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Dimensional scaling laws are developed as an approach to understanding the energy dependence of
high-energy scattering processes at fixed center-of-mass angle. Given a reasonable assumption on the
short-distance behavior of bound states, and the absence of an internal mass scale, we show that at
large s and t, do/dt(AB — CD) ~ s "**f(t/s); n is the total number of fields in 4, B, C, and
D which carry a finite fraction of the momentum. A similar scaling law is obtained for large-p
inclusive scattering. When the quark model is used to specify n, we find good agreement with
experiments. For instance, this accounts naturally for the (q2)~2 asymptotic behavior of the proton
form factor. We examine in detail the field-theoretic foundations of the scaling laws and the assumption
which needs to be made about the short-distance and infrared behavior of a bound state.

1. INTRODUCTION

The dimensional scaling laws!*?

& (AB~CD)~s™""%(t/s) (1)
for the asymptotic behavior of fixed-angle scatter-
ing appear to compactly summarize the results of
a broad range of hadronic scattering, photoproduc-
tion, and elastic form factor measurements. The
integer n is given by the (minimum) total number
of lepton, photon, and elementary quark fields
carrying a finite fraction of the momentum in the
particles A, B, C, and D. The scaling laws rep-
resent, in the simplest possible manner, the con-
nection between the degree of complexity of a
hadron and its dynamical behavior.

One of the most important consequences of Eq.
(1) is its application to elastic electron-hadron
scattering. This rule immediately connects the
asymptotic dependence of the (spin-averaged)
electromagnetic form factor to the minimum num-
bers of fields 7, in the hadron:

Fy(t)~t'™"4 . (2)

Thus, using the quark model, we have F(t)~t"!
for mesons and Fi(¢)~{~2 for baryons. We also
find (see Sec.IID2) F,~¢73, and thus G ~G, scal-
ing. All of these results are consistent with the
asymptotic dependence indicated by present ex-
periments. In Sec. III of this article we survey
present data which are relevant to testing the scal-
ing laws, Eq. (1). They fare very well, since they
are consistent in all cases and accurately verified
for yp—-mp and pp—~pp. We predict do/dt - s~7 and
s~ respectively, at fixed c.m. angle; experi-

ment gives s”7*3* %4 and s7°7* %5, A catalog of

predictions which can be tested in the future is al-
so given in Sec. III.

In fact, dimensional analysis and some simple
assumptions immediately lead to the scaling law
of Eq. (1). Imagine that a hadron is a bound state
of ny constituents, each of which carries a finite
fraction of the total hadron momentum. The ampli-
tude for the scattering of a system of hadrons (see
Fig. 1) is therefore related to the amplitude for
the scattering of their constituents, integrated over
possible constituent momenta with the constraint that
the constituent momenta add up to the hadron mo-
menta. If the total number of fields in the initial
and final states is n, the Feynman amplitude M,
has dimension [length]"” ~* when the conventional
normalization of states is chosen [(P [p"
=2E6%(p-p’)]. If, at large energy and momentum
transfer, Vs ! is the only length scale for the
amplitude, M, ~(Vs)*""f(¢/s). Now if each of the
ny constituents of hadron H carries a finite frac-
tion of the momentum, say, in the hadron rest
frame, integrating over the possible momenta of
the constituents can never introduce a dependence
on s. Thus the amplitude, M, for the physical
process has the same asymptotic behavior as M,,.
Equation (1) then follows immediately since

do 1
@~ M

More generally for any exclusive process A +B
~H +-++Hy,

do
dt(d*p,/E,) ** (d°pp-,/Em-,)

~sT"Ef(pep;/s)  (3)

for large s at fixed invariant ratios. Alternatively,
using the quark model we have simply the scaling
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law
Ao ~s~1"¥u—2Np (4)

for the exclusive cross section integrated over any
fixed center-of-mass region when the ratios of
invariants stay finite. Here N, (Nj) is the total
number of mesons (baryons) in the initial and final
state.

The same model and dimensional counting rules
may be applied to inclusive processes A + B—C +X,
where C is detected at large transverse momen-
tum.! In this case only a subset N of the con-
stituent fields need to participate in the large-
angle scattering process; the rest remain as
“spectators.” The result for s>»>M?, fixed in-
variant ratios, is

o L[t )
ap/E ~ s¥2I\s s

= (_-'TZL)N_——Z f(ec.m ’ pc.m./pmax ) ’ (5)
L

where M? is the missing mass. The subset N
which contributes to the scaling of a given hadronic
process can be model-dependent; we discuss this
further in Sec. IV. Furthermore, as shown in
Ref. 3, the dimensional rule allows one to predict
the threshold dependence at the exclusive bound-
ary [i.e., M?/s=(1-p /b )~ 0 at fixed 6__]:

do 1 < M2

P
m’*s—p_—z S >, P=2n-1 (6)

where 7 is the total number of spectators in A, B,
and C. Thus, for example, in deep-inelastic e-p
scattering N=4 (for eq—~eq) and n=2 (for the two
spectator quarks in the proton) and we recover
both scale invariance for vW, and the Drell-
Yan-West behavior vW, ~ (1 - x)® for x- 1. Pos-
sible spin modifications are reviewed by Ezawa,
Ref. 4. AsshowninRef. 1, the inclusive-exclusive
connection of Bjorken and Kogut gives the relation
n=N+ P+ 1, where n is the number of fields in-
volved in the exclusive scattering [see Eq. (3)].
The above scaling laws share a significant fea-
ture with the predictions of parton models: The
cross section multiplied by a power of s becomes
a universal scale-independent function, dependent
only on ratios of invariants. In contrast, if had-
rons were homogeneous objects, no elementary

8 D
FIG. 1. n-point ‘“decomposition” of AB— CD (in this
example z = 10).

constituent would carry a finite fraction of the
total momentum, and large-transverse-momen-
tum hadron scattering would take place via the
cumulative effect of an infinite number of soft
interactions. Exponential damping in transverse
momentum is therefore to be expected in such a
model.?

It is evident that more careful reasoning is nec-
essary in order to establish that Eqs. (1)-(5)
should be true. That is the purpose of Sec. II of
this article. The principal issue of course is
whether masses or binding energies could set the
scale rather than s. In the deep-inelastic case
that seems not to happen when ¢* and v become
sufficiently large. We argue in Sec. II that for
exclusive scattering when all kinematic variables
are large it is likely that again only those large
invariants set the scale. Of course, purely di-
mensional reasoning cannot specify possible
powers of logarithms. Hence all the scaling laws
discussed above must be regarded by the reader
as true “modulo logs.” In Sec.II our analysis of
renormalizable field theories will allow us to be
more precise about logarithmic modifications to
canonical power-law scaling.

The simple model of the hadron in which its
momentum is partitioned among its constituents
so that each quark has a finite fraction turns out
to be very useful for a broad range of hadronic
scattering calculations—especially those involving
multiquark states. An application to effective
Regge trajectories and residue functions is given
in Section IID 2. Section III is devoted to the ex-
perimental situation and Sec. IV briefly deals with
inclusive-reaction applications. Appendix A gives
a detailed example of a Born amplitude calcula-
tion. Finally, Appendix B shows that the fixed-
angle unitarity bound on the asymptotic behavior
of scattering amplitudes is the same as the di-
mensional scaling law |My|%~s*"",

II. EXCLUSIVE SCALING LAWS

The crucial steps in the dimensional analysis
of the scaling laws given in the Introduction are
(a) the effective replacement of the composite
hadron by constituents carrying finite fractions of
the hadronic momentum, and (b) the absence of
any mass scale in the amplitude M, or binding
corrections to it. It is evident that a super- or
non-renormalizable field theory could not satisfy
these conditions since such theories contain a
fundamental length (in the coupling constant) which
necessarily sets the scale. This is in contrast
with renormalizable perturbation theories in which
mass scales enter through propagators and ex-
ternal masses. In fact, the required conditions
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(a) and (b) are natural features of renormalizable
field theories, given certain dynamical assump-
tions concerning the nature of the Bethe-Salpeter
wave function, the absence of infrared effects,
and the accumulation of logarithms.

In this section we shall systematically investi-
gate the validity in renormalizable field theories
of the dimensional argument and its underlying
assumptions. In order to examine the effects of
binding in bound-state scattering (a), we shall use
the Bethe-Salpeter formalism.® This enables one
to separate the behavior of individual graphs from
that due to the infinite summation required to
form bound states. By definition the hadronic
amplitude is given by the convolution of the ha-
dronic wave functions and an n-particle ampli-
tude M, integrated over relative momenta &} (see
Fig. 2):

M=f ipt;s ‘pzs M, bystys Hd4ki . (M
i

We shall discuss (b), the asymptotic behavior of
M, , by explicitly examining it in perturbation
theory. We shall show that with the following three
assumptions, the scaling laws [Eqs. (1)-(4)] are
correct (modulo logarithms) in any renormalizable
field theory:

{A) The physical mesons and baryons are s-wave
Bethe-Salpeter bound states of quark-antiquark
and three quark fields, respectively, such that
the wave functions are finite when the quarks have
zero separation in coordinate space and vanish
for large coordinate separation. Thus the large
momentum components of the wave function are
restricted; e.g., for the mesons we have

fd4k ([)M(k)=4)M(Xp=O)<°° . (8)

Moreover, since the coordinate space extent of
the wave function is bounded; the wave function is
finite at every point in momentum space.

(B) The large-momentum-transfer interactions
of the constituents are asymptotically scale-in-
variant.

(C) Multiple (L= 2) scale-invariant interactions

. C
D
FIG. 2. Schematic representation of the full meson-

meson scattering amplitude in terms of Bethe-Salpeter
wave functions ¢ and the irreducible amplitude M, .

A

between the constituents of different hadrons can
be neglected.

