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We investigate (15, 15) breaking for SU(4) m) SU(4) symmetry breaking as an alternative to the (4*, 4)
model. The form for the Hamiltonian is so chosen that pions obey the PCAC (partial conservation of
axial-vector current) equation, and the parameters in the Hamiltonian are then determined by meson

dominance. The Hamiltonian is found to be SU{3)z SU(3)-invariant to a very good approximation,

permitting charmed mesons to be massive and thus escape detection. We also evaluate m-n scattering

lengths and the decay X —}pm' in this model. Other choices of Hamiltonians within (15, 15) breaking

are also considered, but shown to be unsatisfactory.

I. INTRODUCT1ON

Recent observation of neutral currents' in neu-
trino experiments gives a great deal of credence
to the steinberg-Salam" type of unified gauge the-
ory. Incorporating the hadrons in this model thus
becomes of great importance. As is well known,
the usual quark triplet scheme cannot be incorpor-
ated because it leads to strangeness changing neu-
tral currents, in contradiction with experiment.
The simplest way out of this difficulty is to intro-
duce a fourth quark, carrying a new quantum num-
ber (charm), as proposed by Glashow, Iliopoulos,
and Maiani. 4

The four-quark scheme suggests naturally the

group SU(4) as an approximate symmetry group
for hadrons. Extension to chiral symmetry then
leads to the group SU(4)SSU(4). We can conclude
a great deal from the observed spectrum of had-
rons as to how this group is broken. The fact that
the particle spectra seem to follow recognizable
patterns on the basis of an SU(3) classification,
rather than SU(4) or SU(4) ISU(4), strongly sug-
gests that SU(4)@SU(4) symmetry of the Hamilto-
nian should be realized as a Nambu-Goldstone
symmetry with the vacuum invariant under SU(3) ~

Thus we have the usual nonet of pseudoscalar me-
sons m, K, q, and X, and, in addition, all the
charmed mesons, appearing as Goldstone parti-
cles. Explicit symmetry breaking must be intro-
duced such that the SU(3)@SU(3) group is a much
better symmetry than the group SU(4) or SU(4)
8 SU(4). This enables the charmed Goldstone me-
sons to acquire large masses compared to the
pseudoscalar nonet. The large masses of these
charmed particles would explain why they have
escaped detection. The SU(3) 8 SU(3) group is
further broken so that only SU(2) is an exact in-
variance group, and the pseudoscalar nonet ac-
quires the observed masses. The smallness of
the pion mass suggests the approximate validity

of the SU(2)SSU(2) group, although as we shall
see, this is not necessarily a desirable feature.

The direct generalization of the (3*,3}model
proposed by Gell-Mann, Qakes, and Renner' for
the SU(3) 3SU(3} group is the (4*, 4) model, where
the symmetry-breaking terms transform as quark
masses. This remodel has been investigated recent-
ly ' and found to be unsatisfactory. The basic
problem can be seen by writing the symmetry-
breaking Hamiltonian in the following form:

H= u, +e v3 u„+n(I+e)(-,')'~'u, .

This Hamiltonian can be decomposed into three
parts:

H=H, +H2+H3,

where

(1.2)

H& = Qo — 3 u&&), (I 3)

(1+e)(l —2u)
H~=

4

(1+e)(1+a) u1s ~ 1/a
H3 2 Bo ~3

+ (3) us

This decomposition has the property that H, breaks
SU(4)3SU(4) and SU(4) symmetry, but is invari-
ant under the SU(3)SSU(3} subgroup H, brea. ks
SU(3) and SU(3)8SU(3) symmetry, but is invariant
under SU(2}3SU(2) symmetry. H, breaks SU(2)
SSU(2) while preserving SU(2). From our pre-
vious discussion, the pattern of symmetry break-
ing should be

H, »H, »H, . (1.6)

This implies that the parameters e and n take the
values e = —1 and n = —1. The solution to the mod-
el in terms of the known pseudoscalar masses,
however, leads to a value of e = —0.6.' Such a
value is insufficient to raise the masses of the
charmed particles. Prediction on X and q decay

1287



1288 N. G. DESHPANDE AND D. A. DICUS

rates into two photons and X-pm' are also found
to be unsatisfactory. " Thus an alternative to the
(4*,4) model seems desirable.

