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Constraints on disfavored fragmentation
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Further constraints are obtained for the behavior of the inclusive spectrum near the phase-space
boundary.

I. INTRODUCTION

Several years ago Chou and Yang' proposed to
separate the type of fragments in hadron collisions
into two kinds: favored fragmentation and dis-
favored fragmentation. Let the inclusive spectrum
be denoted by

Then the single-particle inclusive p, of the proton
consists of

p.(p„p." p.)lI d'p;
P1=O'1+ 7'1 ~

Then 0, comes from the fragmentP -P and is

(4)

= lim (partial cross section that n particles
with momentaP, , , P„are emitted) .

Then p„can be separated into two parts,

pn =~a +Tn (2)

II. PHASE-SPACE MODEL

To introduce the notation let us briefly reivew a
model of fragmentation based on phase space"
alone. To be specific let us consider the case that
the proton only fragments into proton and m':

where o„contains a 5 function at the phase-space
boundary and is contributed from n-particle ex-
clusive final states. The ~„ is contributed from
more-than-n-particle final states. The favored
fragmentation consists of those fragments like
P -P, m' -m', P -P n 'g, where the final particles
together have the same quantum number (Q, B, G,l)
as the initial projectile. Then o„does not vanish
for the favored fragmentation. For the disfavored
fragmentation like w -n, P -n, 0„vanishes
and ~„approaches zero near the phase-space
boundary. Experimental evidence' has so far
strongly supported this classification and also pos-
sibly the even finer classification from the quark-
model hypothesis among the disfavored fragmenta-
tions. '

In this paper the author wishes to go one step
further and investigate the constraints placed on
the rate that 7„can approach zero near the phase
boundary from kinetic considerations and some
general dynamic considerations.

r, (x, ) = Q p„,(x,),
l =2

(5)

where p» is the contribution to the inclusive spec-
trum by exactly L final particles. From pure
phase-space factors one gets

1 l

d„(*,) =,f !Id*,. ll ) —Q d,
t =2

j=1
which has the normalization

where o(l) is the cross section for the proton to
fragment into exactly l particles. It is easy to
see that the inclusive spectrum for P -n' is

r, (x,) = Q o(l)l(l —1)(1 —x,}' ' .
l =2

(8)

As x, -1, the contribution comes from o(2) only,

r, (x,) —2o(2),

and all contributions from l & 2 vanish because of
the high power of (1 —x,). In general,

/max +())) t

(l —n —I )!
i= imin

l -n-1

Near the phase-space boundary, Qx, =1 —e, each
term of Y„approaches zero like e' " ', and

o, =const x5(1 —x,},
where x,= p„)lp,* and p, „p,* are the longitudinal
momenta of the final and initial protons in the c.m.
system. The T, comes from a summation of frag-
mentations p + (l —1)n':
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There are two points that are worth pointing out:
(a} These results depend crucially on the ex-

istence of the 5(1-+x,}, which is given by the
minimal rule'. In fragmentation processes the
two colliding hadrons exchange as little longitudinal
momenta as possible. There is already direct
experimental evidence" for the minimal rule.

(b) The result does not depend on the distribu-
tion of o(l), whether it goes like 1/l2 or like a
Poisson distribution, or like a combination of
both. It also does not depend on the energy varia-
tion of o(l}.

III. REALISTIC MODEL

It is obvious that a realistic model must be of
the form

P„(,)=, Q d;~IMy;I'5 1 —p t}, *
f=1

(12)

where M&, is the matrix element for the proton to
fragment into l particles.

To investigate the general structure of M&&, let
us examine the single inclusive spectrum p, . All
existing theoretical models and experimental data
agree that, near x, -1, 7, ~ (1 —x, ) &, with a, & 0
for disfavored fragmentation. Hence, M&; cannot
be a function of highly singular nature or even an
exponential function of x. Otherwise, upon inte-
gration it will not give a (1 —x, ) ~ behavior.
Furthermore, phenomenologically a model' with
~Mf;~'-x„„„' is sufficient to fit all available da. ta
for PP - n'+anything at all energies.

Hence, let us assume that the most general form
of the matrix element is a polynomial in x:

8) 1

where (P) is the set of all positive integers, and
C are some constants. Then it is easy to prove
the following theorem (see Appendix).

IV. THEOREM

If T„ is the inclusive spectrum of n-particle final
states, andthematrix element ~Mz;~' is a poly-
nomial in x, then

(a): r„-e ~ as e -0, where e =1 —P x, , (14)
t =1

and

(b): a„ is some number, which has a lower
bound:

n„~ ln„„—n —1, (15)

where l;, is the minimum number of final particles
to produce a nonvanishing ~„spectrum.