Assumption A is necessary so that binding cor-
rections are limited. Then the computation of M,
involves the scattering amplitude obtained by re-
placing each hadron by a collection of quarks of
the appropriate spin, each constituent carrying a
finite fraction of the hadron’s momentum. Note
that if we turn off the binding adiabatically, the
constituent momenta are p; = (m, 6) in the rest
system and p; =x;py, X; =m;/my in a general frame.
Assumption (A) implies that there are no ele-
mentary fields with the quantum numbers of the
hadrons. Because of assumption (A), the d*k,
integrations are convergent in Eq. (7), and it is
easy to see that the scaling behavior at fixed angle
of M is given by the scaling behavior of M, multi-
plied by finite coefficients of order ¢(x=0). Note
that in the case of nonzero orbital angular momen-
tum, helicity constraints, or quantum number
restrictions, the amplitude M could fall by ad-
ditional powers of s.

Assumptions (B) and (C) are necessary to insure
that M, ~(Vs)*™". Assumption (C) serves to elim-
inate asymptotic contributions to M, from dis-
connected graphs (see Fig. 3). Recently Land-
shoff” has made the important observation that
M, #¥s)*™" if hadrons can scatter at large angles
by successive independent, near-mass-shell elas-
tic scatterings of each constituent of one hadron off a
constituent of the other (as in Fig. 3). In fact (see
Sec.IID1 and Appendix A) in this case M,
~(/s)* " (s ¥, where L is the number of pairs
of constituents from different hadrons which have
a large-angle scale-invariant interaction. (It
should be noted that whether or not this process
takes place in hadron-hadron scattering, there is
no modification from such a phenomenon to form
factors or to fixed-angle processes involving
photons or leptons.) However, there is both direct
and indirect evidence that Landshoff’s mechanism
is not physically important at least at present
energies. The direct evidence is that in pp - pp,

X,p
X5 P
(I=x=x3)p

ts

yp’
y,p’
(1=Y=¥p)p’

FIG. 3. Example of a disconnected or nonplanar
diagram for pp —pp wide-angle scattering.
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da/dt ~s~97* 9:3f (¢/s) (see Ref. 8) rather than the
s”% as would be predicted if L=3. More indirect
but equally important is the fact that no high-en-
ergy, fixed-angle scale-invariant interaction be-
tween quarks of different hadrons seems to occur
in nature. The best evidence of this is from high-
p, inclusive pion production (pp—7+ X) whose
cross section falls much faster than the pl"‘ at
fixed pl/fs— predicted if such a scale-invariant
interaction between quarks of different hadrons
did occur (see Sec. IV for details). For these
empirical reasons, then assumption (C) is nec-
essary.

The organization of this section is as follows.
We proceed by first (Sec. I A-C) giving the con-
struction of an amplitude in terms of Bethe-Sal-
peter wave functions in the spinless-constituent
case, using the meson form factor as an example
(ITA). We show that with assumption (A) the as-
ymptotic behavior of the full amplitude is the same
as the behavior of the dominant irreducible con-
tribution, M,. The extension of the analysis to
spin-3 constituents is not difficult and is given in
Sec. II B. We show that the meson form factor
has the same behavior in the spin-3 as in the spin-
less case. This is an appropriate point to ex-
plain why, even though short distances are being
probed, bound states of spin-0 fields (whose di-
mension is [L] ~!) and spin-3 fields (dimension
[L] ~3/2) have the same behavior in large-momen-
tum-transfer exclusive scattering. In Sec.IIC
we confront the difficult question of the validity of
our assumptions (A) and (B). Not very much is
known about the short-distance and infrared be-
havior of Bethe-Salpeter wave functions. We re-
view what is known, give some plausibility argu-
ments in favor of our assumptions, and speculate
on the situation in non-Abelian gauge theories.
Modifications in our results when the wave func-
tion at short distances is not finite are discussed.

Having established that assumption (A) reduces
the problem to the behavior of irreducible graphs,
we examine the lowest-order irreducible (Born)
graphs for a number of interesting processes in
Sec. IID. We start (IID 1) with the Landshoff dia-
grams and show why they violate the dimensional
result. We present some speculative arguments
in favor of assumption (C), which allows us to
neglect their contribution. Next (IID 2) we show

3 k £ k
MosgiEso=a O
p-k p-£

FIG. 4. Schematic representation of the Bethe-
Salpeter equation for a two-particle bound state.

that the behavior of the connected Born diagrams
reproduces our scaling law independent of the spin
of the constituents or the details of the interaction
as long as the coupling constants are dimension-
less. While discussing the Born diagrams we show
that a model with spin-3 quarks gives Gz /Gy
asymptotic scaling. We also obtain from general
arguments the asymptotic Regge trajectories in the
gluon-exchange and quark-interchange models.
Finally, in Sec. IID 3 we discuss the effects of
higher-order corrections to the Born diagrams.

A. Spinless Bethe-Salpeter wave function
and the meson form factor

The simplest example, which illustrates how to
obtain the asymptotic behavior of a hadronic amp-
litude is the calculation of the form factor of a
meson, taken as a bound state of two scalar fields.
The full Bethe-Salpeter wave function satisfies®
(see Fig. 4)

(2, (k- 2] gy () = [ L

@ K(k, 1, p)y (1) .
(9)

(Note that the wave function ¥, as conventionally
defined, includes the propagators for the con-
stituent legs.) This is the eigenvalue equation for
the meson mass M2=p*. The kernel K(k, L, p) is
the sum of all two-particle irreducible diagrams.
For illustration we first consider a generalized
ladder approximation
_o(®)ad?
P,k 1)=g f (I-kYZ - +ie ’

where we can choose the spectral function o(A?)
such that for large 12, K, (p, &, 1) scales as (1%)~°.
For a super-renormalizable theory 06 is positive;
¢® theory corresponds to 6=1. For renormalizable
theories, e.g., ¢* 06=0. We shall always compute
with 6>0 as a regulator, and take the limit 6~ 0
at the end of the calculation.® This is analogous
to the generalized Feynman-Pauli-Villars method
or dimensional regularization in perturbation
theory. Note that for 6> 0, we have ¢, (k) ~[%]™*°
and ¢, (x=0)<«~. (The minimum condition for
dp(x=0)<o is ¢, (k) ~[k] ~*/[In(k?)]** ¢ with €>0.)

The form factor in ladder approximation is (see
Fig. 5)

p+q
] p-k

FIG. 5. The meson form factor in ladder approxima-

tion to the Bethe-Salpeter equation.
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(2p + @) F(g*)=(p + q|J* (0) | p)
fzd k ) R
Gyt Y +a @@+ @V [(p =R =my ] 4, (B) + (@— ). (10)

If additional kernels are introduced which contain
internal chargedlines, then additional contributions
to the currentin Eq. (10) are obtained consistent with
gauge invariance (see Fig. 6.) A comprehensive
treatment of these contributions has been given by
Mandelstam.® The loop corrections are non-lead-
ing for ¢2—~= if 6> 0, and can give logarithmic

J

(@) k~xp; B2~0(m?), (p -k} ~0(m?),

.
corrections for each loop as 6~ 0. We return to
their contributions below.

By assumption (A) the wave functions are bounded
at every point in momentum space, so that the
asymptotic behavior of F(¢?) is controlled by two
regions of the d*k integration:

(B+q)P2~(1-x)g%,

b) (k+q)~x(p+q); (k+q)>~0(m?), (p-kF~0m?), F*~(1-x)q",
Ll
where x is finite. More precisely, integration re- MY~ (2xp + q)* 1
gion (a) corresponds to k=xp + k, where k is a 57 T1-x¢ [(1-9)1-x¢]
spacelike vector orthogonal to p which is of bounded
magnitude [by assumption (A) that the wave func- + 2y(p+q) —¢" !

tion is damped in large relative momenta]. Thus
k?=x>m?+ k* and kp =xm? are finite. (The vari-
able x is similar to the variable used in the Sud-
akov and infinite-momentum frame analyses.)

It is easily shown that, after the dk® integration is
performed, only the region 0 <x <1 can contribute.
Region (b) corresponds to k=(p + q) + k', with

k' (p+q)=0and (k’?) bounded.

At this point we can relate the asymptotic fall-
off of F(g®) to that of ¢°¢(¢®), up to logarithms.
However, for our purposes it will be convenient to
iterate the equation of motion wherever large
relative momentum is encountered. Thus we ob-
tain for large ¢*

(20 + q)'F(q®)

f id*k
2m?
with k=xp +kand I=y(p +q) +«’. Theintegrationsare
limited to the dominant region of each wave func-
tion: k% and k> =0(m?). M{ is the five-point con-
nected scattering amplitude illustrated in Fig. 7.

This is in fact the prototype of our general pro-
cedure. We employ the equation of motion for the
wave function wherever it involves large relative
momentum. In this manner we generate the con-
nected amplitude Mt which represents the scatter-
ing of the quark constituents, each with a finite
fraction of the hadron momenta: P, =x, Py, 25X,
=1. M} is, of course, exactly the connected amp-
litude which occurs when the hadronic binding is
turned off adiabatically, in which case x;—m /M.

Let us now discuss the asymptotic behavior of
F(q?) using Eq. (11). For large ¢° one can readily
verify that

id*l
G B DM, 0, 1, ), (), (1)

(1-y)g? [(1=-y)(1-x)E) ’

which is properly gauge-invariant:
Asymptotically, then,

q,M5 =0.

1 1+ 6
F(qz)~((F > In(q®/m?),

where one finds that the logarithm occurs because of
the end point of the integration over (1 — x)"'or

(1 -9)7!. Thisresultfor d >0agreeswith those of
Ref. 9.

More generally, the higher-order kernels mod-
ify this result by extra powers of (¢?)~% for 6> 0,
and by possible logarithms for each additional loop
if 6=0. However, if we assume that the true ultra-
violet behavior of the theory is more convergent
than indicated by elementary gluon exchange (as
in asymptotically free theories, for example), then
the proper regularization of the renormalizable
theory is 6=0" and additional logarithmic mod-
ifications are suppressed. This is a consequence
of our assumptions (A) and (B), that the accumu-
lation of logarithms affects neither the asymptotic

=TT A

H/ ‘}VJ :
X LA

FIG. 6. Examples of nonladder kernels for the Bethe-
Salpeter equation and the irreducible contributions to
the current matrix element they engender by gauge in-
variance.
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behavior of the wave function nor the scale in-
variance of the connected amplitude M. We thus
have the prediction for a bound state of two spin-0
particles:

F(g?)~ ql In(g?/m?).

