.
Hence, when L =2,

h~ =D~'(R 2)- (6 9)

(6.10)

for some constant D .
To compare the metric perturbations with the

Cm = —&m ~

1
Dm = 3I-3m ~

(6.15)

Thus the electric part of the background Weyl ten-
sor produces even internal perturbations, and the
magnetic part produces odd perturbations.

By Wald's theorem, we have already given a
complete description of the O(M'} QS perturba-
tions, apart from the L = 0, 1 modes which repre-
sent respectively changes in mass and angular
momentum among the Kerr family. ' ' The
arguments of Sec. V show that the L =0, 1 pertur-
bations will be constant over a gackground time
scale, as measured by 7.

We see that the O(M') QS metric perturbations,
when referred to coordinates (T, R sing cos(It),
Rsin8sin@, Rcos8) are O(A') as R-~; this is
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consistent with our matching conditions in Sec. II.
The M A QS terms match onto those background
terms which behave as r' when r-O. Of course,
the Regge-Wheeler gauge condition on the internal
scheme enforces a coordinate condition on these
O(r') background terms.

VII. SOLUTION OF EXTERNAL PROBLEM

(7.1)

for r&some constant, r/M) some constant; outside
these regions the coordinate transformation should
be defined so as to be regular. We may assume
that the transformation has been defined so that
the components of g,0b' are unchanged. We note
that E(I. (2.5) for the most singular part of g,',)
near l0 has been replaced by

g,', ——,diag(1, 1, 1. 1) (7 2)

The Green's function approach to general rela-
tivity developed by Sciama, Waylen, and Gilman"
allows us to give a useful representation of the
lowest-order external perturbation g,'b, when the
external scheme refers to the vacuum Einstein
equations. To show this, me first define a coor-
dinate transformation (2, x, y, z, M) —(r, x', y', z', M )
on a subset of X such that x'r =r'x, y'r = r'y,
z'r = r'z, and

as M-O, with 7,x', y', z' fixed. This transforma-
tion has the effect of adding ('~'+ (' ' to gg", so
that g, =0 in (f, .r, y, z) coordinates. We still have

g,", - —„diag(1, 1, 1, 1)r" (7.7)

as f'-0, in (T, x, y, z) coordinates, where i"=x2
+y +z

The harmonic gauge condition (]t},= 0 simplifies
the linearized empty-space Einstein equations, to
give

+(0)cdg+abi + 2g(0) a b ~gcd 0 (7.8}

Let E' ',
e( x', x) be the retarded Green's function

for this equation such that

g(0)«F ~ b
cd]ef cd ef

g(0)a g(0)& [g(0)(xi)g(0)(x)] —1/a 5( . xi)

(7 8)

Here E' ',e =E ' ' (,e, (x', x) is a two-point tensor,
i.e. , it has tensorial properties at x' with respect
to the indices a', 6', and at x mith respect to the
indices c, d. Also g "(x}=det(g',, (x)), 5(x, x') is
the Dirac distribution, and g("',(x', x) denotes
the two-point vector of geodesic parallel transport
(which is only defined locally). Use of Green's
identity leads, as in Ref. 23, to a Kirchhoff repre-
sentation

as r'-0, in (v, x', y', z') coordinates. In fact the
coordinate transformation r = r'(1+M/2r')' just
gives the transformation from Schwarzschild to
isotropic coordinates in the Schwarzschild metric.

Following Ref. 23, we consider

ab (0)ac (0) bd (1) (7 8)

which gives the first-order variation in g" in the
external scheme. Define

& g (0) g g bc
i g (0) g g bc

)
(7.4)

(T, x, y, z) = (7', x', y', z')+M)'+ O(M ) (7 6)

where we recall that the subscripted vertical bar
denotes covariant differentiation with respect to
the background. Because of our coordinate con-
ditions on g,'b' and g,'b' in (T,x, y, z) coordinates,
we find that )C/, is O(l) as r'-0, in (T, x', y', z') co-
ordinates. By a further coordinate transforma-
tion, g, may be removed entirely. Let us solve
the equation

(7.5)

to find a vector field $, on%0. Then perform a
coordinate transformation on X to coordinates
(T, x, y, z, M), where

(Ea 2 5 ef Ea 2 5 ef
]

x [ g"'(x)] '/' ds, (7.10)

where 0 is a volume containing x', and dSd is the
outward-directed coordinate surface element on
the boundary BQ.

We choose 0 to be bounded by a small tube
(t'= e[, with lo A 0 =f}, and by a surface "near
infinity. " We assume that the contribution from
the large surface tends to zero as 0 increases to
fill the whole of SR0 —l0. This is in some sense a
requirement that the linearized external solution
should be completely determined by the black hole,
without any additional gravitational radiation in-
coming from infinity. Assuming that the relevant
functions are sufficiently mell behaved, our con-
ditions on pg" near /0 imply

5g' ' (x') =82( dT u'(r) ui(T}E' ',q(x', x(T))

x [ g(0)(x(~))]1/2 {7.11)

which is the desired integral representation. When
translated back into our original coordinate system
(7, x, y, z), these results show that 5g' is defined
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via such an integral representation up to the addi-
tion of a gauge term (~ ~ ~+ (~'~.