Another feature that the (4*,4) model shares
with the (3*,3) model is the sma. llness of the o

term, leading to discrepancies with the values de-
duced from n-n scattering and the mN scattering
data. ' This difficulty arises because of the ap-
proximate SU(2)3SU(2) invariance of the Hamil-
tonian, a property shared by (3*,3) and (4*,4)
breaking models. Thus it seems desirable to
study alternative models for symmetry breaking,
and in particular models that allow (3*,3) break-
ing plus additional terms like (8, 8) breaking. In
the next section we shall consider different sym-
metry-breaking schemes that are possible before
selecting (15, 15) as the most likely alternative.
In Sec. III we analyze the most general (15, 15)
Hamiltonian possible, and then select a particu-
lar form which admits PCAC (partially conserved
axial-vector current) for pions. Sections IV and
V are devoted to calculations of the parameters
of the model and of mass formulas for the charmed
mesons. The form of the Hamiltonian selected in
Sec. III turns out to be approximately U(3) 3U(3)-
invariant, and thus it is possible to make the
charmed mesons much more massive than the
nonet of pseudoscalar mesons. In Sec. VI pion
scattering and X decay are calculated. In Sec.
VII other possible choices of (15, 15) Hamiltonians
are discussed and in Sec. VIII our results and con-
clusions are summarized.

II. ALTERNATIVE FORMS OF BREAKING SU(4) {3SU(4)

4=31,
4* =3++1,

6 =3+F3,

10 = 6+3+1,
TO = 6*$3*@1,
15 = 3+3*+8+1.

(2.1)

In thi, s section we list some of the simpler al-
ternatives to the (4*,4) model of symmetry break-
ing. As a criterion in choosing the Hamiltonian,
we shall demand that the transformation property
of the Hamiltonian under the SU(3) 3SU(3) sub-
group include (3*,3} and (8, 8) terms. The rea-
son for this is that the study of SU(3) 3SU(3) break-
ing reveals that o terms are rather small in (3*,3)
breaking and that a small admixture of (8, 8) rath-
er than (6",6) or (1, 8)63(8, 1}improves the agree-
ment with the experiment. ' To see what forms
are available we list the SU(3) decomposition"
of the low-dimensional representations of SU(4):

Here + and —refer to even and odd parity of the
operators. The SU(3) decomposition of these SU(4)
representations is

1=1

15 =8e 1+3@3+,

20" = 6*8 6 6,
84 = 6 +3& 15+1+8+273* 8 15+6*,
45 = 15&8+10&3*e6+3,
45 = 158+ 1083 6 6*kb 3* .

(2 4)

The most general Hamiltonian that preserves
SU(2} and the conservation of Y and C (charm},
and also incorporates octet dominance, can be
constructed from the following operators:

(2.5)

In this next section we shall limit the form of this
Hamiltonian by imposing additional physical re-

quirementss.

III. HAMILTONIAN IN THE 115,15) REPRESENTATION

We start by writing a general two-index tensor
for the (15, 15) representation

From these decompositions, we can deduce the
SU(3)ISSU(3) content of the SU{4)eSU(4) Hamilto-
nians. Some simple models are

(a): (4*, 4)e (4, 4+) = (3, 3*)+ (3+, 3)~ (1, 1),

(b): (1, 15)e(15, 1) =(1,8)e(8, l}ej(1,1),

(c): (6, 6) = (3, 3*)$(3*,3),

(d) (10 TO)6(10, 10) =(6, 6*)w(6*,6)$(3, 3~) (2.2)

e(3*,3)e(1, 1),
(e}: (6, 10)+(10,6) =(6, 3)a(3+, 6*)a(3+, 3) +(3, 3+}

(f) (15 15}=(3 3*)e(3~,3)e(8, 8)e(1, 8)e(8, 1) .

The model based on (a) has been extensively
discussed in the literature. The model based on

(6, 6) breaking is not satisfactory because there
is no way to break SU(4) while retaining approxi-
mate SU(3)SSU(3) invariance. The models (d)
and (e) both are admissible, but since they do not
admit (8, 8) breaking, we shall not consider them
here. Thus we are left with the (15, 15) represen-
tation. The SU(4) decomposition of this represen-
tation is'

15x 15=1+@15+(915 20"'884'$45 45

(2.3)
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Da Fa
Pjj =

~15 jjo+ ~3
jj~+ i

2 v~

T8Tj,
4S,4S,20",Se ~+e

(3.1)

The u's and v's are the Hermitian scalar and pseu-
doscalar fields. The lP;,, and F„arethe (15x15)
matrices of the two 15 representations

T8

(Dj)jk dj/A (P. j)jk ifjjk

These are normalized by

TrIP D6=35 ~, TrF F =45

(3.2)

(3.3) 10
10

All the other representations are included in the
last term of (3.1). The matrices are normalized
by

0

(3.8)

eTr ~ g8r
8 (3.4)

where, strictly for convenience, we allow the
normalization to be different even within a repre-
sentation.

The commutation relations for the two 15 re-
presentations of SU(4) are given by T15

[@' Pjj]=if aP.j

[Qn, P jj ]= jfn jaP ja

(3.5a)

(3.5b)

In terms of the vector and axial-vector charges
these become

[Q~, Pjj] =if~jj,Pjj —iP;j f~,j
= -[P",P].. .

[@',P;, ]=if.,P,j+iP,,f
„

= -(P,P},
„

(3.8a)

(3.6b)

16

(3.9)

(3.1Q)

Now given the H of (3.7) we can easily calculate
the divergences of the currents

s„sg= —i[q. ,H].

