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The field equations in a formulation of Einstein's nonsymmetric unified field theory are solved exactly
for the case of a static, spherically symmetric point singularity. The equations also yield the correct
equations of motion in the lowest nontrivial order of approximation using the methods of Einstein,
Infeld, and Hoffmann. When a universal constant k vanishes, the theory reduces to the
Einstein-Maxwell equations and the solution found here becomes the Reissner-Nordstrom solution. A
coordinate singularity occurs in the metric when r = m + {m' —Q'/2)'", as in the
Reissner-Nordstrom solution. It is shown that this singularity is due to the choice of coordinates by

performing a Kruskal-Szerkeres-type transformation. Further, the exact solutions which are generated by
a Hermitian tensor, rather than a real nonsymmetric tensor, are given. Finally, the gauge invariance and

possible renormalization of the theory are discussed.

I. INTRODUCTION

In Einstein's original 1915 theory of gravita-
tion, the electromagnetic field was incorporated
in the field equations

G~v ——-8mTqv,

where 6„, is the contracted Riemann-Christoffel
tensor, and T„„ is the energy tensor of the elec-
tromagnetic field I'„, , which satisfies Maxwell's
equations

gav =~ a ~ (1.5)

We note that the order of the indices is important. '
The nonsymmetric affine connection is defined by

XI pv
= r(pv) + I Cpv) ~

In Einstein's work, ' the connection I'„, is de-
termined by the 64 equations

a~ ngiI v- gav ril 0(-g)I arav =0 ) (1.7)

of both possibilities in our calculations. The rela-
tion defining the g"' from the g„, is given by

Ca+pvJ=~a+pv+~p+va+~v~ap =0. (1.3)

He re, the subs crip t semic olon denotes covariant
differentiation with respect to the Christoffel
symbols („",}.

Many attempts have been made to combine the
gravitational and electromagnetic fields so that
electromagnetism, as well as gravitation, appears
as a property of the space-time continuum, rather
than as a separate physical phenomenon. One of
the most important attempts is Einstein's unified
field theory' based on the nonsymmetric field,
which he proposed over 25 years ago.'' He con-
sidered the nonsymmetric theory the most natural
generalization of his gravitational theory, for it
incorporated the electromagnetic field into the
fundamental tensor g„,. The tensor g„, is split
into its symmetric and antisymmetric parts by

0

~uv=o

and set II,

(1.9)

(1.10)

(1.12)

In these equations, the contracted curvature ten-
sor is given by

where we note the order of the subscripts in the

la.st term of Eq. (1.7). These equations are re-
garded as the natural generalization of the equa-
tions g„, . =0 in general relativity.

Einstein proposed two sets of equations' both of
which include the set (1.7). They are given by
set I,

gp v g(pv) +(gCilvj) (1.4)

I Iwhere g(„,) = —,(g„,+g„„)and gf ~, ) = p(g„„—g„„).
If gC„„~ is pure imaginary, then the tensor g„,
not only contains antisymmetric terms but may
also be Hermitian. Since there is some question
as to whether the tensor is real nonsymmetric
or Hermitian, 4 we will investigate the consequences

—re arcv+ rifv reta ~ (1.13)

(1.14)

If we define ii""=~gg"', then the set (1.7) is
equivalent to
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Contracting Eq. (1.14), we find

t paJ+ & (p o)(I a —I a
) =0 (1.15)

Thus, Eqs. (1.8) and (1.10) are equivalent to

gl Pa) 0 (1.16)
and

+ 2 g(p v} g[op j8
1 Iop J (2.9)

1
t poJ (p oj

f( p v ) 2 t 2 (@p p) g g[av J +g(v p) g A[a p )

When gt-„„~ is identified with the electromagnetic
field, neither I nor II lead to physical static
spherically symmetric solutions for a point sin-
gularity. ' Infeld' and Callaway' showed that
neither set of equations gives the correct equations
of motion for electric charges. Several papers
in recent literature have considered this problem
within the context of the weak-field approxima-
tion.