In the case of an n-field bound state, we have
simply (neglecting logs)

F(g*)~ (@) (¢?%)",

i.e., F(g*)~(¢®)'"" in the renormalizable limit, in
agreement with Eq. (2). A detailed discussion of
this result when » =3 has been given by Alabiso
and Schierholz.® Note that the powers of (¢?)~!
arise from each off-shell constituent line and the
(¢?)~® from each gluon line.

Thus, physically, one pays the penalty of one
power of ¢* for changing the direction of each
constituent from along p to along p + ¢. The spin
independence of this result is discussed in Sec. II
B.

B. Spin- constituents

The calculations of the asymptotic behavior of
form factors become somewhat more complicated
when the effects of spin are included. The results
in the renormalizable limit, however, are effect-
J

[p)=(2p+q),F(q?)

fzd k
=ea

(b+qld,(0)

(k+ @0y OB - K=my), (k) +{a—b).
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ively the same as the spinless results. We begin
with the example of the form factor of a meson
which is a bound state of two spin-3 fields. We
assume, for the present, zero orbital angular
momentum. The Bethe-Salpeter wave function
satisfies (see Fig. 4)

K=m, ) (8- K—my )Y, (R) fldl

@t K(k, 1, )y (1),

(12)

where K is the full Bethe-Salpeter two-particle
irreducible kernel. Again, as in the spinless

case, we begin with the generalized ladder approx-
imation form

LIt
Ky (k, l,p)=g2fd)»20(>\2

(R=1P=2%+ i€ (13)

The I}, and Ij,) represent the (momentum-inde-
pendent) Dirac couplings of the gluons to consti-
tuent a and b, respectively. Just as in the spin-
less case, we may choose ¢(A?) such that K (k%)

~(k2)"17% (6> 0, k? - ), which gives assumption
(A): Ylx= O) fd"k Jp (k)< . Renormalizable
theories correspond to 6—~ 0%, at least in the lad-
der approximation. This is discussed further in
Sec. IIC.

The form factor for the bound state using the
kernel |[Eq. (13)] is

(14)

(277)4 ‘#P +q
r

Additional contributions required by gauge in-
variance are necessary in the presence of the
higher-loop kernels, as in the spinless case (see
Fig. 6). These are of the same order or are non-
leading for ¢®>—« if 6> 0.

As in the spinless calculation, the important
contributions for the asymptotic form factor occur
when only one of the two wave functions is evalu-

fractions of the longitudinal momenta and small
transverse momenta. Furthermore, if only the
leading ¢ dependence of the form factor is de-
sired, the spin structure of the wave function
simplifies enormously. In general the structure
is

() =f 10 (B, RYE + fo0 (D, RI, ]

ated at large relative momentum. Again, it is X [fp (b, RY(=B + K) + fop (b, BImy | . (16)
convenient to iterate the wave function at large . -
. . . ;i If we use the identities
relative momentum using the equation of motion,
and we obtain E+m_ _
™ —Z u(k, s)u(k, s)
spin
(2p+ qHF 2)~f f 2n4 Uy oo (DMEY, (R) . ?
and
(15)
—lé +m )
M¢¥ is the connected Feynman amplitude shown in - z v(k, ) (k, s),
Fig. 7. As in the spinless case, the dominant con- o
tribution comes when the constituents carry finite Eq. (16) can be rewritten!® in the form
J
0y (k) =Ly (R)0y (P = Ry~ (k) + g (RYUy (b =BG (R) + g (RVuy (p = k)5 (R) + v, (R)D, (b - )45~ (R)] (17)
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with the appropriate spin projections understood. In the zero-binding limit this structure must reduce to
the product of two free spinors u, (k= xp)v,(p — k= (1 - x)p); hence for our purposes we may use

Up (B) = u, (R)D, (P = R)Y ™ (k) .

(18)

The terms thus neglected are at least linear in «* (the “transverse momentum” which cannot become large)

and give a nonleading contribution to F(g?).

That these terms are proportional to the binding energy and

may be therefore legitimately neglected is easily seen'® in time-ordered perturbation theory: They arise
from the presence in the wave function of an extra gq pair.

With the simplification, Eq. (18), we find

(2p + q) Fr(g®) < f d%k
k

Rxp 1my(p+a)

where

A1 PpIT ) Mg (R, (19)

ME=u,(y(p+ @) vy (1= y)(p+ @QIMUE=xp, L =y(p+ q)) uy (xp)T,((1 - x)p)

is the connected amplitude evaluated between on-
shell spinors. Again note that for the connected
tree graph we can neglect the k and k' components
of #* and I¥, and except for particular helicity
configurations we may drop all mass terms in the
asymptotic limit. This is explicitly evident in the
Breit frame (q%=-¢2):

p=((m?+ q2/4)"2, —q/2)
and
p+q=(m?+q2/4)'2, +q/2) ,

where each component of p and p + ¢ becomes
large. Explicit calculation then shows that the
behavior of M* for large ¢ is (-¢?)~'"%, as dic-
tated by dimensional counting.!' Accordingly, as
in the spinless calculation, we have F(g?)
~(¢%)"'"%In(g%/m?), where the logarithm results
from the endpoint of the x or y integration. The
canonical renormalizable limit is 6~ 0. As in
the spinless calculation a factor (¢2)~! is associated
with each off-shell fermion propagator, and a
factor (¢%)~% with each gluon carrying large ¢ in
the Born diagram. The over-all scale of the form
factor is determined by the value of ¢, (x=0)

= [d*k y3~ (k). As we have noted, §*~(x=0)is
finite for 6> 0.

Note that the wave function ¢, ~(k) plays the same
role as the spinless Bethe-Salpeter wave function.
The equivalence of asymptotic behavior with spin-
0 or spin-3 constituents follows since ¢} ~(x) (see
below) has the same dimensions as the spinless
Bethe-Salpeter wave function, @™ (x). For spin-
less constituents, the Bethe-Salpeter amplitude
for a meson in position space is

Y (x) = 0| TP (x)p (0N [ p) ~[L] 72,

where we are using continuum normalization
(p'|p)=2E8%p -p’) and (0|0) =1. For the spinor
case

G5 (x) =0 T(P(x)p(0) | p) ~[ L] -2,

since the fermion field operator {(x) has dimen-
sions L™3/2, However, ¢; (x)~[L] ! since the ex-
plicit spin dependence of ¢, is removed; accord-
ingly, the short-distance behavior of 4/;'(x) and
5 (x) is the same. In the language of operator-
product expansions at short distance the point is
this: The amplitude for the large-¢® form factor
of a meson composed of two quarks will involve
an operator product such as

‘le(xl)d’cl(yl)Ju (Z)¢’X2(x2)¢02()’2)

in a limit such as z= x,=y,. A significant differ-
ence from, say, the operator-product expansion of
two currents J, (x)J, (0) = $(x)y, $(x)P(0)x% ¢(0) as

x- 0 is that in the latter case the spin of the fields
is summed leaving objects (currents) whose entire
angular momentum content is contained in the
indices p and v. Therefore, the operator-product
expansion can be made in terms of Lorentz tensors
such as 6,,. The former case is more subtle:
Spinors are required to carry the spin content of
the product of fields. This means that the number
of degrees of freedom which determine the scaling
behavior at short distances is the same as in the
spin-zero case.

Multiparticle bound states can be treated by a
generalization of the Bethe-Salpeter techniques
for two particles. For instance, the proton wave
function satisfies the relation shown in Fig. 8.
This time the necessary kernel for the equation is
three-particle-irreducible. Each aspect of the
three-particle bound-state analysis parallels the

K 1-;1'{‘ £

k-£+q

k+q

k-£+q +

p-k p+a-4£ p-k p+q-4

FIG. 7. Born diagram (five-point connected amplitude
M}) for the meson form factor.
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two-body analysis. The most important part of
the spin structure of the wave function is that which
reduces to a product of free quark spinors:

by (Ryy Ry) =uy () )y, (Ry)u, (P — k) = k,) 2 AN
(20)

Projecting spins correctly, there are two con-

tributions to the wave function: (1) when a and b
are in an s state, and (2) when b and c are in an
s state. The left-over quark has the helicity of
the hadron.

C. Short-distance behavior of the
Bethe-Salpeter wave function

The essential role of the finiteness condition on
P(x=0) for the derivation of the dimensional count-
ing rules is clear. The condition allows us to
compute the high-momentum-transfer limit of
exclusive amplitudes by iterating the kernel once
and computing a minimal connected graph, thus
accounting for the effects of large momentum
transfer being routed through the wave function.
Further, the values of the ¢(x =0) (which have di-
mensions [mass]”~! for # constituent fields) de-
termine the normalization of the hadronic amp-
litude. In this section we will address the im-
portant question of whether the wave function con-
dition is actually true in renormalizable field
theories. In fact, a definitive answer has not yet
been given and may well depend upon the theory.
To see what is involved, consider the full Bethe-
Salpeter equation, e.g., for a pion in quark-vector
gluon theory [Eq. (12) and Fig. 4]:

id*l
F=m B~k =m0y 0= [ L Kk, 1,000,
where K is the two-particle irreducible kernel. In
ladder approximation to a theory with gluon mass
M’

K, dderz_g?l’(u”_?&L_‘_

adder (B — 1)2 =M% + i€

If we suppose that K, ;.. gives the correct asymp-
totic limit, then the Bethe-Salpeter equation is
singular and the power falloff of § depends on the
coupling constant.

However, in the weak binding (g2?- 0) case,
when all components of the relative momentum 7
become large, ¢¥~n"* modulo logn. This result
was first obtained by Salpeter!® for the instantan-
eous (Coulomb) ladder approximation.

Serious objections can be raised to the use of
the ladder approximation in the strong-binding
theory for determining the true asymptotic be-
havior of the Bethe-Salpeter wave functions:

(1) The ladder approximation result for the

asymptotic limit is unstable under the perturba-
tion of adding additional kernels (e.g., the crossed
graphs, vacuum polarization, vertex corrections,
etc.). In each case the power dependence on the
relative momentum is changed.

