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The construction of chiral-symmetric quark models is investigated. %'e show that the

Nambu-Goldstone realiza6on of chiral symmetry leads naturally to representation mixing of quark states

and of their composites. Constructing SU(6) wave functions for hadron states, we obtain a mixing

scheme algebraically equivalent to the Melosh transformation. The resulting phenomenology for pionic

decays and for weak and electromagnetic vertices is known to be very successful. The present work

provides a theoretical basis for these results and opens new avenues for the study of SU(6) symmetry

and the investigation of deep-inelastic scattering processes.

I. INTRODUCTION

The weak and electromagnetic interactions of
hadrons measure matrix elements of the vector
and axial-vector currents. According to the cur-
rent-algebra hypothesis of Gell-Mann' the charges
Q, (t) and Q,'(t) associated with these currents
generate at fixed time the transformation group
SU(3}xSU(3). The vector currents are approxi-
mately conserved, and the associated charges
generate the familiar symmetry group SU(3}. All
known hadronic states fall nicely into approxi-
mately mass-degenerate multiplets of this group.
The predictions of SU(3} for vertices of the strong,
electromagnetic, and weak interactions are also
well ver ified.

As for the axial-vector currents, it is only nat-
ural to ask if they, too, are conserved, and if
the strong interactions therefore enjoy an approxi-
mate invariance under the full chiral group SU(3}
xSU(3}. The evidence for mass-degenerate chiral
multiplets is negative, since such multiplets could
be formed only from unobserved parity doublets.
An alternative is provided by the hypothesis of
partially conserved axial-vector currents (PCAC),"
whereby approximate conservation of the axial-
vector currents is related to the small masses of
the pseudoscalar mesons. Chiral symmetry is
then said to be realized in the Nambu-Goldstone"
mode. The symmetry of the vacuum is now spon-
taneously broken, and the physical states no longer
fall into simple degenerate multiplets. '

In this picture, decays involving the pseudo-
scalar mesons are governed by matrix elements
of the axial-vector currents. Consequently, sys-
tematic studies of such decays can serve to map
out the structure of SU(3) xSU(3) multiplets. Phe-
nomenological analyses' of this type all seem to
indicate that physical hadrons transform as com-
plex mixtures of chiral representations. Indeed,
each irreducible chiral representation seems to

involve a mixture of infinitely many physical
states. '

We can contrast this complex picture with the
simple quark-model description of the hadron
spectrum. All known states fall nicely into multi-
plets of the group SU(6}.' Of course the extension
of SU(6) to the description of interaction vertices
does not seem very straightforward, and the dy-
namical basis of the quark model remains un-
clear. ' Recent progress has been made, however,
following a proposal of Melosh" to describe the
SU(6) transformation properties of the vector and
axial-vector currents. This permits the calcu-
lation of weak and electromagnetic vertices and-
with the assumption of PCAC —of strong pionic
vertices as well. The systematic application"
of this idea has met with considerable phenom-
enological success and has explained many facets
of the chiral multiplet structure cited above. Un-
fortunately, Melosh's results were derived for
the free-quark model where there is no SU(3)
xSU(3) symmetry, no PCAC relation, and no rea-
son for the existence of chiral multiplets at all.
The dynamical origin of the assumed transforma-
tion (or mixing) hence remains obscure.

In this paper" we will study quark models in

which chiral symmetry is exact. Assuming the
symmetry to be realized in the Nambu-Goldstone
mode, we demonstrate that representation mixing
of the quark fields is a natural consequence. Con-
structing composite states of quarks, we show
how the Melosh transformation" arises and in-
dicate the limits of its applicability. The result-
ing picture of hadrons is a rich one, which pro-
vides a framework suitable for further studies
of SU(6) and of deep-inelastic and other high-en-
ergy scattering processes.

In Sec. II we review how the PCAC relation
arises from the Nambu-Goldstone realization of
chiral symmetry. This relation will underscore
the utility of chiral charges defined by suitable
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integration over the null plane. These charges
can be constructed explicitly in the a model, as
we demonstrate in Sec. III. As shown there, rep-
resentation mixing of the canonical fermion fields
in the model follows naturally from the Nambu-
Goldstone realization of chiral symmetry. Impli-
cations of this result are discussed in Sec. IV in
the general context of chiral-symmetric quark
models.

In Sec. V we introduce hadronic wave functions
which incorporate the empirical features of an
SU(6) classification. This leads to a chiral mixing
scheme equivalent to that first proposed by Melosh.
The successful applications of this scheme are
briefly reviewed in Sec. VI. In Sec. VII our inter-
pretation of the quark model is described at great-
er length, and analogies with systems of solid-
state physics are briefly developed. The relevance
of these ideas to deep-inelastic scattering is dis-
cussed in Sec. VIII.