8 15
+c'

8 (72Q)1/2 j j l5 (38Q)1/2 j j ' (3.7)

The D are given by (3.2), while T' and T" are the
octet and singlet pieces of 84 and are given by

where we have used (3.2).
The most general symmetry-breaking Hamilto-

nian would have to include all the terms which
conserve parity, isospin, hypercharge, and
charm. This Hamiltonian would have many more
parameters than we could hope to determine. We
will therefore drop the part of the 84 representa-
tion which transforms under SU(3) as 27 since
we expect it to be small and we will also quite
arbitrarily drop the SU(3) octet piece which comes
from 20". We are then left with a singlet term,
plus singlet and octet terms from both 15 and 84:

O';, D]'~' pH f ~15 Pjj+'Eg ~3
P jjfs ~3 jj

(3.11)

The divergence of the axial-vector current is pro-
portional to pseudoscalar densities from both the
15 and the 45 representations:

15
-~„A&=~ TrF F'

~15 ~15
TrD8 FaF~+ TrD15FaF~

v3 vT
15

~45

45

g& ~45

(72Qjv) ~ 2 Tr (T', F }T,',

' (35QN)'/'

T4, are the matrices for the 45 representation
and N is the 45 normalization constant.
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The Hamiltonian (3.7) still has too many parame-
ters for us to determine. Further, if we are to
be able to calculate quantities of experimental in-
terest we will need to be able to use PCAC for
pions. This means we would like ~„A," to be pro-
portional to only one representation. Thus, as a
further restriction onH, we require, from (3.11),
that

4E pB„A,= —
~15 v, (1+e),

46,
s„A00= —~0 v~"(1+a+e)+ ~ ~ ~,

(4.3)

(4.4a}

The omitted term in (4.1a) has a coefficient —~oeoa.
The divergences of the axial-vector currents

are

I

~3( ', D']+ (720)ig. (P', T']

I

9 4E0 15B„A8= —~ v,"(1+,a+e)+ ~ ~ ~, (4.4b)

(4.4c)

I
8 8

(3.13)
e,',= 2u10 (eo —e) .

Using these we reduce the H in (3.7) to

be equal to ~E' with no T4, term. This gives two
conditions:

The terms omitted in (4.4) are proportional to the
pseudoscalar densities in the 45 representation. It
is easy to check that the 45 densities have coeffi-
cients proportional to a. This is very important
since it means that each of these currents is con-
served when e= —1, a =0. Finally,

p Es 85~tjjl+~3D lgg f 6+tgJ
+ ~ (5e-2e, )D', P, ;

s A =- v (1-a — e)+P 46P 15
15 ' 2

S A = —~v (1 —2a — e)+ ~ ~ ~
4EP 15

i3 —
~15 13 2 )

(4.5a)

(4.5b)

+ —,
'

(eo —e) Tp, P„. . (3.14)

IV. SPECTRAL SUM RULES AND VALUES
FOR PARAMETERS

This is the H we will use in the remainder of the
paper (except for Sec. VII). It has a manageable
number of parameters and has PCAC for pions
built in. Most importantly, we will see that it is
a Hamiltonian which can leave SU(3) 3SU(3) as a
good group while breaking SU(4) 3 SU(4} badly.

K e=&0I[@., [@8,ff]]I0&,

I 8=&0~AC t. @'8»l]~0&.

(4.6a)

(4.6b)

These are expressed in terms of the vacuum ex-
pectation values of the scalar densities for the 1,
15, and 84 representations. We use the notation

where the coefficients of the omitted terms are
proportional to both a and e.

Next we wish to calculate the so-called 0 terms
defined as

Using the final form of H as given in Eq. (3.14)
we can calculate the divergences of the vector and
axial-vector currents (the traces of matrices
which are needed are given in the Appendix):

'y = Pseo(uo&01

6
( 8 )0 ~15 b( 0)01

(4.7a)

(4.7b)

4ep 1
~15 W3

"5 (4.1a) 6'
&uio&o =

~gg f&uo&o (4.7c)

4ep, 5 1 5
B„V,"=

~15
u', ()

—
~3

a —
2~3

e + ~ ~ ~, 4.1b)

2 5~ e) ~ . (4.1t:)y p 4~p u15
P 13 ~15 14

The u'5 are the scalar densities in the 15 repre-
sentation. The terms omitted in (4.1) are propor-
tional to scalar densities in the 84 representation.
Also we have introduced the notations

(u»0&0 = —8v 3 g(u, ), ,

(u,'~&0= —8@6 h(u, ), .