II. THE FIELD EQUATIONS

We shall now investigate an alternative approach
to the problem considered some time ago by
Bonnor and Kurqunoglu. ' Bonnor derived a set
of field equations from a variational principle

1 tp4 Pp oj
[p v) 2t 2 (Ã[p p')g g[av]+g(p p)g g( av)

+ ~2g[pv]8'[p ajÃ +g[pv]) ~ (2.10)L p o]

III. THE STATIC SPHERICALLY SYMMETRIC
SOLUTIONS

As stated above, there appear to be two possible
forms for the metric tensor. If g(„,} contains only
diagonal elements, then a real gI.„,~ will lead to a
real nonsymmetric tensor, while an imaginary

g~„,~ will lead to a Hermitian tensor. We will
derive the results in detail for the former case
and simply state the results for the latter at the
end of this section.

We represent the real nonsymmetric tensor by

0 0

K+dT =0, (2.1)
0tv = 0 0 (3.1)

where

X+ =X+/ g g(g, q . (2.2)

Rpv =Rpv+Ipv

where Ap„ is given by Eq. (1.13) and

(2.3)

(op]
Ipv = —

2}2 (Span' g'pv+ 2 8jr vgapg +g[pv j) ~

(2.4)

Here, 0 is a constant to be determined later and

may be imaginary. Our field equations are

Moreover, K= g""R„„and P2 is a constant. He
then applied the solution of the variational problem
to generate the proper equations of motion. We
shall write our field equations in a different form.
Let us define the contracted curvature tensor

0 0 -~sin'(9 0

-w 0

ds' =y dt ' —n dr' —r2(de'+ sin'() d(()') (3.2)

We shall assume that the off-diagonal element
w describes the static electric force due to a
spherically symmetric point charge, situated at
the origin of the coordinates.

The relation (1.5) shows that

ny —w'

r2

where w is real. We note for use later that the
Hermitian tensor may be obtained by the substitu-
tion w - iw in this and subsequent equations. The
line element corresponding to Eq. (3.1) is then

agpv gpo av govt pa

Ip„„)=0,
(2.5)

(2 6)
0

1
r' sin'6

Ly vjl

(2.7)

(2.8)

These field equations are equivalent to those
found by Bonnor by varying the modified Hamil-
tonian. However, our physical interpretation of
the theory will be quite different from that of both
Bonnor and Kurqunoglu.

Splitting I„,into its symmetric and skew parts,
we find after some simplifying

w

ny -w 2

(3.3)

In the limit w -0 this just reduces to the familiar
expression for g"" in the Schwarzschild metric.

The 64 homogeneous linear equations (2.5) have
been solved by Papapetrou, 'Wyman, ' and Bonnor'
for the static electric case, and by Bonnor' for
the general static electric and magnetic fields,
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using Einstein's equations I and II. For our pur-
poses, we shall quote only the results for the
electric case:

l

r =—
11 2~ &

and all other I&„„~ and It-„,g vanish.
A quick inspection of Eq. (2.8), using the results

for RL-„,~ and I~„,~, shows that it is satisfied. Sim-
ilarly, Eq. (2.6) is satisfied identically, except
for I ~„~. For this case, we find

2wz,l
14 r~ (3.7)

2ayw' -w(a'y+ ay')
'4 4' 2a(w ' ay)

ln 1 ——
2

4ww 'ay —2w'a'y —(w'+ ay) ay'
2a'(w' —ay)

r„=I",, = I/r,
I'„=-sin 8cos 8,

(3.4)

By substituting for I'„ from Eq. (3.4), we have

ay ' 4
ln 1- —, (3.8)

Upon integration, this becomes

(3.9)

where c' is a constant of integration. Since e'
is not necessarily positive, we can rewrite Eq.
(3.9) as

I „=r'„=I/r,
r' =r' =cote23 32

k'l' ' (3.10)

where l is a constant to be determined. This
choice of sign is necessary so that at large r the
product ny approaches unity. Thus,

2ww Q —w Q -Q y
14 41 2 (

2 )

Here the prime denotes differentiation with respect
to r Subst.ituting these results into Eq. (1.13),
we find

I I

(3.11)

Upon substituting Eq. (3.11) into Eq. (3.6}, we
find

n l'
2r4

I =csc 6II

R, =csc'6)R33

1

——[ln(w' —ay)]'+ I,
Q 2Q

(3.5)

l2

2r2 y

l'
I44 =—

(3.12)