In general, F' ',
&

will include tail. effects, i.e. ,

its support will include points x with timelike sep-
aration from s'. This implies that the O(M') QS
perturbations may depend, through the matching,
on the whole past history of the black hole, where-
as the O(M') QS perturbations are caused only by
background curvature at one time v.. Roughly
speaking, outgoing information about the black-
hole field is partially reflected back into the black
hole off the conformal curvature of the background.

It might be possible to extend this Green's func-
tion approach in order to solve higher-order ex-
ternal equations. One mould need to subtract off
the most singular parts of g,", as r-0, so that
the integrals involved would converge near t„
these singular parts would presumably be known
already from the matching.

One could also try to consider the field equa-
tions with matter in the external scheme, rather
than with empty space as in this section. The
situation becomes more complicated since effects
due to the black hole will change the energy-mo-
mentum tensor T,b by O(M), and so will produce
extra O(M) changes in the external metric; we
shall not discuss this question further.

VIII. A SMALL BLACK HOLE IN THE
BRANS - DICKE THEORY

The procedure which we have set up in this paper
for analyzing the behavior of a small black hole in
a background, under the Einstein field equations,
can also be applied to the same problem in the
Brans-Dicke theory of gravitation. The Brans-
Dicke field equations were originally formulated
in terms of a metric g" and scalar field 4 which
satisfy

1
Rab —

~ A"abR =8~~ah

+ (3+2(}4 (16')

(4i t~4 tt,
—i Q~&Q 4 )&4 /&), (8.3)

g' (in@},„=8~{3+2E,) 'T. (8.4)

Here R„,R are the Ricci scalar and tensor of g",
and covariant differentiation with respect to g"
is denoted by a stroke. We say that the theory is
viewed in the Einstein frame when written in this
second way.

A normal test body, with negligible self-gravita-
tion, can be shown to move on a geodesic in the
Brans-Dicke frame. But a body with significant
gravitational binding energy will, in general,
deviate from geodesic motion in the Brans-Dicke
frame. A black hole is an example of a body with
binding energy of the same order as its rest-mass
energy; moreover, if the black hole is exactly
stationary, then it has no scalar monopole mo-
ment [Hawking (Ref. 24)] unlike an ordinary test
body. By arguing that there is no flux of the sca-
lar field through a small world tube surrounding
the black hole, and hence no force on the black
hole due to the scalar field, Hawking was led to
conjecture that a small black hole moves along a
geodesic in the Einstein frame with respect to the
background universe.

We are able to verify this conjecture by means
of our approximation method. Before setting up
an internal approximation scheme for the small
black hole, we recall the result of Ref. 24: that
the stationary vacuum black-hole solutions in the
Brans-Dicke theory are identical to the stationary
vacuum black-hole solutions of the Einstein equa-
tions and have 4 =- const. So we again take the in-
ternal metric to be that of a Kerr solution, per-
turbed by the presence of the background. In the
Einstein frame, the internal scheme can be ex-
pressed by

R, b
——,g, f,R =8m4 'T,

+ 6' '(C' .C'b —
2 g.b

g"
,

C', ,@,u)

(8.1)

g„=M'y „b(R, 8)+M'j 'b'(MT, R, tj, d))

+M j,'~'(MT, R, 6, (f))+ ~ ~ ~
~

4 =4 ' (MT)+cVE4 ' (M'1, R, O, 8)
+M'C""(MT, R, 8, &P) + ~ ~ ~ .

(8.5)

(8.6)
g"C .„=8'(3+2]) 'T. (8.2)

Here R„,R are the Ricci tensor and scalar of
g", and a subscripted semicolon denotes covari-
ant differentiation with respect to g". Also T„ is
the usual energy-momentum tensor which satisfies
T,~. ,g =0, and E is a constant. In this formula-
tion, we say that the theory is viewed in the Brans-
Dicke frame. Alternatively, one may make the
conformal transfor mation g, & 4&pbp Xgg 4 T,p.
Then the field equations become

Here j',",' is a unit-mass Kerr metric in Boyer-
Lindquist coordinates (T, R, 0, P). The form of the
expansion for 4 is dictated by the requirement
that the lowest-order internal solution, found by
letting M-0 with T, R, 0, Q constant, should have
4 = constant, as in the exactly stationary solutions.
This condition permits 4 ' ' to have slow time de-
pendence, but no spatial dependence.

We use matching coordinates (~x, y, z,M) w, hich
are related to the internal coordinates {T,R, 6, &p)
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just as before. The external scheme can be writ-
ten

field and conformal metric can also be analyzed.
The lowest-order QS perturbation in 4 is

g;~ =g".~(~, -~, S, ~)+ M g".&'(&, ~, S, ~)

+M ggy (7, x, J) z)+ '

4=4 ' (7 x y z)+M4" (7 x & z)

+M'4" (7, x, y, z)+ ~ ~ .