II. CHIRAL SYMMETRY AND NULL-PLANE CHARGES

Throughout this paper we consider theories with
exact chiral symmetry in the Nambu-Goldstone
mode. ' Both the vector currents V,"(x) and axial-
vector currents A,"(x) are divergenceless, and the
corresponding charges,

+& P IA! I ~&», (2.4)

where q =P —PB. Figure 1 illustrates this ex-
plicit separation of the pion-pole term from the
nonpole term (P IA,"I o. &». The conservation con-
dition S„A,"(x) =0 relates these terms by the PCAC
constraint,

&P, ». I o &
= —(ff.) '

q„&P IA! I
o &» . (2.6)

This expression can be conveniently rewritten in
terms of the full axial-vector current if one care-
fully selects Fourier components to which the
pion pole does not contribute. Introducing the null-
plane components q' =(q'+q')/W2, etc. (see
Appendix B), one easily verifies from Eq. (2.4)
that

Because Q,
' excites a number of pions when opera-

ting on any given state, the vacuum state and all
physical states built on it display complicated
transformation properties under this operator.
Fortunately, as we will now proceed to demon-
strate, the operators relevant for studying the
chiral structure of hadrons are not these static
charges, but some related operators defined by
null-plane integrals of the axial-vector currents.

Let us examine an arbitrary matrix element of
the axial-vector current, "

&P IA&(o) I ~& = ff,&P, ». I
n & q&/q '

Q, (x') = d'y6(x'- y') V,'(y)
&P IA,'(0)l a&» = lim lim &P IA,'(0)

I
o.'&

0-L~o 4(+ ~0
(2 6)

C(x') = d'y 6(x'- y') A:(y),

are therefore conserved:

(2.1) Note that the order of limits here is important,
since we want the pole term q'/(q„' —2q'q ) not
to contribute. We thus arrive at the important
relation

0 Q, (x') =
o Q,'(x') = 0 . (2.2)

m'- 2

&P, v. ln&=,f &p Ilp &
&PI@!(0)I~&, (2. t)

These charges generate the symmetry group
SU(3) &SU(3), and the canonical fields of the theory
typically transform as irreducible representations
of this group. If, for example, there exists a
fermion coupled to the axial-vector current, its
bare mass will vanish and its right- and left-
handed components will transform as the repre-
sentations (3,1) and (1,3), respectively. When the
symmetry associated with the axial charges is
realized by the Nambu-Goldstone mechanism, '
the following state of affairs is known to result:

Q,'(x') = d'x dx A'(x), (2.8)

where

&psllp &=(2»)'2p'. 6(p'. p')6'(p'. p'-)—
denotes a covariant normalization factor, and

Q,'(0) designates an axial-charge operator defined
by integration on the null plane x'=O. Specifically,

(i) The ground state is degenerate, so that

q,'lo& ~0; (2.3)

(ii} Q,
' excites massless pseudoscalar mesons

("pions");
(iii} the physical (auasiparticle) fermion states

acquire a mass m.
FIG. 1. Separation of the pion-pole term in matrix

elements of the axial-vector current.
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{P I Q,'(0) I c.'&
(p imp &

(2.10)

Making use of chiral symmetry, Regge behavior,
and the narrow-resonance approximation, Wein-
berg has shown that the g, matrices form, to-
gether with matrix elements of the SU{3) gener-
ators, an algebra SU(3) &SU(3). In terms of the
null-plane charges, we anticipate therefore the
relation"

where the order of integration is essential and
corresponds to the order of limits of Eq. (2.6).
Note that the definition of the null-plane generator
is not ambiguous in the physical world with m„&0,
as can be seen simply by replacing (q') ' in Eq.
(2.4) by (q'+m, ') ' and following the arguments
leading to (2.8). The definition (2.8) given for
Q, in the chiral-symmetric world thus corre-
sponds to a smooth limit as m, —G. (See Appendix
A for a detailed discussion. }

Equation (2.7) establishes the importance of
the null-plane charges for the study of pionic tran-
sitions. Measurement of the amplitudes for such
processes specifies various matrix elements of
Q,' or, equivalently, indicates how the various
states transform under this operator. As men-
tioned above, if the states are to transform in

any simple fashion under the Q, , it is essential
that these operators annihilate the vacuum,

Q:(x"))0& =0. (2.9)

This is indeed the case, as a simple exercise in

momentum space will demonstrate. " The defini-
tion (2.8) implies that the Q,' carry momenta
q' =q'=0. Consequently, they can create from
the vacuum only states of mass p' =0." Although
massless particles (pions) do exist in our theory,
the Q,' are defined not to excite them, so they do
annihilate the vacuum.