2w, n 4 2z„=r,+(r„}+, , +r„—-r„+—,
Q 2Q

2w 2
14 R41 14,1+ -- + 14r2cy r

From the definition of the tensor g„„,we obtain
from Eqs. (2.9) and (2.10}the results for I„„:

1 aw2
2k' ay -w2'

We can now proceed to solve Eq. (2.7). Let us
first consider R». Upon substituting Eq. (3.8)
into Eq. (3.5), we find that R» simplifies to

1 cE w= —-3+r — —+a22 0 W
(3.13)

We can similarly simplify R» so that it contains
only the unknown functions a and u. Combining
Eq. (3.4) and Eq. (3.7), I „can be rewritten as

I22
—csc

1
2k' ny —u}' '

1 yw'
44 2k2 ay-w2'

(3.6)

I f

r = ——+~ ln 1 ——
~

+ —,(lnw )'
14 2H w

Ck 2 Q w= —+ ——
2Q r Q w

(3.14)

1 eyw
I 14) 2k2 ~ w2

Further, substitution of Eqs. (3.13) and (3.12)
into Eq. (2.7) yields the relation
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n' u' 1 nl2
3 —Q+a u) y 2r2 (3.15)

This implies that

a' u l' 1I = —+-l4 2 (y y 2y'2 y' (3.16)

Substituting this result into the equation for R
yields an expression which is free from M and y.
We write a solution for e in the form

a b—=1+ —+-
a. r r'' (3.17)

where a and b are coefficients to be determined.
We find that

1 1 3l 1~R = —25 — + (,ab——--af')ll y4 2 y51, , l'
4

(3.18)

We also know that

1 l' al' bl'—I = + +
2y' 2y' 2y'

(3.19)

l'
b =+ —.2' (3.20)

Thus, we have a unique solution for o., namely,

1 a l'—=1+ —+
Q r 2r (3.21)

Since the equation R,*,=O applies for any r, then
the coefficients of r 4 to r 6, found from the sum
of the last two equations, can be set equal to zero.
The three equations so obtained all yield the
same solution:

Substituting this into the previous equation and
using the equation R44=0, we generate a relation
involving a, y, and m. However, we have already
solved for the form of n and x, uniquely, and this
implies that y can be determined by the use of
the condition I't4 ~=0. Although it will yield
nothing new, nevertheless the condition on R4~4

must be satisfied. Therefore, we shall choose to
eliminate y from I'~, leaving R44 in terms of n
and M. We shall substitute for M and solve for e,
as before. Eliminating y', we find I'44 is given by

(3.26)

Substitution of Eq. (3.26) into Eq. (3.24) yields,
after some algebra,

nR~= —
4 1+ 4 (3.27)

Imposing the equation R*44=0 leads immediately to

l2
b= —.

2
(3.28)

y4+ k2Q2

k2Q2 (3.29)

Hence, we have that R,4 contains the same solu-
tions as Rl] and R». We will show in the equations
of motion that k must be real for the real anti-
symmetric tensor. Then, the identification
gg4j=kE„where E, is the electrostatic fieM
strength, leads to the result l = + Q. Since we also
demand that the solution go over to the Schwarzs-
ehild solution at Q =0, then a= -2m in the units
G =c=1. Thus, . our solutions, written out in

full, are

This solution can be substituted into Eq. (3.15)
and solved for x. We find

2m Qn= 1 — + 2y' (3.30)

2

se r'
so that

w =ikLir',

(3.22)

(3.23)

M) =kE, =+ —,,
kQ

k'Q' 2m Q2
1+ 4 1 — +r r 2r2

(3.31)

(3.32)

SU
R44=I ~,l+ 2 ~ + I'44 ———

~

Ck N
(3.24)

To evaluate this, we need an expression for I'44.
After some algebra, we find

(3.25)

where L is an integration constant. Since we de-
mand that ny- 1 as r- ~, then Eqs. (3.23) and

(3.11) imply that L and l are equal.
Finally, we turn out attention to R44. Using the

previous results shown in Eqs. (3.7) and (3.16),
we find that R44 can be written in the form