(4.7d)

(4.7e)

K„=—ya(-,' b + 30g),

K» = —
y [a(~b + f+ 2 g + 100h)

(4.8a)

We neglect any contribution from the 20" repre-
sentation or from the SU(3) 27 piece of 84. With
this notation the 0 terms are

3~15 e~
8

~15
2

(4.2a}

(4.2b)

+ e(aob+ ao f +25g + 100h)],

K,o,o =y [a(- b+ 2f —136g+200h)

+ e(- ~~ b + ~~ f —50g + 100h)],

(4.8b)

(4.8c)
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I» = y[(1+e)(l+ b +f + g + b)],

I«-—y[(1+a+ e)(1 —2b+f —ag+ h)

+a(—,
'

b —3f + ~2g+ 15k)],

I„=y[(1++a+e)(1 —b+ f -g+b)
+a(- +b 4f —-~sg+20b)],

(4.9a)

(4.9b)

(4.9c)

and the physical masses. Next assuming

(0I v,"IK)=(0I us'I «) (4.14)

f 1 o, m»'

f» W3 I+ am„2 ' (4.15)

we have an equation for the K decay constant, f„
defined by analogy to (4.13),

I,5,5 =y[(1+ »3a+e)(l —2f +16b)

—~a(b+ 10g)], (4.9d)

I, » = W2 y[(1+e)(2 b+5g)

+a(-~~+»3b+ ~sf + ~sg —s33 h)],

(4.9e)

I~ =y[(1 —a ——', e)(1+ ~ b -f —a~g —4h)

+a(-a4b+6f —kg+6%)
+e(-a bB+5f —a44g+50b)],

I» „=y[(1—2a —2 e)(1 —b f + 5g —4—b)

+ a(b + 4f + 40b)

+e(~4b+5f + ~2g+50b)] .

(4.9f)

(4.9g)

It is very instructive to consider Eqs. (4.1),
(4.3), (4.4), (4.5), (4.8), and (4.9) in terms of the
variables a and 5 rather than a and y, where

f,' m, ' = 5 (1+b +f),
f»'m»' = 5[(1+n)(1 ——,

' b+f )+ 3m(i b —f )],

(4.16a)

(4.16b)

(4.16c)

which, when taken together with (4.12) and (4.15),
we can solve for 5, b, and f .

When the equations mere actually solved we al-
lowed m„and f»/f, to vary between the limits

We will later relax assumptions (4.11) and (4.14)
by allowing f»/f „and1„to vary.

If we take the one-particle intermediate-state
approximation for K~, I33 and I44 we have three
more equations in terms of the same masses and
decay constants. Unfortunately, these three equa-
tions still depend on five unknown parameters, 5,
b, f, g, and h. Thus we will first assume that the
vacuum is not broken by the 84 representation,
i.e. , g = h =0. With this approximation

a = a(1+e),
5 = —y(1+e) .

(4.10a)

(4.10b)

1050-m„(1500 MeV,

1 05 ~ f»/f. (.1.40 .
(4.17)

&0I v,"Ivr) =(0I v,"IA)

we have an equation for n,

(4.11)

We see that the dependence on e disappears from
the U(3) U(3) subset of equations. Physically,
SU(3)8SU(3) must be a good symmetry relative
to SU(4) 3SU(4) and we are completely free to
adjust e to satisfy this. In the next section we
will show the dependence of the masses of the
charmed particles on e. Since e also disappears
from (4.4c) and (4.9d) it is possible to boost the
masses of the charmed mesons without also rais-
ing the mass of the observed X meson.

To solve for the parameters we first take the
matrix element of (4.1a), (4.3), and (4.4a) be-
tween vacuum and one-particle states, assuming
that the scalar v meson and the pseudoscalar pion
and K meson belong to the 15 representations.
Assuming

The solutions for e, b, and f are

13.2 & 6 ( 17.9,
-0.106 ( b ( -0.045,
—0.103 (f ( —0.004 .

(4.18)

If we set b =f =0 and allow the vacuum to be
broken instead by the 84 representation we find

—3.9x 10-' «g ( —1.5x 10-',

5.6x10-' (h ( 3.8x 10-'
(4.19)

for the same range of m, and f»/f„. Since, in
either case, the vacuum breaking is very small
we will work with solution (4.18) in the remainder
of the paper.

Let us now move on to the (8, 15) system of
equations. If we define the decay constants for
the currents A'„and A„"with the states of the me-
sons n and X(958 MeV) a,s

(4.12)

&OIA,"(0)IP,)= ip "f, (4.13)

in terms of the m- and K-meson decay constants
defined by

&0IA„'(0)ln(P)&=if'„P„,
&0IA„'(0)lx(P)&=if' p„,
(0IA„"(0)ln(P)&=if,"P„,
&0IA„"(0)l&(P)&=if"I „,

(4.20a)

(4.20b)

(4.20c)

(4.20d)
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then the meson approximation is

I„=—[(f„')2m„2+(f»')2m»2],

I8,X8
= -(f8f'„'&&„'+f»f»'~X'}

(4.21a)

(4.21b)

(4.21c)

fE mg

I28 f8™2

I &0

(4.28)

(4.29)

These give a system of three equations in the four
unknown f's. To solve for the f's we assume the
following octet relation among them:

put bounds on 5 and f (g =h = 0) or g and h (b =f = 0)
such that the combination (4.27) is never as large
as 4.