The insensitivity of the Q,' to the chiral structure
of the vacuum allows for the possibility that phys-
ical states do transform simply under these
charges. To investigate this important question,
we must first inquire as to the algebraic prop-
erties of the Q,'. A ready answer is provided by
the work of Weinberg" on the pion-coupling ma-
trices,

Q,(x') =Q, . (2.13)

TABLE I. Properties of the static and null-plane
axial charges.

Alternatively, one may derive Eq. (2.11) as an

operator relation from the null-plane algebra
approach. This has been carried out in the gluon
and o models for the case I, &0 (when there are
none of the complications which arise from a
massless pion). " The result is identical to (2.11).
This relation is independent of m„and hence re-
mains valid in the limit m„- 0. We will confirm
this statement in Sec. III by directly calculating
this commutator in the chiral-symmetric 0 model.

From Eq. (2.11), we see that Q, and Q,' form an
algebra SU(3) &SU(3). The problem of pionic tran-
sitions has thus been reduced to a question of how

physical states are classified under this chiral
algebra on the null plane. " The question of chiral
representation mixing can now be approached
through the transformation properties of canonical
fields under the Q,'. This task will be carried out
for the o' model in Sec. III.

First we should emphasize the important dis-
tinctions between the operators Q,' and Q,'. Al-
though both obey an SU(3) &&SU(3) algebra, they are
not equal. The Q,' annihilate the vacuum while
the Q', do not. The Q,' are conserved, and con-
sequently they cannot connect states with different
4-momenta, i.e.,

{P I Q! ( ~& =0 if ms &m„. (2.14)

This means that the Q,
' have no relevance for the

pionic decays of hadrons. As demonstrated in
Appendix A, the conservation of Q,' is achieved
by explicit cancellation of the pole and nonpole
terms of A,". Since Q,' contains no pion pole, it
is not conserved; and, as shown by Eq. (2.7), it
is indeed relevant for arbiIrnry pionic transitions.
The properties of the two sets of charges are
summarized in Table I.

For the reader versed in the history of this
subject, a brief further comment is necessary on
our distinction of Q,' from Q,'. In the conventional
approach" one deals with matrix elements of a
nonconserved (m, &0) charge g in the infinite-

[Ql(x'), 4(x')] = if.o. Q.(x') . {2.11}

The right-hand side of this equation involves the
vector charges

Q.(x') = d'S8(»'- X') I'(S) . (2.12)

Since these charges are not coupled to any mass-
less particles, they are in fact identical with the
corresponding static charges,

Algebra

Pion pole 7

Conserved~

Vacuum annihilating' ?

Invariant under

Yes

Yes

No

Rotations

No

No

Yes

Boosts along
x3 direction

SU(3) x SUg) SU(3) x SU(3)
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momentum frame. Nonconservation of Q', implies
a frame dependence such that in the infinite-mo-
mentum limit the pion-pole contribution is lost.
The infinite-momentum limit of Q, is in this case
equivalent to the Q,' (evaluated in some frame of
finite momentum). In our approach there is always
exact chiral symmetry; the charges Q', are con-
served, satisfy Eq. (2.14} exactly, and are dis-
tinct from Q,' in any frame. " Stated differently,
in the transition from the physical world (m, 40)
to the chiral world (m„=0), Q,' changes smoothly
while Q, (evaluated in the infinite-momentum
frame) does not.

III. o MODEL

The properties of the null-plane charges and
their utility in the classification of states can be
explicitly illustrated in the 0 model. This renor-
malizable model" is unique in exhibiting explicitly
the spontaneous breakdown of chiral symmetry.
For simplicity we confine our attention to the
SU(2} version of the model. [All our results are
easily generalized to the SU(3) case. ] The La-
grangian is

Z =pi P'g —Ggo+iw" ry ) g

spoil this invariance. ) The vector currents

Vw(x)-y(z) yn o
p(x) z ~ w anw (3.4)

and axial-vector currents

A,"(x}= $(x) y "y, —' i(t(z) —o (x) a "w, (x) (3.6)

and

[g(x), Q, ] = ,'r, g(-x),

[n, (x), Q, ] =ie„,w, (x),

[o(x), Q, ] =0

[P(x},Q5] = ,'r, y, g(-x),

[w,(x), Q,'] = ia„o(x),
[o(x), Q,'] = —iw, (x) .