Here, k is a universal constant with dimensions
of length. The metric in our solution is then
given by

ds'= 1 — +, 1+, dt'

Q2 -1
1 — + r2

dr' —r2(d 82+ sin'6d@2) .
y 2r2

(3.33)

We see that our solution goes smoothly over into
the Sehwarzschild solution when the electric
charge goes to zero. Also, Eq. (3.31) yields the
familiar result for the static electric field be-
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cause of a point charge at the origin.
If we chose instead to write the metric tensor

as Hermitian, then we would obtain a different
result. Aside from the substitution m- m, we
would require Eq. (3.10) to change sign, and k

to be imaginary. This gives

the reader is referred to these papers for further
details. The usual convention is adopted that
Latin indices run from 1 to 3 and Greek indices
from 1 to 4.

We set g(„,}= a„, and gL-„,q
=f„„and expand g„,

in a parameter A. :
2 k2 2

ds= 1 +Q,r '2r2 r4

Q2 -1
1 — +, dr2 —r'(d 8'+ sin'6}dg') .r 2r'

(3.34}
and

a44 ——1+8. 2a44+A, 4044+. .2 4

3 5
Q4 A 304 + A 504 + (4.2}

As pointed out by Schrodinger, ' Eq. (1.5) is not
the only method that can be used for raising and
lowering indices, although it is the one which he
employs. One could also have chosen

fs„=Xs
sf~ + )).s, f4„+ ~ ~ ~,

f „=)I.'sf +X',f „+~ ~ ~,

A calculation gives

(4.s)

g gvg=& g ~ (3.35) 2I44 3I(4„)——2I(~) =0

The consequence of this is to transpose our ex-
pression (3.3) for g"' which leads, after consider-
able calculation, to the metric

ds2 = 1 — —,1+, dt'

Q2
1 —2 —,dr —r d6} +sin 6dgr 2r2

(s.s8)

1
4 44 4ks 2fst 2fst

1 lg
sf(nm) ks (2 2finsfssn + & mn sfst zfst} t2k

1
4 - ——4ks. fst. fst

The field equation (2.6) requires

sfms, s =0~ sfss, k=0 ~

(4 4)

(4 5)

for a real nonsymmetric metric tensor. One
could, however, choose a Hermitian metric ten-
sor, as stated before. This would lead to the
result

d, 1
™Q-, 1-kQ dt

Q2 -].
] dr2 r2 dg + sin L9dfII))2r 2r2

44 2 mrl 3P4m (4.8)

We assume that only two particles are present.
Thus,

where

(4.7)

Denoting by P q the contracted curvature tensor
formed from the Christoffel symbols f „~„},then

IV. EQUATIONS OF MOTION

(3.37} ke/kr

k&2 (Xm k~ m)(&m kf m)

(4.8)

Bonnor' obtained the equations of motion being the spatial coordinates of "e. The solu-
tion we adopt for Eq. (4.5) is

d'r 'm'mr
2

2'e2er'm, =—,+P'q'
dt r r (4.1) ,f =&2k& „,,P, , (4.9)

where r is the position vector of the first particle
relative to an origin which corresponds instanta-
neously with the position of the second particle.
Equation (4.1) was obtained using the field equa-
tions (2.5)-(2.8) written in a different form. For
completeness, we shall now give a brief deriva-
tion of the equations of motion which removes the
constants P'q' from Eq. (4.1); the origin and

implications of these arbitrary constants are not
satisfactorily elaborated in Bonnor's work. We
follow the notation of Refs. 6, 10, 11, and 8, and

k

4C'(T) =4C (T) —— 2I(*,)n„dS=0, (4.10)

where ',C' (v} is the result obtained from general
relativity"'":

,kc.(7) =- —— 2,P+„n„ds,1 (4.11)

where Q is a harmonic function of r. Recalling
Eq. (4.3), if gf„„g is real then k is real, and sim-
ilarly for the imaginary case. The equations of
motion come from the surface integrals
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and

j. 1
gpmn g~mn ~ mn 4Ps8 + ~ mn @ 4+ y

j. 1,I *n =,I .—Z& .4I..+ ~&~ g ~~

(4.12)

(4.13)

When the equations

P, 0 (4.14)

4I(~) = 24', m4, n
—&~ 4,.4... (4.16)

which in turn satisfies Eq. (4.15). A calculation
of the surface integral yields the result for the
first particle:

j.