(2) The behavior of § at large relative momen-
tum determined from ladder approximation is dis-
continuous as the dimensional regularization (4 - d)
for loop integrations is taken to zero. If itis
argued that the physical solution for quantities
such as the asymptotic behavior of F(q%) must be
analytic as a function of 4 - d, then the wave func-
tion at the origin is finite.

(3) The ladder approximation can only be valid
in a limited range of coupling constants. When g2
becomes too large, the energy eigenvalue becomes
imaginary, indicating a non-Hermiticity of the
equation. One can see this explicitly from the
Salpeter equation.’® The situation is analogous to
the familiar situation for the strong-binding limit
of the Dirac-Coulomb equation with V =-Za /7.
For the lowest eigenstate, we have

€13=[1_(Za)2] 1/2M)
</)ls(r)~r‘“[“(z°‘)2]1/2 (for »~0).

The singular equation has no physical solution for
Za>1; it is undefined. Regularization of the po-
tential for 7 ~0 is thus required. The standard
procedure is to make V less singular than »~* for
a region around » ~0 (which, of course, occurs
physically due to the finite mass of the source).
Then € is real and §,, (»=0) is finite for all Za 2
For very large Za a multiparticle pair creation

is required. .

There is reason to believe that in renormalizable
theories the full kernel K is, in fact, more conver-
gent asymptotically than K; . As we conjectured in
Ref. 1, asymptotically free theories are likely to
give rise to a wave function whose singularity at
x=01is at most a power of a logarithm. This is
heuristically plausible since as the characteristic
momenta in a graph become larger and larger
relative to masses, the effective coupling con-
stants become smaller and smaller, so that the
weak-binding result holds. If it is legitimate to
imagine taking the limit ¢®— < before summing the
perturbation series then the wave function con-
dition holds, modulo a power of a logarithm. Re-

2z, .
pokikz  © - p-ki—k2

p-£-£;

FIG. 8. Schematic representation of the Bethe-Salpeter
equation for a three-particle bound state.
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cently Appelquist and Poggio®® have shown that in
a ¢® theory in six dimensions, which is asymp-
totically free, the renormalization group can be
used to demonstrate that the wave function is finite
at the origin up to a calculable logartihm. How-
ever, they emphasize that the infrared corrections
to the interactions among constituents may lead to
further logarithmic corrections. (See Sec.IID3
for our discussion of this point.)

Even in renormalizable theories which are not
asymptotically free, the vertex and vacuum polar-
ization corrections to the gluon-exchange diagrams
in the complete kernel may well damp the asymp-
totic behavior of K, as do the finite-size correc-
tions to the Coulomb potential. Thus there are
both physical and mathematical reasons to believe
that the full kernel is sufficiently regular that the
wave function at short distance is finite or at
worst logarithmically singular. Clearly this prob-
lem deserves further study.

Suppose that the wave function is not finite at
x=0. There are two possibilities: It diverges or
is zero. If the wave function diverges with a power
6 it modifies the effective n, associated with that
hadron, so, e.g., for a meson n=2 - 6 rather than
2. Similarly, if it diverges or vanishes logarith-
mically it induces logarithmic deviations from
perfect scaling.

If the wave function vanishes as a power at x=0,
the next-to-leading Born terms will determine the
asymptotic behavior of the matrix element. This
is the case when a bound state has nonzero orbital
angular momentum,'* at least if the wave function’s
dependence on energy and three-momentum fac-
torizes in the hadron rest frame. That is, if
¢, (g) can be written as ¢,(g,)¢(q), then ¢(r)~r*
times angular factors. Hence for a two-consti-
tuent bound state of orbital angular momentum L,
¢(x~0)~x" ~m~L when all components of x are
proportional to each other and small. The result
is to cause further damping of matrix elements.
Hence the form factor of an L =1 state should have
the asymptotic behavior (¢?)*~"~*. Effects of orbit-
al angular momentum have been considered in
more detail by Amati et al.’® and Ciafaloni.'®

In addition to the finiteness of the wave function

— -

e

FIG. 9. Diagram for meson-baryon scattering with
multiple scattering of near-mass-shell quarks of differ-
ent hadrons.

at the origin in coordinate space, assumption (A)
included the requirement that it is bounded at
every point in momentum space. Although this
latter condition is difficult to prove directly by
studying the Bethe-Salpeter equation,’® there can
be little doubt about its validity as long as quarks
are not observed experimentally (because if the
wave function is bounded everywhere in coordinate
space but of finite “volume” then its Fourier trans-
form is necessarily finite).

D. Irreducible diagrams

An important conclusion of Sec. IIA-C is that,
given sufficient short-distance smoothness of the
wave function [assumption (A)], the irreducible
amplitudes (the M, ) determine the high-energy,
fixed-angle behavior of the full amplitude. This
section is devoted to discussing the conditions
under which the irreducible amplitudes obey naive
dimensional scaling, i.e., M, ~Vs*" asymptotical-
ly.

1. Landshoff diagrams

As mentioned in the introduction to this section,
Landshoff” has recently emphasized a class of
diagrams which, if present, would violate dimen-
sional scaling. Such a diagram is shown in Fig. 9.
It is characterized by having fewer off-shell fer-
mions than standard diagrams for the same pro-
cess such as shown in Fig. 10. In fact, for meson-
meson and baryon-baryon scattering no fermion
line need be far off shell. Physically, it corre-
sponds to (say for meson-meson scattering) the
independent, elastic, on-shell scattering of pairs
of constituents such that the final momenta are
properly aligned. Landshoff calculated their
asymptotic behavior and found, using a Sudakov
parameterization, that for meson-meson scatter-
ing M~s~%/2f (t/s) and for baryon-baryon scatter-
ing M~s73f(t/s), in contrast to the dimensional re-
sult M~s~2 and s™*, respectively. We have verified
his results using both Feynman parameterization®®
and infinite-momentum-frame perturbation theory
(see Appendix A). The kinematic configuration

31

(a) (b)

FIG. 10. Typical Born diagrams for meson-baryon
scattering via (a) gluon exchange and (b) quark exchange.
The dots label quark lines which are far off the mass
shell. All gluons shown are far off the mass shell.
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(see Fig. 11) which gives the pinch has all the
quarks near the mass shell so the two elementary
quark-quark scatterings at large momentum trans-
fer are dimensionless since n=4. The energy
dependence of the full amplitude arises from the
condition that the final momenta be aligned proper-
ly. Referring to Fig. 11 we can see how s™%?2
comes about; the center-of-mass frame of the

two mesons is convenient for this purpose. For
definiteness, label the momenta of the quarks so
that x, and x, are less than 3. If we examine

Fig. 11(b), it is evident that in order for the final
quarks to have nearly parallel momenta (so the
transverse momenta of the quarks in the final
mesons are finite as required by the wave function)
it is necessary that x, =x, + O(1/P), where P is

the magnitude of the meson 3-momenta in the
center-of-mass system (P~Vs). Assuming then
that x, = x, we have the configuration shown in Fig.
11(b). Imagine that the quarks with fraction x, = x,
scatter by some finite angle 6. Momentum con-
servation means that x, =x, =y, =y, within O(1/P).
Let their plane of scattering define the x-z plane.
Now consider the scattering of the quarks with
fractions (1 -x,)=(1-x,)+ O(1/P). They in gen-
eral scatter in some different direction having
polar angle 6’ and azimuthal (relative to the xz
plane) angle ¢. Since they carry a very large 3-
momentum (1 - x,)P, they will carry large mo-
mentum transverse to the direction defined by the
other set of quarks unless ¢'=¢ + O(1/P). Thus
there are three constraints on the kinematics,

each requiring a parameter normally allowed some
finite range to be restricted to a range O(1/Vs).
Hence M~s~%2 and do/dt ~s~5 [rather than s~° as
given by Eq. (1)].

Technically, the near-mass-shell diagrams have
a stronger asymptotic behavior than the scaling
law because of pinch singularities that arise in
the integrals over the constituent momenta. This
gives rise to an anomalous dependence on the quark
mass not present in diagrams whose leading be-
havior results from an end-point singularity in the
Feynman integral. That is, a linear infrared di-
vergence in the quark mass serves to define a
fundamental length scale: 1/m,. To illustrate how
this occurs in practice, we give in Appendix A an
infinite-momentum-frame calculation of the Land-
shoff contribution to meson-meson scattering. As
can be deduced from the above analysis, there
will be no modification of naive scaling by such a
mechanism for lepton-hadron scattering, Compton
scattering, or photoproduction.'’

This class of near-mass-shell scattering dia-
grams should evidently dominate the hadron scat-
tering amplitudes in the asymptotic limit.'® Their
existence implies a violation of Eq. (1) for meson-

baryon and baryon-baryon scattering, giving in-
stead

L-1
& S W), (21)

where L is the number of wide-angle, on-shell
quark scattering; e.g., L=2 for meson-baryon
scattering and L =3 for baryon-baryon scattering.
Experiment (see Sec. III and Ref. 18) favors the
dimensional scaling result of Eq. (1). From this
we learn a striking fact about nature which is in-
corporated in assumption (C); multiple near-mass-
shell scattering is nof important for present ex-
periments.

The validity of assumption (C) is much more dif-
ficult to understand theoretically than the validity
of (A) and (B), although their ultimate explanations
may well be connected. Polkinghorne!® has recent-
ly advocated adoption of a somewhat stronger
version of (C): that large-angle scattering of
near-mass-shell quarks is damped in energy. A
possible mechanism for this damping is an ac-
cumulation of logarithms in the corrections to the
quark-quark-gluon vertex when both quarks are
near the mass shell.?°

Another proposal, made earlier and for a dif-
ferent purpose by Blankenbecler, Brodsky, and
Gunion,?! is that gluons cannot be exchanged be-
tween quarks of different hadrons, or else that
the amplitude for gluon exchange is very small.
Their analysis indicates that the constituent-inter-
change picture gives a good description of the
angular dependence of exclusive scattering with
no gluon exchange required (in this connection see
our discussion of asymptotic Regge trajectories,
Sec.IID3). Since a field theory with quarks and
gluons would in general have both quark inter-
change and gluon exchange, this indicates that
gluon exchange is suppressed in nature. Further
evidence for this proposal is given in Secs. IID 3
and IV. It should be emphasized however, that
this is essentially a phenomenological rule; a

(1-y;)(p;-q)

(x;=y)pi+yiq

H—yz)(og*q)

y2(po+q) Pa*q
(a) (b)

FIG. 11. The pinch in meson-meson scattering.
(@) Feynman graph and (b) momentum-space picture of
the scattering.
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consistent description of present wide-angle ex-
periments can be made with no gluon exchange
whatever. No compelling theoretical reason for
this rule has yet been advanced.