4f 2 f 2 3[(f8)2+ (f8 )2] (4.22)

(0[A8(P„)= 0,

(0[A"[P8)= 0,
(4.23)

We will need to know the f 's when we consider the
decay X-pm' in Sec. VI.

It is interesting to notice that the mixing as-
sumption of exact SU(3) symmetry for the matrix
elements of A„'and A„",

V. MASS FORMULA

The most important consideration for a mode1
of SU(4)3SU(4) symmetry breaking is whether the
masses of the charmed particles can be made suf-
ficiently large. In our model this is possible be-
cause the divergences and o terms with nonzero
charm depend on the additional parameter e. To
see this define

is completely inconsistent with positivity of the e
terms for either g =)2 =0 or f = b =0. To see this,
recall that the states q and X are the physical
mixtures o Ps and Pis

(Oi u;(0)i S)=—Z;,

(Olv;(0)IP)=—Z; .

(5.1)

( n) = cos 8 ( P8)+ sin8 (P»),
IX)= -sin 8 [P,)+ cos 8 IP„},

(4.24a)

(4.24b)

The vacuum-to-one-particle matrix element of
(4.lb} gives

where 8 is given by the mass relation

4m»' -m, ' =3(m„'cos'8+ m»' sin'8) . (4.25)

The mixing assumption then gives two equations
on the f's,

f, [m (2S)]' = —
~~~ ~~

(a+ -,
' e) Z, , (5.2)

where m, (S) is the mass of the charmed scalar
particle and f8 is the decay constant defined as
in (4.13). The ratio of (5.2) with the similar re-
lation for the K meson givesf"= f» tan8,

f„'= f„'tan8. -
Using these in (4.21}we have

(4.26a) f8[m2(S)]' 1 a + —,
' e/(1+ e) Z,

f»m»' W3 1+o. Z»
(5.3)

I„I»» (m„2+m»2 tan28)(m»'+ m„'tan'8)

(4.27)

This combination is & 4 for tan'8& 0. But the re-
lations

In the one-meson-saturation approximation the
ratio of (4.8b) and (4.9b) gives an equation for

(f ')'[s2.(S)]'

Using this equation and (5.3) we have

[m, (S)]2 1 o, + 2e/(1+e) (1+o)(1—2b+f)+3a( 0-f8) Z~
m»' 3 (1+a)2 —,'5+ f +E

The same procedure with (4.1c) and (4.8c) gives

[m„(P)]' 1 2a+ —,'e/(1+e) (1+a)(1—2b+f)+3a(8b -f) Z„I»' 3 (1+a)2 f ——,'b

(5.4)

(5.5)

Therefore e can be chosen (= —1) such that the masses of the charmed scalars are very large. The only
unknowns in (5.4) and (5.5) are the ratios of the Z's. In fact the Z's are equal if the chiral SU(3)BSU(3}
group generated by

1 1Q„Q„(Q,+~3Q, ), Q„Q„Q,Q 2~3 Q — Q +-~2Q
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and the corresponding axial charge octet satisfy an asymptotic symmetry in the sense that

»m q'[& 5(e) —n'. 5(q)]= o
Q ~OO

This is discussed in Ref. 6.
In the same way we can find the pseudoscalar masses

[m, (P)]2 [I —n ——,
' e/(1+ e)]' (1+a)(1—2b +f)+3 n( 5b -f) zP

m+2 (1+n)' [1—a —25e/(1+e)](1+ 2b -f)+n(-a5b+6f)+[e/(1+e)](- a8b+5f) Zz

(5.6)

[m»(P)]' [I —2a —
2 e/(1+ e)]2 (I+a)(l - zb+f)+3a( b5-f) Z5

me' (1+a)' [1 -2n+ ', e/(1+ e)](l —b -f)+ a(b+4f)+5[e/(1+ e}](-," b+f) Z»

(5.7)

Again the Z's are equal if we assume asymptotic
symmetry for some subgroup. ' However, as be-
fore, we are only concerned with the fact that if
the parameter e is close to -1 then the charmed
pseudoscalar masses will be large.

o&') = 1
96~m„

1" =
48~m„

where

(
m2

5A —16 f 2

(~-4

(6.la}

(6.lb)

VI. PION-PiON SCATTERING LENGTHS
AND X ~qm7I DECAY

The m-m s-wave scattering lengths, a,", are giv-
en by"

which is somewhat better than the Weinberg value
A = m„2/f,2.

In any model of this type it is of interest to cal-
culate X qmm. In previous work' we have calcu-
lated this decay by assuming PCAC for the g and
X as well as the m. This large mass extrapolation
undoubtedly introduces a significant error, but we
will only ask whether we get the right order of
magnitude. In that case the decay width is related
to A defined as

~&ol[q, , [q„,[q;, [q„,a]l]]lo&
8 8 X

+«l[q,', I: q.', [q:, lq;, W]]ll»

+&ol [q,' [q', [ q,', [q,', If]]]]l0&]

(6.6)

—, &ol[q;, [q„[q,', [q,', iI]]]]lo) . (6.2) by

Since our model has PCAC for the pions we can
legitimately calculate A. This involves traces of