(3.6)

(3.7)

We see that the o and m fields transform as the
representation (—,', —,') of the SU(2) x SU(2) chiral
group generated by Q, and Q,'. Likewise, the
right-handed and left-handed fermion fields,

are both conserved. The associated static charges
Q, and Q,' [Eq. (2.1)] are just the generators of
trpnsformations (3.2) and (3.3). Consequently,

——,
' [(a„o)'+(a„~}2]— B(

'o+w' —C)' . (3 1) 4 r.(x) =-,'(1 +y, ) g(x), (3.8)

It is invariant under the infinitesimal transforma-
tions:

(3.2)

and

(3.3)

(Note that a fermion mass term -m g would

transform as the irreducible representations (-,', 0)
and (0, —,), respectively. This clear distinction
between field components with opposite handed-
ness is, of course, characteristic of fermions
with zero mass.

The Nambu-Goldstone mechanism comes into
play when the constant C in the Lagrangian is
positive. The classical potential function is then
stable around the point o = WC, w =0 (instead of
o = w = 0}. The v field therefore acquires a vac-
uum expectation value (o), and the chiral sym-
metry of the ground state is spontaneously broken.
Rewriting the Lagrangian (3.1) in terms of the
displaced o field P(x) =o(x) —(o), one obtains

2= pirf m) g —G-p(y+iw ry)g —,'(a„f)2--,'[(—ap)' +~ '4P] —4WCQ(4r'+w') -B(y'+w'}2 . (3.9)

The following points are immediately apparent:
(i} The pion becomes massless, assuming the

role of a Nambu-Goldstone boson;
(ii} the o mass is shifted to p,

' = 8BC;
(iii) the fermion acquires a nonzero mass

m=G&o& . (3.10)

With respect to (Q„Q5) the P and w fields no

longer transform as a, pure (-,', —,') representation.
Furthermore, for massive fermion fields, the

distinction between right-handed and left-handed
components becomes a frame-dependent concept.
It is clear, therefore, that the chiral properties
of the fields must be completely reexamined.

As emphasized in Sec. II the physically relevant
operators in this situation are the null-plane
charges Q, and Q,'. The vector charges are de-
fined as in Eq. (2.12). For the axial charges one
can use Eq. (2.8). A more precise definition is
possible, however, in the a model because the
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canonical m field allows an explicit pole subtrac-
tion:

Q!(x') = d'y ~(x'- S')[&.'(1) -f,e' v.(})] .

(3.11)
It is simple to verify that matrix elements of
(3.11) and (2.8) are equal and that both are equal
to the m„=0 limit of a null-plane charge defined
for m, &0. With the pole term explicitly removed,
there is no longer an ambiguity in the order of
integration; this allows the unambiguous calcula-
tion of commutators of Q,' directly from the ex-
pression (3.11). The constant f, is the pion decay
constant,

{0~A,"(0)
~ w~(q)) =if,5„q" . (3.12)

[Q. 4]=ie.~. Q. ,

[Q'(x'} Q~] =i&.n. 0!(x'),

[Q,'(x'), Q„'(x')] =ie„,Q, .

(3.13)

This confirms the results obtained from other
approaches as discussed in Sec. II. We may also
remark that had we chosen anything other than
the canonical field to make the pole subtraction in
the definition of Q5 in Eq. (3.11), this SU(2) xSU(2)
algebra would be spoiled.

Let us now consider how the basic fields trans-
form under this algebra. Straightforward algebra
yields

In the classical (tree} approximation f, effectively
measures the strength of the average 0' field,
f.=-(o&.

The commutation relations of the Q,' can now be
obtained by straightforward algebraic manipula-
tions. Since these charges are not conserved,
however, these calculations must be done on the
null-surface x'= const. For completeness we
summarize the relevant rules for null-plane quan-
tization in Appendix B. With the aid of these rules
one readily verifies that the null-plane charges
Q, and Q,' do indeed satisfy an SU(2) xSU(2) aigeb»
(see Appendix C}, i.e.,

[P(x), Q,'(x')] = —iv, (x) +-,'i[v, (~) + v, (- ~)],
(3.14)

[v,(x},Q,'(x')] =i5„$( x) — i5„[P(~)+ P(- ~)],

P, (x) =~(1 + o', }q(x) . (3.15)

The dependent components P are determined by
the constraint equation

S g (x) = ——,'y'[y'8;+iG(o+iPr y,T)]g, ( ),x
(3.16)

which can be rewritten in terms of the displaced
o field P(x)

8 g (x) = —~zy'[y'9; +im+iG(/+in'ry, }]ii'+(x) .

(3.17)

Note how the physical mass of the fermion m= G(o)
explicitly enters the expression.