24I& „~n,dS=4'e'er '('$ —'$ ),

(4.15)

are satisfied, then the surface integrals will not
depend on the shape of the two-dimensional sur-
faces enclosing the kth particle. A calculation
shows that Eq. (4.14) is satisfied, while Eq. (4.13)
leads to the relation

proton, corresponds to a length of about 10 "cm
if k =Q. It is perhaps not coincidental that this
value of k leads to a radius which is of the order
of magnitude where gravitational effects are
thought to begin. " When the radius is of the order
of, say, the Compton wavelength, the effect of
this extra factor is negligible unless k is very
large. We note that the singularity at r =0 is now

stronger than that of the Reissner-Nordstr'om solu-
tion because of this factor. In the Hermitian case,
whose solution is given by Eq. (3.34}, the same
sign is formed for the Q'/2r' term, but the factor
in g«becomes (1 —O'Q'/r'). The significance of
(g»/g«) changing sign at r =(Qk)'" escapes us,
ans we will ignore the Hermitian case in the re-
mainder of our discussions.

If we define the contravariant metric tensor by
Eq. (3.35), then the solution obtained does not go
over to the Reissner-Nordstrom solution at large
r, having a factor -Q'/2r' instead of +Q'/2r' The.
consequences of this sign are, however, intri-
guing. It would imply that the coordinate singu-
larity occurs at

(4.17)

where r is the distance between the two particles.
This, combined with Eqs. (4.10) and (4.11), yields
the result

1jrtl 1I'2 ~(l(III 2(ltl)r-3 + le 28 (1$ 2( )r 3

r =m+ (m'+ e')'"

where

m =GM/c',

Q' 4mGe~

2 ~4

(5.1)

(5.2)

(4.18)

where the constants, 'm, ,'m, ,'e, and ',e are terms
in the expansion of 'm, 'e, etc. in powers of ~.
Writing $ =X '(d'$ /dx, ') and removing the pa-
rameter P from Eq. (4.18) by multiplying by X',

we find

cPr Ski pR r e er
dt' r' (4.19}

which is free from Bonnor's constant factor P'q .'
It is expected that in the next higher order of ap-
proximation, the term er~H, in the Lorentz
force, will appear.

Now, the important result, from our point of

view, is the sign of the Coulomb force term in

Eq. (4.19) which is physically correct. This fixes
the sign of If„,~

in Eq. (2.9) and, consequently, the

sign of the term Q'/2r' in our metric, given by

Eq. (3.33). This will play a crucial role in the
physical interpretations of our solution.

V. CONSEQUENCES OF THE METRIC

The result (3.33) is similar to the Reissner-
Nordstrom" geometry with one exception, namely
the factor (I +O'Q'/r4) in g«. This factor is clear-
ly of significance for r &(Qk)'", which, for a

and where M and e are the physical mass and

charge. This has particular significance for
charged particles. According to Eq. (3.30), the
singular sphere for a proton or electron no longer
exists because e»m. However, this is not the
case for Eq. (5.1) and we find a coordinate singu-
larity at about 10 ' cm, which implies Qg. t both
charged and neutral particles have singularity
"structure, ** a possibility considered by Edding-
ton "

This metric also implies a different behavior
for black holes. Whereas Eq. (3.30) predicts that
the black hole will cease to exist for e &m, the
metric (3.36) allows it to continue to exist for this
condition. Indeed, the more charge that is added
to the black hole, the stronger it becomes.

Let us return for a moment to Eq. (2.4). Suppose
we defined gL-„,~ as kgI'-„,~. Then I~„,~ would be a
function of gL'&„j only, while R& „would contain
kgI-'&, ~. When k-0, A„, is "decoupled" from gp„, ~

and the resulting form of Eq. (2.7) is identical
to the old theory given by Eq. (1.1). Inspection
of Eq. (2.10) shows that the terms cubic in gI„,~
vanish, leaving only the linear term when k- 0.
Since we now have the identification

(5.3)
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then Eqs. (1.16) and (2.8) lead immediately to
Maxwell's equations (1.2) and (1.3} in the k- 0
limit. This would imply that our metric should
now be the Reissner-Nordstrom metric, and quick
inspection of Eq. (3.33) shows that it is for k-0.
Thus, our unified theory contains the old theory of
gravity and electromagnetism as a special case
when the universal constant k vanishes.