six matrices, four factors of F', and combina-
tions of I, D', D", T', T" taken two at a time.
These traces are given in the Appendix. The re-
sult is

A = — 5 2 y[(1+e)(1+ a5b+ +5 f -2g -2h}].1

(6.3)

1 ni2I' (keV) = —;X
where

I f8 f15

f " X N
Q5 Xq5 +~q5

8 15

X N 15 N 84

f15f8 f8 f15

(6.7)

(6.8a)

(6.8b)

(6.9)

5 m, ' I+ a5b+ a5f —2g-2h
2 f, 1+b+f +g+h

Again using (4.18) with g = h = 0 we have

(6.4)

Replacing y by its value from the one-meson ap-
proximation to I», Eq. (4.9a), A becomes

with the f 's defined by (4.17). These definitions
of q and X follow from requiring orthogonality for
the physical q and X fields,

&ol y„lX)= 0,

«I y.ln&=0.
m 2

A = (2.1-2.4) (6.5) After some algebra we find

m
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where we have setg =A=0 as before. The f's can
be determined from (4.21) and (4.22).

Because of a quadratic equation in determining
the f's, there are two possible solutions. If we
again relax (4.11) and (4.14) by allowing jjj, and

f&if, to vary as in (4.17}, we find

~ A"=- —e (1+-,a —e}v"+ ~ ~ ~

9 q]5 0 9 (7.4d)

p
4 „1i~A"= —jj f (1 — 8IU jj Gv~]+'''

(7.4c)

I' = 0.02-0.14 Mey (6.1la)
+ ~ ~ ~, (7.4e)

or

I' =0.12-0.28 MeV (6.11b)
&„A,", = — e,[(1 —2e) v,",+ W2 av", j+ ~ ~ ~,4

(7.4f)
for the bvo solutions.

Our answer is somewhat smaller than the width
expected for this decay, but that may be entirely
due to our use of PCAC for the q and X particles.
As expected, our result lies between the value de-
rived in the (3*,3) model of SU(3}SSU(3), which
is -0.2 keV,"and the answer of -1 MeV that
comes from a pure (8, 8) model. "

VII. OTHER APPROXIMATIONS FOR II

The Hamiltonian (3.14) was derived from the
more general form by insisting upon PCAC for
pions. There is no really compelling reason for
using (3.14), a priori, and we now want to mention
some other possibilities. By analogy to octet dom-
inance of SU(3) we might assume 15 dominance of
SU(4)8SU(4), i.e.,

~o ~s s ~as xsH=
~)~ 5ijPj +i~p D;, P, i+

~&
D;,P, i . (7.1)

With this H it is convenient to change our defini-
tions of a and e from (4.2} to

915 e~a=
6

(7.2a)

v15 c~ (7.2b)

2
V4 =

~5 'EOQu5

„S"V——9— (a+4e)u„,

s„V,", =+ ~ e,(a —2e)u, ~,

(7.3a)

(7.3b)

(7.3c)

but the divergences of the axial-vector currents
depend on the pseudoscalar densities from both
the 15 and the 45 representations:

4s„A,"= —~ e,(1+a+e) v,"+~ ~ (7.4a)

4
&„A,"= —~ e,(l —p a+ e}v,"+ ~, (7.4b)

The divergences of the vector currents can be ex-
pressed in terms of the scalar densities of the
15 representation only,

On the right-hand sides we have omitted the terms
from the 45 representation, but for i =3, 4, 8 each
divergence in (7.4) is of the form

s„AI'- (1+u, a+e) vp+ (o.,
' a+a;e) v", . (7.5)

It is easy to see that there is no value of a and e
for which SU(3) 3SU(3) is a good symmetry or even
a much better symmetry than SU(4)3SU(4). This
is because (7.3a) requires a =0, while, in (7.5),
it is not possible to choose a value for e that will
make the coefficient of both v&' and v~&' zero.

We could equally as well assume an 84 domin-
ance for H

~o + ~s gs pji+ (720}i~2

15 y15 P(36())1/2 ij ji (7.6)

where T and T" are given in (3.8) and (3.9).
Here again the diver gence s of the SU(3) 8SU(3)
currents are of the form (7.3} and (7.5) and it is
not possible for the SU(3)SSU(3) symmetry to be
much better than the SU(4)SU(4} symmetry.

It is possible to construct more general models
that would remedy this defect. For example, con-
sider the model defined by the Hamiltonian:

I

H= ~]5 ii ii (360)&/2 ii ii ~3 i j ji

s+ +3D;j P, i . (7.7)

We ca,n write this in the more convenient form

Dis+ 2 Ti&10
E'0 ij ~6 ij+ i ii ij

1
+ 5;&+2 3 aD;,. +2 6 eD';,. P;,

(7.8)

It can now be seen that in the limit e'- —1 the
Hamiltonian is U(3)(SU(3)-invariant. The diver-