The commutator of g, with Q,' can be directly
obtained from the canonical quantization rules,

[4.(x), 0!(x')]=-'~. y,0.(x) (3.18)

The corresponding commutator of g may be eval-
uated using Eqs. (3.14), (3.17), and (3.18), with
the result

where again P(x) =o(x) —{o) is the displaced o
field and v(+~) and Q(+~) denote the values of
these fields on the surfaces (x', x =+~, xi).
These "surface terms" vanish if we restrict at-
tention to states localizable in x . Equations
(3.14) then reduce to a form directly comparable
with (3.7). In fact (P, ~) transform as a (—,', ~)
representation under —,(Q, + Q,'). Details of the
calculation leading to (3.14) may be found in Ap-
pendix C.

Of much more interest is the transformation
property of the basic fermion field. As is mell
known, "on the null plane the Dirac spinor field III}

can be separated into dynamically independent
components g, and dependent components g, where

[9 g (x), Q,'(x')] =z(r, /2) y, y'(im) g+(x) —z(r, /2) y, y+[y' 8+iG(p+iv 7'y, }]p (x)

=2m', y, ~ g (x)+&im7, y, y'f+(&) . (3.19)

Upon integrating with respect to the x variable and combining with (3.18), we obtain the final result for
the transformation property of the quark field under Q,':

[{(t(x),Q,'(x')] = r, y,2g( )+ ,'xim(ar, ) y, y'—dy e(x —y ) P(x', y, x ) . (3.20)
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We see that the second term on the right-hand
side induces a mixing of the right- and left-handed
quark fields. With respect to fQ„Q,'j, both gs(x)
and gz(x) transform as the reducible representa
tion (~, 0}8(0,~z). This representation mixing of
the quark fields is a direct consequence of the
spontaneously generated fermion mass. In the
absence of spontaneous symmetry breaking [C ~0
in the Lagrangian (3.1}], the fermion mass is zero
(m = G(o') = 0) and there is no mixing.

complete dynamical information. Nonetheless, a
reliable hint of quark structure is provided by
the observed SU(6) XO(3) multiplets of the hadron
spectrum. Stated in terms of the field-theory
model adopted here, the physical mesor s are
generated by interpolating fields 4 „-g g and bar-
yons by C „-ggg. Transformation properties of
these states under Q,' can be obtained by noting
that

IV. GENERALIZATIONS

We have shown that the chiral representation
mixing of the fermion fields in the c model results
directly from the spontaneously generated fermion
mass. Physically, this means that the null-plane
charges @are aware of this mass, apoint implicit
in their nonconserved nature. Since the phenom-
enon of spontaneous mass generation occurs in
any fermion model where chiral symmetry is real-
ized in the Nambu-Goldstone mode, it is natural to
assume that the transformation lax (3.20) is gen-
erally valid. We shall adopt this assumption for
the quark model without trying to specify the inter-
action in any further detail.

The representation mixing of the quark fields
implies of course that composite operators of the
form P g or ggg are also a mixture of chiral rep-
resentations. For example, the operator g (2'X,)g
will transform a,s a mixed representation [(1,8)
+(8, 1)]$[(3,3) +(E, 3)] under the chiral algebra
(Q„' Q,'}. Under the static charges this same oper-
ator transforms as a pure [(1,8) +(8, 1)] represen-
tation.

Algebraically, our mixing is identical with that
which would result in a model of free massive
quarks. Defining the axial-vector current in that
case as

(4.1)

and using the Dirac equation to relate g to |t)„
one readily obtains the formula (3.20). This equiv-
alence forms a bridge between the present work
and that which Melosh" carried out in the free-
quark model. One notes further that while the
formula (3.20) mixes the right- and left-handed
components of the quark field, it does not change
the numbe~ of quarks. Again, this feature is one
that plays an important role in all applications of
Melosh's work. "

To go from these general considerations to the
actual computation of matrix elements of Q,', we
must specify the null-plane wave functions of the
hadronic states. The precise form of these wave
functions is of course unknown in the absence of

(4.2)

where the vacuum-annihilation property of Q,
' [Eq.

(2.9)] is used. As observed earlier, the trans-
formation properties of the interacting fields (with
respect to @) are formally identical to those of a
free massive quark model. Equation (4.2) then
implies that the algebraic properties of the matrix
elements (P ~ Q,' ~

a& can be reliably extracted
from an effective free-particle representation of
the hadron wave functions.

This simplifying feature suggests that a momen-
tum-space construction of the wave function is
most convenient. We do this in Sec. V. Using
this "quasiparticle" representation, we study
pionic decays of various meson and baryon reso-
nances via the PCAC relation (2.7). In a similar
spirit, one can apply this approximation to the
magnetic-moment operator and the electromag-
netic transitions it generates. The limitations of
this simple picture and the possibility of probing
more deeply into the details of hadronic structure
will be discussed in Secs. VII and VIII.