(8.V}

(8.8)

M T 4 (MT) +4 ' (OR 6 p}
' MT=p

=MN(T, R, 6, Q}, (8.12}

say. The field equation (8.4) for 4 shows that in
vacuo

4 (MT)=4 ' (r, 0, 0, 0), (8.10)

where 7 = 7p+MT is an appropriate background
time. Moreover, the fact that 4 ' ' depends only
on time implies that

I(I~~~+ = O(1) 4~2~s = O($- ~) 4~~~s = O(y ~)

(8.11)

as r-0. The condition that 4" is bounded near
the world line can be regarded as a statement
that the black hole has no scalar multipole mo-
ments at the lowest order.

The conditions (8.11) allow us to prove that the

spin vector of the black hole is parallel transport-
ed along the geodesic, with respect to g,", . We

may recall that the corresponding property in the
Einstein theory was found from the M'x ' part of
the field equations in the external scheme. Here
the parts of g,", , g,", , and g, ~ which contribute to
this part of the field equations have the same be-
havior as in g,", , g,", , and g„' of Sec. IV. Also
Eqs. (8.3) and (8.11) show that the scalar field
does not contribute to this part of the field equa-
tions. The argument then proceeds as in Sec. IV.

The largest internal perturbations of the scalar

where g, , (7, x, y, z) and 4" (7,x, y, z) are the
background metric and scalar field in the Einstein
frame. The labels I and E have been attached to
the expressions 4 "' to distinguish internal from
external terms ~

Since 4 acts as a source in Eq. (8.3) through
products of its first derivatives, it only generates
curvature of O(1) in g, ~ in the internal region.
Hence the lowest-order QS perturbations of g,",

satisfy the vacuum Einstein equations, linearized
about the Kerr solution. The boundary conditions
for y,", (O, R, 6, Q) as R-~ are determined by the
O(r) part of gi~~' as r-0, and one may argue just
as before to find that y,", can be eliminated by
choice of coordinates. Then, from the matching,

g,', (7, x, y, z) = diag(- 1, 1, 1, 1) + O(r') (8.9)

as r-0, so that the lowest-order world line of the
black hole is indeed a geodesic with respect to g,"~'.

Further inferences can be made by examining
the matching conditions. From the matching for
4, we find

" NI, d=0, (8.13)

IX. CONCLUSION

We have seen that a technique involving matched
asymptotic expansions can be brought to bear on

the problem of a small black hole in a background
universe, in the context of the Einstein field equa-
tions. In particular, it helps us to understand how

the black hole moves with respect to the back-
ground, and also how the background gravitational
field distorts the internal structure of the black
hole. Under our assumptions the black hole
moves approximately along a timelike geodesic
in the background, and its angular momentum
vector is approximately parallel transported along
the geodesic in the background metric. The larg-
est deviations from the Kerr geometry near the

where the covariant differentiation is with re-
spect to the Kerr background j,", . Now the part
T[dld(MT)I4 ' (MT)~„r, of N is already har-
monic in the Kerr background. Thus 4"' (O, R, 8, 5)
separately is harmonic in the Kerr background. If
one wished, one could compute 4i" (0, If, 8, 4) in
terms of hypergeometric functions; as R- ~,4" (O, A, 6, 4)- o X+I31'+yZ due to the spatial
gradient of 4' near the black hole, while the
boundary condition at the horizon is that
4 "'(MT, R, 6, P} should be regular there. Then
one could obtain a Teukolsky equation for the
metric perturbation j ~,'. This would include
source terms arising from products of gradients
of ¹ The boundary conditions on j,'~(O, R, 6, y)
as R-~ will be due to the ~' parts of g,', near the
world line.

We remark that the close resemblance of the
analysis in this section to the earlier arguments
about black holes in the pure Einstein theory has
only been possible because, in the Einstein frame,
4 appears on the right-hand side of (8.3) in a.

form involving products of first derivatives. Had

we instead tried to repeat the earlier arguments
in the Brans-Dicke frame, we should have found

that 4 produces curvature of O(M ') in g;, in the
internal region, due to the second derivatives of
4 in Eq. (8.1); the O(M) QS metric perturbations
could not then be zero.
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black hole are of a quadrupole nature, caused by
local background curvature. Our technique can
also be used in order to understand the behavior
of a small black hole in the Brans-Dicke theory.

It would be interesting if these results could be
extended to the case of a charged black hole in a
background universe containing electromagnetic
fields. An extension of the treatment given here
might also deal with the situation where the back-
ground (Sg„g,", l contains matter on the zeroth-
order world line I,. At present, the problem of

two black holes with relative Newtonian potential
and kinetic energies of the same order (e.g. , a.

bound state) is under investigation, using a combi-
nation of the methods of this paper and the Ein-
stein-Inf eld -Hof fman method. "
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