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Counting hadron states
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The question of how to count hadron states is explored. It is suggested that there may be states
which should be ignored in classification schemes such as SU(3) or the quark model.

The purpose of this note is to point out that
there may be hadron states which ought to be
ignored in classification schemes such as SU(3)
or the quark model. In a well-defined sense,
such states do not exist if we look at an average
coarse-grained mass spectrum. The deuteron
will be shown to be a noncontroversial example
of such a state. Whether or not more interesting
examples exist among the many meson and baryon
resonances is not yet known.

The basic idea, which is implicit in some re-
cent work in statistical mechanics, is best illus-
trated by an example.

The deuteron is supposed to belong to a 10 rep-
resentation of SU(3).' This would imply low-en-
ergy bound states or resonances in hyperon-nu-
cleon and hyperon-hyperon channels. It may be,
however, that these presumed partners of the
deuteron do not exist. Vfhat would this mean?

To answer this question let us begin with R pre-
cise definition of SU(3) for the hadron spectrum.
Let pz(M) be the density per unit mass of hadron
states with quantum numbers Q. A stable state
with mass Mp clearly contributes a 5 function
6(M —Mo) to p. We will see later how to compute

p for continuum states. Here we need only men-
tion that in the continuum p is to be the difference
in density of states for interacting as opposed to
free particles and need not be positive. Now de-
fine pz(M) as the average of pz over a mass inter-
val AM which is typical of SU(3) breaking; e.g. ,
one could set

kR+6(&) =Nm,

where N is Rn integer and
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where dN/dc ~, is the density of states for nonin-
tel acting pRrtlcles. AI1 approximate definition of
p is evidently'

p, (M)-p, (M) =p, -(M) ~ .
Note that averaging has gotten rid of mass differ-
ences so that our criterion is just that there be
the correct number of states in various channels.

With this definition of SU(3) the absence of
partners for the deuteron will be bad news unless
the average density p~ in the deuteron channel
somehow succeeds in vanishing. Actually this
is just what happens. The 5 function from the
deuteron is canceled in the average by a hole in
the n-p continuum states. To see how this goes
consider the P-n system confined to a large
spherical box of radius 8 in the center-of-mass
system. If we concentrate on that partial wave
which contains the deuteron, then on the edge of
the box the wave function is approximately
g=sin[kR+ 6(e) j where 6(e) is the phase shift as
a function of energy c and we have assumed that
8 is much larger than the range of the interaction.
Making the wave function vanish at 8 yields

1
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From the baryon mass differences we expect that
AM-200 MeV would be an appropriate averaging
scale for SU(3) considerations.

If states with quantum numbers Q belong to an
SU(3) multiplet containing states with quantum
numbers Q', Q", etc. , then SV(3) requires that

p = —) —(5(a ) —5(0))I,
1 1

(6)

which is independent of the radius of the box R as
it should be. For the deuteron pD is then easily
seen to be
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where the one comes from the deuteron and the
difference in phase shifts is the result of inte-
grating the expression in Eq. (5) over an aver-
aging energy ~e- ~-200 MeV. The phase shift
in the deuteron channel is m at threshold (e =0)
and falls rapidly, being nearly zero at an energy
&e -200 MeV above threshold. Thus p~ nearly
vanishes, which can be understood as the state-
ment that in the region from the deuteron up to
about 200 MeV, the net number of states is the
same as for two free nucleons.

Evidently, there is a well-defined sense in
which the deuteron does not exist if we look over
a mass interval typical of SU(8) breaking. The
possible lack of strange partners for the deuteron
is not a serious matter.

It is no accident that p vanishes for the deuter-
on. The deuteron and low-energy P-n scattering
are adequately described by nucleons interacting
through a static potential. In potential theory one
can derive Levinson's theorem which says that'

1
0 =N~+-

7r

d—5(~) de
dE'

=N, +- [b( ) —b(0)],1
(7}

where N~ is the number of bound states in the
partial wave under consideration. On a nuclear
physics level, an energy of order 200 MeV is
essentially infinite and we see that p, vanishes as
a consequence of Levinson's theorem.

Levinson's theorem can be interpreted as the
statement that the interaction does not change the
net number of states in any channel. Thus the
nuclear force can bind the deuteron only at the
expense of a compensating depletion in continuum
states. The idea which we want to abstract from
this example is that certain interactions like a
nucleon-nucleon potential do not make new states
but just shuffle around the states which are
already there. All this reshuffling takes place on
an energy scale which is small on a hadronic
scale of, say, one GeV.

The general formula for po(M) can be shown to
be"

p, (M)=g b(M M, )+& . tr,-[inS(M}], ,
d

(8)

where the sum runs over stable particles with
quantum numbers Q, [1nS(M}],is the corrected
part of the logarithm of the 8 matrix at center-of-
mass energy M, and tr@ is a suitably defined
trace' over all channels with quantum numbers Q.
For a single partial wave S is e" so that our

definition of p agrees with Eq. (5) in this special
case. In general, p can be thought of as the (in-
finite) sum over derivatives of eigen-phase
shifts. '

To see that Eq. (8) is a reasonable definition let
us consider a resonance. At a sharp resonance
some eigen-phase shift jumps rapidly by 180' so
that

5„(M) =const+m8(M —M„) (9a)

&„(M) =&(M -M„}.1 d
m dM

(9b)

Therefore, a sharp resonance acts just like a
stable particle. A wide resonance puts a broad
bump of unit area in p.