V. SU(6) WAVE FUNCTIONS

Let us now construct the quasiparticle wave
functions on the null plane. We make use of the
empirical classification of hadron resonance states
by adopting the assumption that mesons are com-
posed of quark-antiquark pairs and baryons of
three quarks. The only ambiguities in this speci-
fication are the choice of a spin basis for the
quarks and the definition of the O(3) generators
J „J„and I,

What restrictions can be placed on possible spin
bases for the quarks? We are interested partic-
ularly (through PCAC) in matrix elements of the
null-plane charges Q,'. These charges leave in-
variant the momentum components p and p~ of
any state on which they act. Because of their non-
conserved nature, however, they may change P
and hence the mass. We are thus interested in
matrix elements of states with different velocities
in the x' direction. For this reason we shall de-
mand that the SU(6) specification of a state be in-
variant under boosts along this direction.
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An arbitrary boost-invariant basis may be
written in the following form": g'(x} = dp g [a'(p, s) u(p, s) e' '

p' =(m/W2) cosh) e'",
P =m sinh( .

(5.2)

Ip', p~;s&=e '" ~e '"' &e '""&' ' Im/v 2, 0;s&,

(5 1)

where Im/v 2, t};s& denotes a reference rest state
(P'=m/v 2) with spin projection s along x', and
the parameters 8 and n~ are independent of P'.
The parameters g and $ are related to the mo-
mentum components by

+b't(p, s) U(p, s)e '~ *],'(5.7)

where i is an SU(3) index, u and U denote 4-com-
ponent Dirac spinors for particles and antipar-
ticles of mass m, and dP =d'P~dP'/2P'(2s)'. Note
that since the spin index s is summed in this ex-
pression, the choice of a spin basis for the a' s
and b's (and hence the u's and U's) is arbitrary.

It is useful to label the creation and annihilation
operators with a spinor index n in place of the
spin s. Thus we define the annihilation operators

Y= pe '7f J (5 3)

A further constraint on the choice of spin basis
is the requirement that it describe states with
definite transformation properties under parity.
The relevant operator which leaves the null plane
x'=const invariant is

n' '"(p) =u'(p o)

b(~, g)(p) =(-I)"'"'bg(p, -o')

and the creation operators

b' '"(p) =[b(., ,) (p)]' .

(5.8)

(5.9)

(This is simply a reflection in the x'-x' plane. )
Applying Y to the state (5.1) we demand the spin
index s to change sign (like J,):

YIp', p„s&=+ Ip', p,'; —s&, (5.4)

Yexp(-i 8n~ J,) Y ' = Yexp[- iO(p„xJ,)] Y '

= exp[- i 8(P~ xJ,) ]

=exp(-i 8n J~)~, (5.5)

consistent with Eq. (5.4)."
The final form for the basis states is

where p~ is the 7 reflection of p~. This require-
ment dictates that we choose n, = e, xP~, where e3
is a unit vector in the x' direction. In this case
we have

The index pair (e, i) may be interpreted as an
SU(6) index, with the quarks and antiquarks be-
longing to the SU(6) representations 6 and ~8 re-
spectively.

To complete our specification of the wave func-
tions we must construct representations of the
orbital angular momentum part O(3). Having
chosen a boost-invariant description it is natural
to focus attention on the boost-invariant subgroup
of O(3), namely the O(2) group generated by the
operator L, . [The difficult problem of obtaining
explicit representations of the full O(3) group will
be discussed in Sec. VII.] We must now construct
the operator L,(8) relevant for use with the 8
basis. Note first the form of the generator of
quark spin rotations:

I
p', p; s&,= exp(- i}{K,) exp(- imp~ K, )

x Im/W2, 0; r& R(y, 8, —y)", , (5.6)

where }{and $ are specified by Eqs. (5.2),
y =tan '(p, /p, ), and A is the rotation (about n~)
matrix for spin —,'. Any given choice of the func-
tion 8(P~, m) specifies a basis 8 suitable for the
construction of boost-invariant SU(6) wave func-
tions. These wave funtions involve, in general,
certain linear combinations of products of the
quasiparticle creation operators a and b . At
fixed x' we expand the quark field in its usual
momentum- space decomposition:

(5.10)

where we have suppressed the spin and SU(3)
labels of the operators a and b. It is easy to see
that the states IP', p~, s&„of Eq. (5.6) are eigen-
states of the operator (5.10) with eigenvalue s.

The orbital component L' may now be defined by
the relation

L,3(e) = J'- &'(e) .