Yet another possibility is that in a model with
permanently confined quarks such near-mass-
shell processes would be suppressed. It can be
heuristically argued that, since this contribution
is proportional to 1/m,, if the effective quark mass
were very large (perhaps comparable to Vs) it
would be small. From the time-ordered perturba-
tion theory calculation of Appendix A it can be
seen that the internal state with near-mass-shell
quarks [which in a color SU(3) theory® has nonzero
color systems propagating] exists for a finite
time, long compared to s™!/2. Such a state might
be suppressed in the full amplitude.

2. The irreducible diagrams

Typical Born diagrams for meson-baryon scat-
tering and meson photoproduction are shown in
Figs. 10 and 12. The heavy dots indicate which
fermion propagators are far off the mass shell.
With scalar constituents having ¢* coupling, the
wavy lines just reduce to a point interaction. By
applying the mnemonic of Secs.IIA and II B (s7!
for each off-shell fermion) the diagrams of Fig.
10 are immediately seen to have the asymptotic
behavior M~ (Vs )*""f(¢/s) in the limit 56— 0*.
Hence they reproduce Eq. (1). The only process
which needs special discussion is photoproduction
(Fig. 12).

According to dimensional counting, if the photon
counts as one field the photoproduction amplitude
should ~(Vs)*™", Figure 12 shows that three fer-
mion propagators are large (as in the meson-
baryon case of Fig. 10). However (as the reader
can easily verify by direct calculation), the vector
coupling of the photon introduces a numerator fac-
tor proportional to Vs, resulting in the expected
behavior M, ~s~*2. This is characteristic of the
vector coupling, not the spin of the constituent
and occurs for either spin-0 or -3 quarks. Had
the quark-antiquark pair (if we look in the photon
channel) been constrained to have limited relative
momenta, which a hadronic wave function would

>

FIG. 12. Born diagram for photoproduction. The
heavy dots represent far-off-shell quark lines. All
gluon lines shown are far off the mass shell.

do, the photon coupling would not have generated
a Vs sothat M~s~3, This is the vector-meson-
dominance contribution to photoproduction at large
sand ?.

Figure 13 shows typical Born diagrams for the
proton form factor with spin-3 constituents. It is
readily seen that for either scalar- or vector-
gluon exchange (helicity flip or nonflip, respec-
tively, in the zero-quark-mass limit) graphs of
the kind shown in Fig. 13(b) give a leading con-
tribution ~(¢%)72 to F,(¢*). When ¢*> m,® the dia-
gram of Fig. 13(a) cannot contribute for scalar
gluons. Explicit calculation shows that F,(¢?) is
proportional to m,? so that in general a three-quark
model of the proton from factor will give F,(¢?)
~F (g%)/q* when ¢*® becomes large. Interms of the
commonly used form factors

Gg(q®)=F (q%) + (kq®/4AM?)F,(q?)
and
Gy(qd®) =F (%) + kFy(q%),

where k is the anomalous magnetic moment, this
corresponds to®® constant Gz /Gy at large ¢%, as is
indicated experimentally (Sec. III).

We noted above that meson-baryon scattering,
or indeed any hadronic scattering, could take place
either by gluon exchange between the hadrons or
by quark interchange [Figs. 10(b) and 10(c)]. Both
give the same scaling behavior but in general they
give rise to very different angular distributions
li.e., the function f(¢/s) which we leave unspecified
depends on the relative importance of the two
types of diagrams]. Although we do not attempt
here to deal with the problem of the complete
angular distributions, we are able to make some
statements about the kinematic region ¢ very
large, s— <. When { and s are both large we
know the over-all power dependence of do/dt
~s™"*2f(t/s) but not in general the function f(¢/s).
However, if either gluon exchange or quark inter-
change is the dominant ¢{-channel process (see
Fig. 14) we can specify the form of f(¢/s).

Using Regge terminology we write the amplitude
as M~s~%u()3(¢). As is well known, a spin-1 or
spin-0 gluon in the ¢ channel gives rise to a con-
stant @, ({)=1or 0, respectively, for all ¢.
Multigluon exchanges only generate cut correc-

(a)

kN
seof }MJ:O{ *—f:’—g* boeo

FIG. 13. Typical Born diagrams for baryon form fac-
tors.
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tions. When quarks are interchanged there are
two important regions in the integration over the
intermediate quark momenta: k~xP; or k~xP,.
Consider the former. In this case the lower half
of the diagram is purely a function of ¢=¢? (just
as in a form factor calculation). In fact, it has
the same asymptotic ¢ dependence as the helicity-
nonflip form factor F(¢)~¢~"c*!. The upper part
of the diagram when s> ¢ is also simple. It is
essentially high-energy, quark, +A - quark,
+ B scattering. An explicit { dependence comes
from that required by helicity considerations?*:
VE Mt ra-rs-r2l Hence for A =B =meson or A
=B =baryon the leading behavior is {-independent.
On the other hand, for 7 photoproduction the upper
blob ~VE. Thus we find that for meson-baryon
scattering M~s~3f (¢/s)~s™®F(t); there are two
terms (coming from k~xP; and k~xP ,) propor-
tional to F,(¢) and F,(¢), respectively. The lead-
ing behavior in s comes from F, so we have the
quark interchange a*?”“?=-1. Similarly a52~ 5%
=-2and alB¥B=_1325

According to Ref. 26 the best fits to a,, are
indicative that gluon exchange is negligible. Since
a priori counting coupling constants (e.g., in Fig.
10) indicates that gluon exchange and quark inter-
change should be equally important, this gives
support to the proposal of the previous section
that gluon exchange between quarks of different
hadrons is anomalously small. Hence it provides
additional support to our assumption (C).

3. Higher-order corrections to the Born diagrams

In any given order of perturbation theory there
will be logarithmic corrections to the behavior of
the Born diagrams due to loop integrals. If these
logarithms were to coherently combine they could
conceivably alter the simple scaling behavior of
the Born amplitude. For instance, in QED it has
been shown?’ that infrared radiative corrections
to fixed-angle exclusive lepton and photon scatter-
ing amplitudes have the form

e-aDn(s/X?)]z’ (22)

where ¢ is the momentum transfer and A is an
effective infrared cutoff.

We are concerned with the possible exponentia-
tion of logarithms due to strong-interaction cor-
rections to a bound-state scattering amplitude. In
a gauge theory it is the infrared region which is
potentially dangerous in this respect. It is pos-
sible that they will introduce a modification to
these amplitudes of the form of Eq. (22). In that
case the scattering rules [Eqgs. (1)-(4)] will just
give the nominal or canonical power law reflecting
the compositeness of the hadron, but which will

be modified by soft interactions among the con-
stituents. If the fundamental strong-interaction
coupling is actually weak, as conjectured by a
number of people,?® such a modification would not
be seen until very large ¢.

On the other hand, arguments can be made that
the infrared effects on a bound-state scattering
amplitude should be much milder than Eq. (22) for
two reasons: First, in a theory such as a color
non-Abelian gauge theory®? the physical states
are neutral, i.e., color singlets, so that the in-
frared region is damped for momenta £<0(d ™!),
where d is a length characteristic of the hadron.
Second, in a bound state the constituents are gen-
erally off their mass shells and hence the infrared
singularities are “shielded.”

To illustrate the first point, consider an Abelian
gauge theory in which massless vector mesons
couple to a conserved current. We shall take a
hadron to be a neutral state, so that @ =7,@, =0.
If we use Weinberg’s?® notation, the infrared re-
gion of the virtual gluon corrections (A< |k, [<A)
gives a correction factor to the scattering matrix
element of the form exp[-A In(A/))] with

_ -1 , -1 1+ Bym
A= G 2 TnlIn@n Qb 1n< e L
where the summation is over all pairs (r, m) of
external charged lines. For an outgoing (incom-
ing) line n=+1 (-1) and B,, is the relative velocity
of particles # and m in the rest frame of either:

P 2Pm2 1/2
e (1= e ) @

Considering now an amplitude such as the form
factor of a “meson,” we must sum Eq. (23) over
all pairs of external lines. It is readily checked
that the only terms in the sum (23) which can in-
troduce a leading ¢ dependence are those involving
one initial and one final particle. Let us label the
two (say) initial particles ¢ and b whose momenta
are p,=xp+ kand p,=(1-x)p -k with k*p=0 (as in
Sec.II A). By our assumption (A), « is bounded

so that [as may be checked by explicit expansion
of the logarithm in Eq. (23)] we may take p, =xp

Pa Pg = Py~ Pa Pg:PA-q

=p.*a .
c o™ Pe pc Pp = Pc*a

(a) (b)
FIG. 14. Hadron scattering for ¢ large, s —= if (a)

gluon exchange or (b) quark interchange is dominant in
the ¢ channel.
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and p, =(1 - x)p with errors of only order 1/s at
fixed angle. Then §,, and B,, are equal if # is not
equal to a or b. Summing over ¢ and b in Eq. (23)
thus causes cancellation of the infrared correc-
tions of order In(t/m?) since @ ,=-Q5.

The infrared behavior of non-Abelian theories
with massless vector gluons is generally ex-
pected to be much worse than in the Abelian case.
A central difficulty of such theories is that a soft
gluon emitted from an external line can itself
emit a pair of soft, colored massless gluons, ad
infinitum. However, in a bound state such cat-
astrophic gluon emission may well be regulated
by virtue of the gluon constituents of the hadrons
being effectively off the mass shell.