gence of currents in the noncharmed subsector of
SU(4) is identical in form to the 15 dominance
model, i.e., Eqs. (7.3a), (7.4a), (7.4c), and (7.4f)
are the same except for an over-all multiplicative
factor (1+e'). The charmed masses are then
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found to behave as

el
m'(charmed mesons) ~ 2+e' ' (I.9)

ters. It may be possible to determine all these
using the m-m scattering length and the X-pm'
decay rate, but the model would then have little
predictive power.

Thus these masses can be very large as e'- -1.
The parameter e' has no constraint from the
known pseudoscalar nonet, a property shared with
the model discussed in Sec. III. The essential
difference between the two models is that in the
present model pions do robot obey strict PCAC.
The parameters a and e can be determined using,
for example, the equations analogous to (4.3) and
(4.9). Using orthogonal mixing for q and X, we
find solutions, all of which yield rather large val-
ues for the quantity A l see Eq. (6.2)]. The small-
est value is

nl 2

A=—22 f 2

The data on n-Tt scattering would thus seem to
rule this model out. '4 A different model with a
T' instead of D' is also ruled out for a similar
reason. When both T' and D' terms are present
we have, of course, too many unknown parame-

VIII. SUMMARY AND DISCUSSION

We have investigated the symmetry breaking of
the chiral group SU(4)SSU(4) in a model where
the breaking transforms as (15, 15}. The solu-
tions which emerge from using meson dominance
for the a commutators are much more satisfac-
tory than was the case in the (4*,4) model. In
particular, only the equations with charm depend
upon the parameter e and it can be chosen such
that the Hamiltonian is approximately U(3)SU(3)-
invariant. This means the charmed mesons have
large masses compared to the observed nonet of
pseudoscalar mesons. This is a major success
since there does not seem to be any way in the
(4*,4) model to sufficiently boost the masses of
the charmed particles.

The m-m scattering length that emerges is char-
acterized by the parameter A, whose value is

TABLE I. Traces of matrices defined in Eq. (A5).

g(a, g)
8

&(a, 8)
15

&(n, 8)
8,8

&'nP
(,8)
15,15

T (a& 8)
8, (I

T (a R)
8, 15

~ (n, 8)
~ 15 15

&(a, 8)
8

X(a, P)
15

y(a P)

{a,P)
8, 15

y(a, g)
15,15

Z(a. e)
8,8

(a, 8)
8, 15

z(, t)
15,15

„(a,R)~ 8,8

('a, P)
8, 15

(a, P')

15,8„,(n, &)
15,15

(3 3)

2/W3

2/W6

~~2/6

W/6

34

19

23

19

2/W3

-1/2v 3

8/W6

7/W6

(4, 4)

2/W6

23
24

-1/6'

-1/6&2

220

23
2

19

-50
23
2

19

1/4v 3

-4/W3

7/ /g

(8, 8)

-2/v 3

2/W6

-1/3 2

2

3

1

-1/WY

78

19

19

-6/W3

1/2&3

-8/v 6

7/W6

(9, 9)

2

~2/4

228

135
2

204

-90
165

2

—96

9/4&3

—12/W6

(13,13)

-2/ 3

-2/v 6

2

W2/2

—10

354

204

-270

165

-96

6/W3

—9/2vS

(15, 15)

-4/v 6

—16

200

64

200

-20/W3

+ 16/W6

(8. 15)

2/. 6

1

3

—1/3&2

-50m 2

40' 2

10/W6

-8/&6

1O/. 3
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PPl
A = (2.1 2.4)

compared to A = m„'/f,' in (3*,3) (see Ref. 15)
and (4*,4) models. This larger value is in better
agreement with experiment. '4

The decay rate X g7tm still comes out some-
what small. This may be due to our unjustified
use of PCAt" for the q and X mesons, but the val-
ue we get is certainly reasonable since it lies be-
tween the value for pure (3*,3) symmetry break-
ing and the value of pure (8, 8) breaking. We had
hoped that by choosing a model which included
both (3*,3) and (8, 8) breaking we could get physi-
cally reasonable values for both the decay rate
and pion-pion scattering and this seems to have
worked. Our insistence that the Hamiltonian give
PCAC did not remove too much of the (8, 8) break-
ing; in fact, if we give up this assumption, as in
the alternative Hamiltonians considered in Sec.