The requirement [L'(0), W'(8}]=0 is automatically
satisfied as one can verify from the explicit form
of J',
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8 „8P=&2fd x*d*,(t(x}[x', -'x', —(.(*}

t 03 g3
dp a (p) i —-+ —a(p)-b (p) i -—+ —b(p)

2 2
(5.12)

with q) =tan '(p, /p, ). Comparing (5.12) and (5.11) one obtains the explicit expression for L',

L'(e) = dP a,, (P) —. ,—a„(P) b,, (-P) —. ,—b,, (P) (5.13)

Using the operators W' and L' it is now a simple task to construct quark-antiquark combinations which
correspond to the standard SU(6)XO(2) classification scheme. " The pion octet, for example, is described
by a wave function

+ +p

fl. (P') = ~ „q,dq, dq)5(p' -q' - q")f(q', q, )a(' ~,)(q", ,q)[ .)j,' 'b""(q', -q, )l 0), (5.14)

and the vector nonet by the expression
+ +/

~".(P')=, „q,dq, dq 5(p' q' —q—")f(q', q, ) a(' ~&(q", q, )[o'1 8[)(.]& b'""'(q', —q. ) I»2q' 2q"

It is a straightforward matter to construct similar expressions for L-excited meson states. A slight com-
plication is introduced by the fact that we have explicitly represented only the O(2) subgroup (L,) of the
angular momentum group O(3). This means, for example, that for the SU(6)XO(3) multiplet L= 1 (with
mesons of J =0 ', 1",1', 2") there will be two arbitrary functions: One will describe the L3 k 1
components of the wave function and the other the I., =0 component.

For baryons a similar construction can also be effected. The octet part of the 56, L =0 multiplet, for
example, may be written in the form

B', (p'}= d'qd'q'd'q'5(q'+ m')5(q" + m')5(q" + m')5(p' —q' —q" —q"')5'(q, + q,' + q,')

&(q q q ')a
N, ) (q)a() p) (q )a((, ) (q }

x [e' '()}. )' e )')((,)+ e'"(a, )I e)' )((,)+ e"'(X, )', e )(()') ], (5.16)

where e'~ and e denote antisymmetric symbols
in three and two dimensions, respectively, and

g, ~
is a two-component spinor. The general bar-

yonic expression is of the same typical form, but
with some different SU(3)- and spin-dependent ex-
pression in the brackets.

VI. STATIC APPLICATIONS

Using the wave functions developed in Sec. V it
is now a straightforward matter to evaluate (in
the quasiparticle approximation) the matrix ele-
ments of various operators. We need only express
these operators in terms of the quasiparticle
creation and annihilation operators and proceed
by invoking the canonical commutation relations
of these objects. In this section we discuss the
matrix elements of the axial charge operator Q,

'
and the magnetic-moment operator D,'"'. These
are relevant for pionic and electromagnetic trans-
itions of hadron resonances. We will reserve for
Sec. VII a discussion of the limits of the quasi-
particle approximation and the possible extension

Q'. (0) = dP Q [a(~,)(p) f'(p), (-')(,)', a" "(p)
—b" "'(P) 1(p) 8(lk)'jb(, )(P))

(6.1)

where

(6.2)

The explicit form for these matrices depends on
the choice of spin basis (which is arbitrary} in
(6.1). Of particular relevance for the calculation
of matrix elements of the Q,

' is the choice of the
6 basis, Eq. (5.6). Thus, suppressing the SU(3)
and spin indices we have the expression

of our approach to other, more complex, opera-
tors.

Let us then examine the appropriate quasiparti-
cle expression for Q', . Using the momentum-space
decomposition (5.7) for the (massive) quark fields
g(x), we obtain the following expression for these
null-plane charges":
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Q.'= "P aq(p)1'(o, p, ») 2' a„.(P)
where

I' = v 2M'' =A'+ e"j, , (6.1O)

—bo(p)1'*(o pi m) ' be(p), (6 3) r} = p, /m, and g = In(v 2p'/m) . Equation (6.3) then
simplifies to "

where the 2 x2 matrix has the explicit form 9!{O)= dp ai(P)o' 2' aL(p) b,'(P-)o' 'b, —(p),

~m P,+ —cose+ —'sinO 0',
(d (d

(6.4)

where ~ = (P,'+m')'".
This matrix effectively specifies the transforma-

tion properties of Q,
' under the classification alge-

bra SU(6)x O(3). Consider, in particular, the
SU(3) x SU(3) xO(2) subalgebra of that algebra,
with elements

IP', p. ; S&i = IP', p.; S},,r .., ,

8 = tan '(p, /m). (6.12)

Hence, in Eq. (6.4),

(6.11)

indicating that the L basis is the natural one for
describing these null-plane charges. This simple
form is equivalent to Eqs. (6.3) and (6.4) because
the spin bases L and 0 are related by a rotation.
Indeed, by comparing {6.9) and (5.6) one can show

W, (e) = dp aot(p) —'a„.(p)-bt(p) 'b„(p)—,
(6.5)

I'(0, P „nr ) = R '(rp, 0 —e, —rp )oQ (rp, 0 —0, —rp ) .