Furthermore, in the case of a color theory as
usually envisioned,?? color-octet hadrons either
are infinitely massive or at least not degenerate
in mass with the usual hadrons which are color
singlets. In this case the infrared contribution for
k? and p+ k below my> —m,® is suppressed, giving
corrections of order In[¢/(m,? -m,?)]. Moreover,
because the color emission changes quantum num-
bers and is not soft, there is no reason that such
logarithms will exponentiate or cause large cor-
rections to the scaling law.3°

Even if the logarithms found in perturbation
theory do not exponentiate, as argued above, they
can give logarithmic corrections to the scaling
laws. There is very little we can say about this
[essentially about the validity of assumption (B)]
except what we said in Ref. 1: If there are mod-
ifications of scaling in deep-inelastic scattering,
there will probably be similar modifications to
these scaling laws.3*

III. THE EXPERIMENTAL STATUS
OF EXCLUSIVE SCALING

In this section we are concerned with tests of
the scaling law [Eq. (1)] in exclusive processes.
Three questions are of particular importance: (1)
Is our choice of quark-model assignments for the
number of fields in hadrons acceptable? (2) Are
the scaling laws actually exact or are they per-
haps modified by logarithmic or “anomalous di-
mension” corrections? (3) Are there contributions
from on-shell scattering [which may change the
scaling of Eq. (1)] ? Of course, essential to the
whole program is the self-consistency of the
scheme. Once that is established for exclusive
processes, we turn to the more difficult question
of inclusive scattering. This section is quite de-
tailed, in the hope of emphasizing (especially to
experimentalists) the large amount of important
work which needs to be done in this field.

The simplest applications of Eq. (1) are purely

electrodynamic, e.g., e*e”"=u*u " oree ~e‘e”,
ye—ve, e*e”=7yy, etc. In each of these cases
n=4 unless we are wrong at a fundamental level,
so that experimentally these should have the as-
ymptotic behavior do/dt~s3f(t/s). This is just
the prediction of quantum electrodynamics (modulo
logarithms from radiative corrections) so that

to the extent that QED is correct at large s and ¢
our predictions for the scaling behavior of purely
leptonic and photonic processes are correct with
the assignment n=1 for leptons and photons.

Since QED is in agreement with experiment up to
the highest available s and ¢ (CEA *2 and SPEAR
resultson e*e” = p*pu~, e*e"~e'e”, etc.) we may
assume that n=1 is correct for leptons.

In one-photon-exchange approximation, the dif-
ferential cross section for ek— eh scattering at
very large s and large ¢ is given in terms of the
hadron spin-averaged electromagnetic form factor
F(t) by

d 1

4 1 gy

o T F@GE, (25)
so that we have [Eq. (2)] the general formula (mod-
ulo logarithms)

Fp(t)~t""n

for asymptotic spacelike or timelike /. Thus
using n,=2 and »n,=3, we conclude that for large
@, F.(¢®)~(g®)~* and F,, (¢*) ~ (¢*)"2 can be sep-
arately determined by studying the dependence of
ep— ep scattering on ¢°>. As remarked in Sec.
IID 2, given spin-} constituents with vector- or
scalar-gluon exchange, one finds that F,(g?)
~(¢?)7? at large ¢°, so that we predict the asymp-
totic behavior Gz ~1/¢* and G, ~1/¢*.*® Since a
substantial range of large ¢° is necessary to test
these laws, the experiment of Kirk et al.,3* cover-
ing the spacelike range 1.0 < —¢%? <25.0 GeV?, is
most suitable for our purposes. Figure 15 shows
q*G,(g?) for that experiment. For —¢*>4 GeV?,
3*Gy(¢®) is consistent with a constant within er-
rors. This vindicates our choice n,=3 as sug-
gested by the naive quark model. Moreover, the
very fact that G,(q?) falls as a power of ¢° is sup-
port for our scaling laws. (The data are not ac-
curate enough to allow discussion of the question
of logarithms.) G and G, have been separately
determined only for —¢®< 3.75 GeVZ®.*® They are
found to be consistent with Gp =Gy /u within er-
rors. The asymptotic falloff of the proton form
factor has proved very difficult to account for up
to now. Bound-state models for simplicity have
focused on two-particle bound states. Treating
the proton as a spin-0, spin-3 bound state with
spin-0 exchange gives® (modulo logs) Gy ~(¢%)™?
but Gz ~(¢®)"!. Separate determination of G and
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Gy at larger ¢® will be useful to conclusively dis-
tinguish this model from ours. However, it is
improbable that G5 could have the behavior (¢*)™!
without that being evident from the ¢ dependence
of the ep—ep cross section.’”

Data on the pion form factor are not yet avail-
able for a ¢* range comparable to that of the pro-
ton since they come from e*e” annihilation.
Presently, data are available®® for timelike ¢°
<9.0 GeV?. They are consistent with a p pole, so
that for ¢® large, F,(¢?)~(¢?)"!is an acceptable
fit (see Fig. 16). However, it should be kept in
mind that to conclusively test our picture, g*

2 4 GeV? should be considered. If only that range
is used, the data are not adequate to rule out other
behavior. Improving and extending measurements
of the pion form factor is one of the surest ways
to verify or destroy our ideas. For the present
we will continue to assume that n,=2. In a ladder
model in which the pion is a bound state of two
spin-0 constituents with ¢* interactions its form
factor would fall as (¢*)72.

According to the dimensional scaling rules, if
a photon behaves as a single field at short dis-
tances, photoproduction at large s and ¢ follows
do/dt~s~"f(t/s). This is an especially interesting
process because strict vector-meson dominance
would say that yp- mp behaves like pp~ mp
and hence do/dt ~s~%f (¢ /s). Of course if the
photon, when interacting with hadrons, is a
superposition of a vector meson and an elemen-
tary field,% then in the kinematic region being
studied here the latter state will dominate and
result in do/dt ~s~f(¢/s). The highest-energy
data at 90° are those of Anderson et al.*® which
cover the range E, between 4 and 7.5 GeV. They
find that do/dt (90°)~s~7-3*%  in agreement with
our prediction of s™7. Again, it is most desir-
able to extend the range of s, since at E, =4

2\2
(q ) GMp//‘
0.6 T T T
0.5+ .
0.4} . . B
. i e }
.
o3 .
L]
0.2+ 4
.
[oNE o .
1 1 1 I 1
¢} 5 i0 15 20 25

-g2 (Gev?)

FIG. 15. (qz)zGM(qz)/u for the proton versus —g?; data
from P. N. Kirk et al. (Ref. 34).
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GeV, 90° corresponds to a ¢ of about 3 GeV? which
we expect is only barely in the scaling region.
However, if that lowest-energy point is dropped,
little can be said about the s dependence of do/dt
at 90°. Thus our provisional conclusion is that
photoproduction measurements support the pre-
diction that do/dt (yN-nN)~s~'f(t/s), with higher-
energy data of great importance.

The present data on meson-baryon scattering,
which we expect to behave as do/dt~s~8f(t/s) at
large s and ¢, are less conclusive for our pur-
poses than photoproduction or pp scattering ex-
periments. This is partly because experiments
to date have focused on obtaining the entire angu-
lar distribution at modest s values rather than
choosing some small 6, , range with enough sen-
sitivity to go to high values of s. This poses the
usual problem of not having an adequate range of
high enough s and ¢ to check for scaling. A special
problem in some of these meson-baryon scatter-
ings is the existence of (resonance?) structure at
quite high-# values. For instance, in 77p—-7"p a
dip in do/dt is found at t=-3.8 (GeV/c)? (see
Ref. 41), and there is evidence that both 7*p have
a dip at £=-4.8 (GeV/c)?. For an unambiguous
analysis, one needs for this process ¢ and u< 5
(GeV/c)? and a large range of s. One experiment
which has been analyzed to determine the nature
of the wide-angle energy dependence measures
the 90° differential cross sections for K °p—-m*A°,
K°p-7"2° and K2 p— K 2p for incident momenta
between 1.0 and 7.5 GeV/c.*? They find that their
results can be equally well parameterized by
(do/dS2)gge~s™™ Or (do/dQ)g50~ s~ (see Fig. 17).
If s and ¢t are sufficiently large, do/dS
~s(do/dt)f (L/s) so that we predict m=17. They
give for the three reactions i:=7.4+ 1.4, m=8.1
£ 1.4, and m=8.5% 1.2, respectively. In short, our
predictions are consistent with data on meson-

Q%F, (@®)
T T T T T T T T T
20F -
1.6 { I } —
1.2+ I U .
T
1
k7
0.8} I 1 } .
|
0.4t p
o) 1 - 1 JI.J; A 1 1 1
(¢} | 2 3 4 5 6 7 8 9 10
Q2 (Gev?d)

FIG. 16. g%F (g% for the pion versus ¢?; data from

M. Bernardini ef al. (Ref. 38).
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baryon scattering, but this only demonstrates that
we are not wildly wrong. However, results from
experiments which only attempt to cover the large-
angle region, but with much higher sensitivity (so
that a larger range of s can be studied), will be
much more conclusive. It is enough to show that
the cross section integrated over a fixed c.m.
region falls with the power s~7 rather than another
power or an exponential.

Not surprisingly, pp —pp is the most thoroughly
studies elastic process at large s and {. Landshoff
and Polkinghorne® have plotted the data for s>15
GeV? and 6.. between 38° and 90° (see Fig. 18).
They find that it is well fitted by the form do/dt
~g79:7t0:5f(9)  This is in very good agreement
with our prediction do/dt~s™*°f(6),*® and apparent-
ly rules out a significant contribution to the ampli-
tude by on-shell quark scattering.'®

The experimental evidence on Eq. (1) is thus
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< ® K p—=Ksp

100 g s T p—e7n 3
:: < ]
100 k= 3
£ 3

X ]
27 :
100 —g
C + + h

10

T Ty

-
—=
Lol

| ]

100 E
0E E
'E \ 3

E \ 3
- \ 3
b \ .
- \ -
O'IE 1 =
E 3
E 3
L T i

0.0I llllll,llll 'l A L Ll

3 5 10 30 50

s (Gev?)