Finally, we examine the nature of the singularity
at r =m+ (m' —e')'". To do this, we transform
our metric into a set of Kruskal-Szerkeres-
type~'" coordinates given by

M' = -', [m + (nP —e')"'] (5 6)

m+ ~2 2m

and

(5.7}

2'~'
=„=tanh (5.8)

In the limit that the charge vanishes, M' = m.
Combining Eqs. (5.4) and (5.5) yields the relations

x' = T 2
—1 exp g cosh

(5 4)

We see from Eq. (5.7) that at r = 0,
rl (fl2 T2)l/2 (5.9)

and and we obtain the usual two-sheeted space with a
branch point at &=0. We transform the metric
into these coordinates by means of the formula

2m' —~' 4m' —2~' 4M'

(5.5)

where T is a constant. The constant M' is defined

exp ex'
+8 ~+f0( g r5gPa '

This gives the result

(5.10)

ds = -2- exp
-32 '

2m(1+ p)
dt" p)dr" —r' d 0'+ sin'6 d(IJ)'), (5.11)

where

f, (p)= 2 2+ p.
' 1+ ~ +cosh, 2

—p, 1+(1+p) (1+»' 2
&'@' ' (1+»'

1+2p 1/2p (5.12)

and
-E 2

p=
2mr (5.13)

M'
y, = —= —,[1+(1 —e'/m')]"'.

m
(5.14)

In the limit that Q-O, we see that p-0 and g-1,
so that

f~(0) = 1,
and Eq. (5.11) becomes the usual Kruskal-
Szerkeres coordinate transformation for the
Schwarzschild solution. Examination of Eqs.
(5.11) and (5.12) shows that the line element pos-
sesses a singularity only at r =0 and r =e'/2m.
Thus, the singularity at r =m+(m' —e')'I' is a
coordinate singularity.

VI. CONCLUSIONS

We have solved a set of field equations for
Einstein's nonsymmetric unified field theory and

found solutions that appear physically reasonable.

In particular, we recover the usual result for a
static electric field of a point charge. The class
of solutions that this theory generates contains
the old theory of gravitation and electromagnetism
as a special case. We also investigated other
possible metrics and their implications to black-
hole and particle physics. The field equations also
give the correct equations of motion for charged
masses to the order of approximation considered.
It is the combination of both of these results which
is striking, and could have far-reaching conse-
quences in our understanding of gravitational and

electromagnetic phenomena.
Although, formally, the modification of Ein-

stein's field equations used is similar to that
proposed by Bonnor and Kurgunoglu, our physical
interpretation of the theory is different, and we
are actually able to obtain exact solutions for the
metric. The present theory is more satisfactory
than the 1915 theory of general relativity incor-
porating the electromagnetic fields into the energy
momentum tensor, because in the nonsymmetric
theory, both the gravitational and the electro-
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magnetic fields appear as a unified property of
space-time, in the manner originally envisaged
by Einstein.

If we perform the transformation on the affine
connection

(6 1)

where ~ is an arbitrary function of the coordinates,
then the nonsymmetric curvature tensor A~„(r')
formed by replacing I" by the right-hand side of
(6.1) gives

(6 2)

(6.3)

As was emphasized by Einstein, ' this "gauge in-
variance" of the theory could be of fundamental
importance. Einstein's gravitational theory and
the Einstein-Maxwell theory are not invariant

under a transformation such as (6.1), because
contrary to a coordinate transformation, the trans-
formation (6.1) produces a nonsymmetric r' from
a I' that is symmetric in p, and v.

It could be that the main significance of the X-

gauge invariance lies in the fact that it may in-
fluence the renormalizability of the theory. It has
recently been shown" that Einstein's gravitational
theory is not, in general, renormalizable. It is
possible that the unified field theory described
here is renormalizable, because of its invariance
under the extended gauge group of transformations.
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