VII, we find unacceptably large values for A.

In summary: The Hamiltonian given in (3.14)
is the first successful model for the symmetry
breaking of SU(4}SSU(4}in the sense that it is
the first model to give the correct orders for the
symmetry breaking of the various subgroups. In
addition it gives a better value for m-n scattering
than the (3*,3) model of SV(3}SSU(3)and also a
better value for the X-gem decay rate.

[E,F8]= if Sr E„,
[E„,D,]= if„,„D„,
FaD B + FBDa la By Fy

DaFB+DBFn =dnByF

[D~, D8];, =if~sr(Fr)~j+5( ~, sr —„,8,.),
(D~, D sji;, +(F„,Es);, = 5~85;, + 2d„~r(Dr);,.

I—2(5; 85„,+ 5; 5@) .

The following trace theorems then hold:

TrFn FBFy = 2ifa By,

TrF DBDy =-,'if
By

a BFy aBy r

TrDa DBDy = 2daBy

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

(A3f)

(A4a)

(A4b)

(A4c)

(A4d)

Traces of products of four, five, and six ma-
trices are also necessary for evaluation of o com-
mutators and v-v scattering length. Since we only

Here the normalization of T" is left arbitrary,
and values are later chosen for algebraic conveni-
ence. The matrices are traceless (except for 1)
and orthogonal (i.e., trace of the product of any
two different matrices vanishes). Some useful
commutation rules" "are

APPENDIX

(F );, = —if;, , (Ala)

(A1b)

The values of f;, and d;& are tabulated in Ref. 6.
The normalizations of these matrices are

TrFa FB=45 B,

TrDn D B 35aB r

Tr T"T', =X."e

(A2a)

(A2b}

(A2c)

In working out the various current divergences
and o terms, it is useful to know the traces of
different combinations of the matrices involved
in the reduction of 15 & 15 into irreducible repre-
sentations of SU(4). The 225 linearly independent
15x 15 matrices involved are denoted as follows:

1rFar nr ar Tn r Tnr a

Here the identity transforms as SU(4) singlet,
F and D as antisymmetric 15 and symmetric
15, respectively, T" transform as the represen-
tation A, with a taking values from 1 to A. The
120 symmetric matrices are 1, D, T, and T";
the rest are antisymmetric. %e choose the ma-
trices F and D to be the symmetric and antisym-
metric structure functions of SU(4):

(3, 3) (8, 8) (15, 15)

E(n, B)

1(n, B)
8

I(a, B)
15

g(a, B)
8

&(a, B)
15

Z( B'
8,8

8, &5

g (n, B)
15,15

L (n, B)
8,8

I ( &B)
8,&5

I (a,
$)

M $B)

M(a B)
8, $5

MI "

2

2/W3

5

5

4

17
24

7W/24
5

12

29
2

35
4

25
4

7/2v 3

5/W6

11/8v 3

13/4'

6

-W3/9

v 6/9

-5/3 &)2

W6

17

11
1Y

25
12

1/6v 3

-13/24' 3

—1/3&6

13/12' 6

3

v3/9

-W6/9

10

3

8
3

1
V8

—1/9v 2

1

9

50

3

40

3

32
3

-5/3W3

-4/3~3

10/3 6

8/3v 6

TABLE II, Traces of matrices defined in Eq. (A6).
The values for (Q. , P) =(8, 15) can be found from (15, 15)
by the relation 2v2A8' =A ', where A'a B is any
one of the elements of the first column.
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encounter T~, T», and certain combinations of
D, and D», we shall only list these. The matrices
T8~ and T»~are defined in Eqs. (3.8) and (3.9),
their normalization being 720 and 360, respec-
tively.

We define the following traces:

The values of those traces involved in our calcula-
tions are listed in Table I. For our choice of n,
P and i,j, U(,".j 8 = V(;j ', and hence V;,8 are not
listed separately. In addition, we need the follow-
ing traces to evaluate the pion scattering length
and the X-g» decay rate:

g(n, 8)

y(a, 8)tj
z(~. ~)jj
U(P' 8)

fj
V(&i &)fj

TrF FBT;

TrF~F'T", Z"

TrF r", X'r", ,

TrF'F'D' T", ,

TrF D'FST'4

R& ~) = TrF FBD',

S( . ~) = TrF FBD'D'
1j

T('»= TrF"D' F'D'
Cj

(A5a)

(A5b)

(A5c)

(A5d)

(A5e)

(A5f)

(A 5K)

(A5b)

F. ~=TrF'F'F FB,

I = TrF F3F FBD',

J;B=TrF F F FBT~

Z, ,' = TrF'F'F"F'D' D',

1...8 =TrF'F'F F'T',.4 T"

I TrF F F F P Dj ~

These traces are listed in Table II.

(A6a)

(A6b)

(A6c)

(A6d)

(A6e)

(A6f)
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