FIG. 17. do/d$(90° c.m.) versus s for several meson-
baryon scattering reactions. This figure is from Ref.
42.
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very encouraging. However, with little difficulty
it could be considerably improved. As indicated
above, better data on meson-baryon scattering

and e*e” - 7"7” should be available fairly soon

and will be a significant test of the scaling idea.
We close this section with a list of predictions of
the scaling law of Eq. (1) for other reactions whose
asymptotic behavior is interesting, albeit difficult
to measure:

Yb~rp, do/dt~s"°f(t/s)
Yp~pp, do/dt~s7Tf(t/s)
yy—-an, do/dt~s"*f(t/s)

(the photons need not have zero mass as long as
their masses are kept fixed and are small com-
pared with s and ¢),

ey —en®(y*y ~7°), do/dt~s"3f(t/s)

FL (@)~ ")

(or any other L=1 meson with nonvanishing form
factor),

ete” ~AA;,

ed~ed, Fyq)~(¢)°

(this probably only scales for g2 8 GeV?). Finally,
the scaling law for multiparticle exclusive large-
angle scattering [Eq. (3)] can be tested. When n,
=2 and nz =3 it can be written in a compact form:
Let Ao be the invariant cross section integrated
over some fixed c.m. angular region keeping all
ratios p; *p;/s (i #j) fixed. Then when s— =, as
the reader can easily verify [Eq. (4)],

Ao~ s~ NUHTRB f(p ap /s)

where N, and Ny are, respectively, the total num-
ber of mesons and baryons. Thus for high-energy
BB -~ MBB when all c.m. angles are large

[E . (do/dl)d?p, ]~ s™*2f(6;) which is equivalent to
do/dQ d2,~s™'°. Data expected at SPEAR and DORIS
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FIG. 18. Log-log plot of (do/dt) for pp —pp versus s
at various c.m. angles. Only data for s > 15 GeV? and
|t| >2.5 GeV? are included. This figure is from Ref. 8.
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on the exclusive channels e"e” - 7*7"7*7” and e*e”
-6 charged ms with fixed angles will eventually
provide a test of our predictions (Ao ~s~% and Ao
~s~%, respectively).

IV. INCLUSIVE REACTIONS AT HIGH
TRANSVERSE MOMENTUM

Having developed in previous sections the rules
for determining the power dependence of exclusive
scatterings at large energy and momentum trans-
fer, we wish to explore their implications for
high-p, inclusive scattering.** It is to be expected
that, just as in the exclusive case, the power de-
pendence of inclusive high-p, cross sections will
depend on the number N of constituents participat-
ing in the high-p, reaction. Our task, then, is to
see what can be said about this number N.

In parton language, an exclusive process pro-
ceeds by the large-momentum scattering of # con-
stituents with the wee partons behaving as “spec-
tators.” The condition on the bound-state wave
function at x*=0 serves two purposes: First, it
fixes the minimum number of constituents having
finite fraction of the total momentum (and hence n).
Second, it ensures that the remaining “wee par-
tons” are truly “spectators,” that is, their inter-
actions do not build up additional power dependence
on momentum transfer. (This latter function is
modified if the wave function in nature proves to
have a logarithmic or power singularity at the
origin.)

In inclusive scattering, constituents having finite
fractions of the momenta of the incident particles
can be spectators. A good example of this is deep-
inelastic scattering in the parton model, shown in
Fig. 19(a). In the absence of a requirement that
no particles be found in the forward direction, it is
energetically favorable for those partons not de-
flected by the current to continue without large
changes of their transverse or longitudinal mo-
menta. In this case only the single parton with
appropriate momentum fraction x = —-g22mv need
participate in a large-momentum-transfer colli-
sion. Hence n =4 (2 leptons and 2 quarks) so that
the matrix element is dimensionless and the dif-
ferential cross section E,do/d%,~s™%f (¢%s,M?%/s)
asymptotically (M is the missing mass). In the
one-photon-exchange approximation, this differ-
ential cross section may be written in terms of
structure functions W, and vW, which are defined
in such a way that they have no energy (v) depen-
dence for fixed (g2/v) if the behavior of the differ-
ential cross section is 1/s? as argued above. The
famous scaling behavior of vW, seen at SLAC, if it
persists at higher energies, is evidence for the
validity of this argument. A logarithmic modifica-

tion of scaling as expected in asymptotically free
theories is not distressing; that is just the effect
in such theories of the interactions of the spec-
tators.

Motivated by the success of the scaling predic-
tion in deep-inelastic scattering, we abstract the
notion that any inclusive amplitude factorizes into
a part which involves only large momentum trans-
fers and parts involving only low momentum trans-
fers. That part depending on the large momentum
transfers determines the over-all power depen-
dence of the amplitude. Of course, the dependence
of the cross section on invariant ratios, say t/s
and M?%s, is in general dependent on the low- as
well as high-momentum parts of the scattering
process. Thus we can immediately write down
[Eq. (5)] the invariant cross section for high-energy
inclusive scattering at fixed ¢/s and M?2/s:

Edo 1 t M?
T s (:’ T>’

with N defined as the minimum of fields in the
large-momentum-transfer part of the amplitude.

Evidently, in order to make predictions for in-
clusive scattering, one must make a dynamical
statement which serves to specify the number of
fields N, just as in the exclusive case a specifica-
tion of the number of nonwee constituents was re-
quired. The simplest ansatz for N is the one made
by Berman, Bjorken, and Kogut*® in what was
essentially the first parton-model work on high-
transverse-momentum inclusive processes. They
observed that at order o2 hard parton-parton scat-
tering must take place via exchange of a far-off-
shell photon just as lepton-parton scattering does
in deep-inelastic scattering (Fig. 19). Presumably,
hadronic final states would be generated from the
quarks just as in the lepton scattering case, i.e.,
in a scale-invariant manner. If the large-mo-

qi
e q q
e 'i{ }_‘
M q b—i
q

‘q—§ '—:—;

i q ] q
_v{——>— ———>—}_i _.{ }_.
| : 2 :

q rq
1 1
(a) (b)

FIG. 19. Parton-model picture for (a) the one-photon-
exchange deep-inelastic scattering and (b) the colored-
gluon-exchange contribution to high-p, inclusive scatter-
ing, showing the color index i (j) of the quarks. The
notation —¢ (—j) refers to the color of the rest of the
hadron.
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mentum-transfer process is qq¢ - qq or q4—4q,
N =4, and in fact Berman, Bjorken, and Kogut
predicted

. do a2 t M?

st (e )
However, it was natural to imagine that such a
qq —qq scattering at high p, could take place via
the exchange of vector (or scalar) gluons as well
as via a photon. In fact, in perturbation theory it
is hard to imagine that gluons could be responsible
for binding of quarks and yet not give rise to wide-
angle quark scattering, leading to the scaling be-
havior Edo/d% ~s~2 at a level well above that due
to electromagnetism.

In an alternative approach, Blankenbecler, Brod-
sky, and Gunion*® explored a model in which had-
rons scatter not by gluon exchange but by quark
“interchange.” They argue that the resulting
angular distributions for wide-angle elastic scat-
tering are in good agreement with data, with no
gluon exchange necessary for their fit (see Sec. II D).
In their model, hard parton-parton scattering
which takes place via gluon exchange is not al-
lowed. The minimal large-p, processes which
can take place in this case involve quark-hadron
scattering and thus N=6. In addition it makes
quite detailed predictions on the function
f(t/s,M?s) of Eq. (5). Thus the details of the
model will be subject to many experimental checks.

Here rather than advocate any particular model
we categorize and discuss the possibilities. Our
principal contribution to this subject is merely
the observation that the essential element of any
model of high-p, inclusive scattering, as far as
the over-all power of s goes, is the number of
large-p , participants. If the minimal large-p
reaction is qq -~ qq or qq - qq then N =4 as dis-
cussed above. If, for some reason, that is not
possible or is dominated by other processes giving
a large-p, meson, such as gr—qgm, qq - nq9q, or
qq—~ 77, then N =6 or more (see Fig. 20). If the pro-
cess of interestis, say, yp — m + X then the high-p,
reaction mightbe g +y—~n+q or g+y—~n+gq, giving
N =5.

For baryons observed in the final state, say,
pp—~p +X or mp—~p +X, there are several possible
N>4 reactions: qq—pg(N=6), gp—~qp(N=8),
qG —pp(N =8), etc. The lack of an N =6 process
with a p produced involving only quarks in the ini-
tial state would predict that the cross section for
pp =P +X should be much smaller than in pp -p +X
at large p,. This is only a sample of the rich
phenomenology available when looking at inclusive
processes from this point of view.

The experimental results on large-momentum -
transfer scattering®” have one remarkable feature

in common. They are not consistent with the power
dependence E do/d% ~s~2 at fixed p/vs and 6=90°,
i.e., p,”*. Rather, they favor much more rapid
falloff in p, with a power between -8 and -11. The
details of how their results are described in terms
of the phenomenology outlined above are given in
Ref. 44. What is of greatest importance here is
that the absence of p, ~* behavior is strong phe-
nomenological support for the absence of scale-
invariant scattering between quarks of different
hadrons and hence for our assumption (C).
Equation (5) suggests a new way of analyzing the
data on deep-inelastic scattering. The standard
method is to take the observed experimental cross
section, assume that the one-photon-exchange ap-
proximation is good (this has been cross-checked),
apply radiative corrections, and extract the struc-
ture functions vW, and W, (and W, for v scattering).
Scaling then implies that the structure functions
are independent of any variables other than x = —¢?/
2mv. However, Eq. (5) with N=4 can be checked
directly. Examining directly the dependence of
E do/d% on p, for fixed ratios of invariants would
be most interesting. Even though radiative cor-
rections (and possibly strong interactions in the
hadronic wave function) surely generate logarith-
mic modifications of perfect scaling, such an anal-
ysis would provide a useful direct test of scaling.
Of course, we find the parton-model result that
pp=~u W +X or mp - u W +X can go via q7 - put "
and hence is scale-invariant. Similarly, if the
parton version of e*e” annihilation is taken, that
it goes via e*e” - g7 ~hadrons, these counting rules
give a scale-invariant minimal scattering and hence
o ~1/s.

tot

V. SUMMARY AND CONCLUSIONS

In this paper we have examined the conditions
under which the simple dimensional analysis used
to derive Eq. (1) can be valid in renormalizable
field theories. The scaling laws are consistent
with finite Bethe-Salpeter hadronic wave functions
and the scaling behavior of simple planar Born
diagrams for the n-particle scattering amplitude.

yd

7/ > 7/

I@l\
\ D

FIG. 20. Possible minimal 1arge-p, scatterings if
gluon exchange is not allowed: (a) ¢“m” —¢m and (b)
q9 —~Tqq .