The results (14}and (15}are the same as those
in Eq. (11)which are obtained from pure phase-space
considerations alone. They have the practical
consequences that for P «K, o.y&1 and p -K K,
n, & 2. Some more examples are listed in Table I.

Let us consider the following inclusive spectra:

p —n' + anything

—m'n'+ anything

-n(n )+anything .

Near the phase-space boundary, i.e., Qx, -1,
these inclusive spectra are contributed only from
the following exclusive processes:

TABLE I. Lower bound for the rate of ~„approaching the phase-space boundary from phase
space.

n

No. of final particles
in the inclusive spectra Examples

~ min

Min. No. of final
particles for the

exclusive processes Examples
Lower bound

for e„

p~r
p K

p r n

p K K p

p r+r

p-K K

p~r r p

p K K'K K+p

p~r+r r

p r r r+

p-K K K

p r rpr
p r r r r r n

p-3(K'K 'jp
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P —neutron+ n
'

—neutron+ n' + (m'n )

- neutron+ w' + (n —1)(w'w ) .

The inclusive spectra behave like

(17)

frame of a, and if c does not have the same quan-
tum number as a, the acceleration of c would be
difficult; hence, the matrix element should vanish
at the phase-space boundary. If the matrix ele-
ment goes like

~I!f~'-x '~ x„",
then

na
n

~ ~ 82+ 83+ ~ ~ 8 n
+ {n -2)

1 (22)

with

n„=P„„+P„„+ P,„+(n —1) . (18)

The Chou-Yang selection rule, in our notation,
simply implies

Then if one assumes that the mechanism for
creating each additional pion pair is similar, then
one has

p 4 ~ ~
2n-1 f 2n-3 ~2n-S

) 2n-2 ~2n-4 ~2n-6

Hence, one has the following equality among the
Qn:

(u, —iw, ) = (n, —n, ) = (n, —o, ) = = (u„, —ol„) =

(20)

which can be checked by experimental measure-
ments in the future. It is easy to see also that if
pions are created as triplets (w'w w ) instead of
pairs at any one time, the above equation (20) still
holds. The equation can also be generalized to
hold for the inclusive spectra

P2+ P3+ P„&0 (23)

for disfavored fragmentation. Hence, their re-
sults are quite different from the result obtained
from above.

In short our results (15) are very general and
should be true for any "reasonable" dynamical
model.

APPENDIX

l max

T„(x„x, x„)= P p„, ,

l 11»»

(A1)

where

Let the inclusive spectrum Tn of n particles be a
summation of the exclusive processes: From a
number I, of final particles, where / runs from I»»»

to 3,„,

P —n(K') + anything

- n(p) +anything

- n(A) +anything, etc.

V. DISCUSSION

(21)

l

Pnl a
i =n+1 i =1

(A2)

The matrix element squared is assumed to consist
of only polynomials in x, . Hence, the most gen-
eral form is

Our discussions above come from the considera-
tion of phase space alone and do not involve any
specific behavior of the dynamics. In Ref. 1

Chou and Yang propose a selection rule on the be-
havior of T„due to dynamics. They argue that for
disfavored fragments a-c, if one sits in the rest

iMi = CB . . . s x, ix «'''x
8

(A3)

Qne can then substitute Eq. {A3) into Eq. (A2)
and perform the integration. Let us first note
that the following integral can be performed ex-
actly:

=d d d x 1x 2 x n 1 — x8
l -1 l-2 n+1 1 2 n i

i =1

Bn+1+ 8n+2+ ~ ~ ~ + 82+{l -n-1)
(A4)

where d are some constants given by

d„«=d(P, «, P, +P, , +' ' ~ +P, «+, +k —1) (A5)

( 1)~y~

«~0 (k —k)!k! (a+ k+ 1) (Ae)

and Secondly, each exclusive process must normalize
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to the partial cross section o(l):
1

p„(x,)dx, = lo(l) .
-1

Then the constant a, has the following value:

(AV) when

g 8n+1 Sn+2+ 81min +(dmin (A10)

(AB) In particular, for the single-particle inclusive
spectrum one has

Finally, the behavior of the inclusive spectrum
near the phase-space boundary can then be easily
seen to be

2+ 3+ ' ' 8lmin +(~min
1 (A11)

and

p Q nan +1.+ Bn +2+ ~ ~ ~ 8l +( & -n -1) (A9)
It is also clear from the above derivation that the

P, do not have to be integers. They can be any
positive number.
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