The multiparticle generalization of Levinson's
theorem would read

podM = 0 (I evinson's theorem) . (10)

This is an established result for multiparticle
potential scattering. ' However, hadronic reac-
tions do not appear to satisfy Levinson's theorem,
at least for any reasonable cutoff on the integral.
The dual model violates Levinson's theorem for
any cutoff and it is probably not satisfied in field
theory. Thus, whatever the fundamental hadron
interaction is, it is unlikely to satisfy Eq. (10) at
any reasonable energy. Nevertheless the notion
behind Levinson's theorem that some interactions
just move states around as opposed to making new
states could, as we will see below, be a useful
concept in hadron spectroscopy.

Let us take a coarse-grained view of the hadron

spectrum by looking at p with an averaging inter-
val &M of a few hundred MeV.

We already know that the deuteron appears in
the local density p but not in the average p. The
3-3 resonance 4 will, however, appear as a
bump in both p and p.' Thus me see that thehe can
be two kinds of hadhous The first ki.nd which we
call t ue hadhons remain as bumps in p as well
as p. The second type which we will call
accidental states disappear when we average over
a mass interval which is small on a hadronic
scale. The name accidental is chosen to suggest
that such states might be produced accidentally
by relatively weak long-range effects such as v

exchange in the case of a deuteron.
What we have in mind here is something like the

following. Simple N/D calculations based on a
few channels and keeping only light-particle ex-
changes can often produce resonances. The ap-
pearance of such a resonance is often almost a
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kinematic effect due to, say, the opening of a new
inelastic channel. Any kind of dynamics like this
which is localized in energy ought to satisfy
Levinson's theorem locally. ' This sort of dynam-
ics should not lead to a net change in number of
states in any given energy range, but will just re-
shuffle those states which were already there. We
know nowadays that whatever the fundamental had-
ron dynamics is, it is not of this simple type.
However, it is quite possible that such effects do
exist on top of whatever one's theory of fundamen-
tal hadron physics is."'"

Do accidental states other than the deuteron
really exist? At present one simply does not
know. It is easy to convince oneself that the
major well-studied states like p, 4, etc. , are
got accidental.

Where might we look for accidental states?"
Probably the meson channels are more likely be-
cause they are eigenstates of more quantum num-
bers so inelastic channels (where a fluctuation in
number might drive an accidental resonance in
some channel) frequently decouple.

Perhaps a likely case is the B meson multiplet.
The evidence for the B and its properties is not
controversial. It is coupled to n&, qp, nA„plus
higher-mass channels and strange-particle chan-
nels. The isoscalar partner of the B is coupled to
mp, q~ plus higher-mass and strange-particle
channels, missing the equivalent of mA, , (which be-
comes a strange-particle channel 500 MeV higher
in ma. ss). If the B is strongly coupled to vA„as
is likely from data on B production by isovector
exchange, then perhaps the B is an accidental par-
ticle which has no isoscalar SU(3) partner. "'" These
ideas can be tested by studying the m~ phase shift
in the 1' channel, looking for Levinson's theorem
behavior, and by studying the 1', isoscalar, odd-
G channel. "

In baryon channels one might look at the Hoper
resonance X*(1450) as a possible accidental par-
ticle, driven by the strong nearby v~ and eN
thresholds, ' One could study the P„phase shift,
perhaps best in the n & channel since the inelas-
ticity is large, looking for Levinson's theorem
behavior. Also, if the coupling of N*. (1450) to
strange-particle channels such as K Y* is impor-
tant (as is often the case for the higher mass one
when two resonances N, N* have the same quan-
tum numbers) it might happen that the A* SU(3)
pa. rtner of N*(1450) would not exist since it is
missing the I7& (I=1) channel.

It is reasonable to assume that SU(3), the quark
model, or any other classification scheme should

apply to the strong short-range interactions'
which produce the true hadrons in p. If accidental
states exist they could perfectly well not fit into
one's classification scheme. This is no real loss
since if we average over a reasonable mass inter-
val the peripheral states disappear. In fact, the
existence of accidental states is likely to be ex-
tremely sensitive to symmetry-breaking effects.
For example, if the v mass were as large as the
K mass the deuteron would probably not exist.
Also, the kind of N/D dynamics discussed above
is extremely sensitive to mass differences at
thresholds and in exchange forces.

We close with the obvious remarks that the ex-
istence of an incomplete SU(3) multiplet of acci-
dental mesons would be a perfectly acceptable
circumstance and that the quark model need not
fear the establishment of a Z* if such a state
turns out to be accidental.
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This sort of thing is not local in energy.

oln addition to quarks, etc. , we would place the kind of
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dynamics mentioned in the previous footnote in this

category.
In practice the use of Eq. (8) will presumably be re-
stricted to cases where the scattering process can be
approximated by a coupled set of quasi-two-body re-
actions. Equation (8) is then a straightforward gener-
alization of Eq. (5). As a matter of consistency, it
may be shown that 8-matrix elements involving an
accidental particle in either the initial or final states
will cancel out in the averaged p. (See g,ef. 1.) Thus

p is determined by the scattering of "true hadrons" as
it should be. S-matrix elements containing accidental
particles do contribute to p, however. Thus accidental
particles can make further accidental particles but not
true hadrons.
Another possibility is that the unusual structure of the
inelastic channels pushes the partner of the B up to a

mass which is considerably higher than one would nor-
mally expect.

In general, not only the existence of accidental states
but also the properties of all particle states will be
influenced by fluctuations in inelastic channel density.
Masses and widths will be shifted from values expected
on the basis of symmetry predictions, such as SU(3)
couplings and mass formulas. Without a quantitative
multichannel theory it is hard to estimate general re-
sults, but in particular cases of interest it should be
possible to analyze situations in a useful way. See the
following reference.

'For example, the analysis of F. S. EIenyey and G. L.
Kane, Phys. Rev. D 9, 302 (1974), shows how one can
study the effect of inelastic channels on the width of the