(a)
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The question of the short-distance regularity of
the Bethe-Salpeter wave function has now been
partially settled for asymptotic freedom theories
by Appelquist and Poggio.'® They show, as con-
jectured in Ref. 1, that the irreducible kernel is
more convergent in the ultraviolet than indicated
by simple ladder approximation. We have given
arguments why such behavior can be expected even
in Abelian theories, and why infrared corrections
to the scaling laws are likely to be unimportant
for color singlet or “neutral” hadronic states.

In a general renormalizable perturbation theory,
the scaling laws can be violated by nonplanar dia-
grams involving multiple on-shell quark-quark
scattering. The fact that such diagrams do not
seem to be important empirically, together with
the absence of scale-invariant large-transverse -
momentum inclusive reactions, plus the fact that
effective Regge trajectories a.¢ become negative
at large f, evidently imply the suppression of
scale-invariant (single or multiple) gluon-exchange
interactions between quarks of the scattering had-
rons. This remarkable empirical fact has yet to
be explained, but undoubtedly has important im-
plications for the detailed structure of the under-
lying quark theory.

Our general approach is different from what has
been done previously. Starting with Wu and Yang,
a number of authors have observed that given the
asymptotic falloff of the hadronic form factors,
predictions can be made about the large-s and
-t behavior of elastic scattering.*®* Horn and
Moshe*® proposed that cross sections should have
the form of Eq. (1), without specifying », and
showed that it provides a good fit to the data. In
contrast, we look directly at the underlying short-
distance structure which we abstract from per-
turbation theory. This enables us to predict the
behavior of the form factor (and automatically
gives the relations between form factor and wide-
angle scattering obtained by previous authors).*®+°
On the other hand, without making more detailed
dynamical assumptions we cannot make the pre-
dictions that they make on the angular behavior
of 2~ 2 scattering. The next logical step is to
choose a theory which may actually be correct
(e.g., a color gauge theory) and see whether quali-
tative features such as the angular dependence,
the minimal high-p, part of an inclusive scattering,
etc., can be obtained without actually solving the
theory. The techniques used in this paper, es-
pecially the simplified approach to bound-state
scattering which circumvents the complexities of
the full Bethe-Salpeter analyses, should be very
useful toward this goal.

In summary, the dimensional scaling laws for
fixed-angle scattering as S ==,

%:1 (A+B=C+D)=s*"a""s""c™"n f , p_, op (t/S),
give a fundamental connection between the degree
of complexity of hadrons and the power-law be-
havior of cross sections and form factors. Al-
though much more experimental information is
required, the present results support a composite
representation of the hadrons based on quark de-
grees of freedom. Thus hadron scattering at large
transverse momenta implies something of funda-
mental importance: Quarks not only have a mathe-
matical existence, giving current algebra, Bjorken
scaling, and the hadron spectrum, but a dynamical
existence as well. That is not to say that quarks
must be observed as free particles. However,
bound-state models should be built from quarks to
incorporate the correct short-distance structure

of hadrons.
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APPENDIX A: DOUBLE-SCATTERING GRAPHS USING
THE INFINITE-MOMENTUM METHOD

The physics of the Landshoff multiple -scattering
diagrams turns out to be particularly transparent
using time-ordered perturbation theory in the in-
finite-momentum frame. A full description of
this method may be found in Ref. 51.

The prototype calculation which most simply
contains the Landshoff contribution is given in the
case of -7 scattering where we take an f¢* theory
for the constituents and g¢* vertices to represent
the bound states. Generalizations to other cases
will be straightforward.

We choose the following reference frame:

M2 M2>
—p = Mp~ _MYp”
p pB (P+ 4P)O.L,P 4P ’

pD=pB+q1 pc:PB+y5 pA:pB+q+Vy

with

_(1°b = qa-p
q'< P,qL;_2P)9

<r'p - v-p
2p T TP )
Note that /=¢%= -q,2, and u=7r%=—r1,2

have q, *T,=0 if M 2+M%>=My%+Mp2
The contributing time-ordered diagrams which

v

We also
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are equivalent to the Feynman graph, Fig. 21(a),
are shown in Figs. 21(b)-21(e). All other time
orderings vanish in the P— « frame. It is easy to
check that diagrams (d) and (e) do not contribute

to leading order in the asymptotic fixed-angle limit.

Diagrams (b) and (c) include the summation over

J

time orderings in which the vertex A occurs be-
fore and after B, and C occurs before and after D.
The total amplitude for M(b) and M(c) is then given
by the following three-loop expression for time-
ordered perturbation theory:

>

d?kdx; > - - - - -
M ./H(ZX 1—1 (277 >6(Xa+xb"xc_xd)é(m(klb+k¢a+'\'a(q¢r)_km_’\‘cr'k;d‘xuq)

1 1
XUJA( J_ayx )wB(kJ_b»xb U)c(k '1Cs X )wD(kJJ, M( 1)M( 2) <Dib) +D( \> . (Al)
¢

Three-momentum is conserved at each vertex.
The range of the x; is 0 to 1. The amplitudes M,
and M(,, are the scattering amplitudes for a +b
~c+dand a’' +b’' - ¢’ +d’, respectively. In the f¢*
theory M(,y=M(, =f. The energy denominators for
diagrams (b) and (c) are

Dy =E +Ey-E, -E, -E; -E,, +i€,
Dy=E,+Eg-E, ~E ~-E; ~E +i¢e,

where the E; are the relativistic “kinetic energies”

eg.,
E,={[k, +x,@+D)F+m/x,

In addition, there are two energy denominators
coming before the scatterings M, and M, and two
afterward. When these are summed over the
orderings A before and after B, C before and after
D, they generate the product of wave functions:

2 2 o2 2\ -1
<M 2 kJ.u tmg _kgmy >
)

X, 1-x,

A(ELa )

etc. Notice that because of the choice of variables
[Bf xa(f) +q+T1) +EM] the wave functions do not de-
pend explicitly on g or ». The natural domain of
the wave function is thus k_, finite. Dropping
terms of order M? temporarily, we have

D,y = (5 +;)2 -x,r,%=(1- ‘\.a)(a +;)2 - Xaaz
1a"@+T) -2k 4 q
LS TV VSR
x., l-x, x; 1-x,°
If we introduce the scaled variables
am=(x, - x) 1] +2(K -k 4) ",
pm=(x, - x,) [T +2(k,

then for « and Bof order 1 and k% k,,°, and &,
of order m?, we have

k,,2~0(m?

a_kid) ”;;,

2

~
and

Dy, = alq|+B|r|+0(m) +i€.
Changing variables from x,; and x, to a and B thus
gives for diagram (b)

Moo~ L dadp
® mlqllr] f alq|+Blr]+0mm) +ie

multiplied by a finite integral over dx,, d*k .,
d®k,., d®k_ 4 which is independent of s, {, and u.
The imaginary part of (A2) gives

(A2)

!
(A3)

A/[ ~——
® mvsiu

{as easily seen in polar coordinates) and the real
part cancels against M.,.

p+r

-»-C
+
EALY
(a)
Feynman
Xg: Ky o %o(@+7) X Kyo*Xor
+q+r
i Ae e — ——_¢
B——— —--D
B———
(c)
(d) (e)

Time - Ordered Diagrams

FIG. 21. (a) A Feynman diagram for nm — 7 and
(b)—(e) time-ordered diagrams corresponding to it.
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We should note the following at this point. The
m-m amplitude is imaginary, reflecting the Glauber-
type real pole intermediate states which contrib-
ute. The constituent scattering amplitudes M,
and M, in (A3) correspond to near-mass-shell
scatterings of the constituents of different hadrons
with fractional momenta x, and 1 - x,-, respective-
ly. Note that the wave function dependence is not
relevant as long as the d?k, integrals converge
because if the M, (x) are scale-invariant they are
actually independent of x, e.g., for vector-gluon
exchange M(x)~ (xs - xu)/xt=(s —u)/t. The gen-
eralization to more realistic scatterings is imme-
diate. Each additional pair beyond the first two
gives a factor in the amplitude of order

1
mvsiu ’

thus giving the result, Eq. (21) of Sec. OID1.

APPENDIX B: FIXED-ANGLE UNITARITY
It is interesting that the behavior
|M, |2~ gin (B1)

is actually the fixed-angle unitarity bound for »n
particles in the external state when the square of
the amplitude is averaged over a fixed angular
region in the center-of-mass system. A conven-
ient proof has been given by Bardeen®® as follows:
Consider a two-particle state with continuum nor -
malization

<2 [ 2,>c m = 2Ea 63(54 - EL)ZEDGS(Bb _E;))
_4Vs
pc.m.

By smearing with an angular function

6(Q2-Q)0'(p, +py =Dy —by) -

1“z‘>=flz>dnf(sz>, [if(§2)12d9=1

we have

<§|§'>=p 6%(bo+by —Po—b3) .

Unitarity then gives
(2127 =(2]s"s[2)

- 51t - d°p; 5
-ZN:f<215'N>H§;<N'S‘Z>

and hence
4s _ 5 2
- —ZNjf [(2ITIN)]

N d3 N
I G2en o' (pvp,- 2 0,).
i1 i i1

Averaging | N) over c.m. angles thus gives in the
high-energy limit

fdm<§|T|N> 2 <Cys®?,

where N is the number of particles in the final
state. By crossing, the proof holds for any num-
ber of initial particles and (B1) follows.

The bound (B1) is also often imposed on ampli-
tudes in each order of perturbation theory as a
necessary condition for renormalizability.

In our work we show that the bound (B1) for the
fixed-angle amplitude is saturated in any theory
without an inherent short-distance scale. A cru-
cial point must be noted, however. In the hadron-
ic amplitude, the constituent particles for each
hadron are not at fixed angles relative to each
other; thus the bound (B1) for the required ampli-
tude M,, can, in principle, fail due to singular be-
havior when the external lines become parallel.
This is in fact what occurs in the multiscattering
diagram considered by Landshoff. (See Sec.IID 1
and Appendix A.)
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