(6.13)

W, '(0) = dp at(p)a' —'a„(p)-bt(p)o' 'b„(p), —
(6.6)

and L,. Under this algebra Q,' will transform as
a mixture of representations. The piece P, ~ 0
transforms as a representation [(3, 3) —(3, 3)]~ »,'
the o' term transforms as [(8, 1) —(1, 8)]r,

Note that the algebraic properties of Q5 are in-
dependent of the form of the function O. Excep-
tions could occur only if

0 = e~ -=tan '(p, /m), (6.7)

or

6 = 6, =— —tan '(m/p ), (6.8)

when one of the terms of Eq. (6.4) would be absent.
These special cases are, however, incompatible
with our over-all physical picture, as we will
demonstrate at the end of this section. Thus, we

can exclude the possibility of a trivial mixing
scheme. "

To make the relation of this mixing and the
"Melosh transformation" more apparent, let us
rewrite Q,

' in another basis —the so-called lightlike
spin basis" (L) defined by

From this viewpoint, the representation mixing
results from the nontrivial" transformation be-
tween the spin basis natural for describing the
Q5 operators (L) and the one used for classifying
states (0). The "Melosh transformation, " which
was originally formulated in the coordinate space,
corresponds in momentum space to the special
case 8 = 0 and hence to the rotation

M + 'OE M —Pi"L

R(V, -ez, —rp) =
2(d

PLXg
2(d

M- a„gib„. (6.15)

(6.14)

We have emphasized that the algebraic structure
of Q,

' is the same for any value of O." It is this
structure which has been exploited in applications
of the Melosh transformation to pionic decays, "
so we can be confident of recovering all of these
results. The algebraic properties here refer to
the transformation of the operators Q', with respect
to the algebra (W„W'„L,J. One could equivalently
reverse this language and speak of the transforma-
tion properties of the states under the operators
Q, and Q,'.

Consider, for example, a meson wave function
M of the form [cf. Eq. {5.15)],

IP', p~;s}r. = exp( i', )exp( -irrrP~ ~ E~)-
x i»/v 2, 0; s), (6 g)

Commutation with Q,
' yields [with the aid of Eq.

(6.3)] the result
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[M, 8.']- — eos8 ——sl 8),,[P, o b„8 ]bb[+ —
( cos8 b s' 8),, [ 'b„zb]b„.

A

In particular, for pseudoscalar mesons II, , Z ~ -X, , and we find

(6.16)

~ss

[118,Q,']- — cose ——sinO d„,a„p ~ [J A,b„+ —(m cose+ p, sine)f„,a„"o'fb,, (6.17)

These two terms indicate pieces of the pion wave
function transform as [(3,3) —(3, 3)] and [(1, 8)
-(8, 1)], respectively. In a similar fashion one can
calculate the chiral representation mixing of all
the usual states of the quark model.

As another illustration of our procedure for cal-
culating matrix elements, let us examine the
magnetic-dipole transition operator. The relevant
null-plane form is

1&&2 +D.'"'(x') =
~2

d'x, dx (x' ~ ix') V.'(x) . (6.18)

In the quasiparticle approximation it is again con-
venient to express this in a momentum-space
representation. As was the case with Q,', this ex-
pression is particularly transparent in the L basis,
VlZ.

d pJ n.'( p)&.n. (p+ q)

5,'(p+ q)x.*—b, (p)], ,
(6.19)

When studying the algebraic properties of matrix
elements of this operator between states con-
structed in the 0 basis, we rewrite (6.19) in terms
of field operators of that basis. Thus performing
the rotation R(cp, 8 —BI, —rp) which connects these
bases and carrying out the differentiation in (6.19),
we obtain

(6.20)

where, if we use the variables p,e"~ = P'+iP',

(6.21)

and the I; are functions of P and 0 only. These
functions are derived and listed in Appendix D.
From the explicit display of y and spin depen-
dences given in (6.21), it is clear that under the
algebra (W„' W,'; L,j, the four terms of (6.21)
transform as

[(8 1) + (1 8)JI,

[(8, 1) —(1, 8)J., „,
[(3,3) [9 (3, 3)J,

and

respectively. If, for example, we now sandwich
Eq. (6.20) between states of the 56, L = 0 baryons,
only the third term will contribute, and one ob-
tains, among other things, the famous ratio
p„/p8= —-', . The numerous other relations for
the electromagnetic excitation of hadronic reson-
ances have been extensively explored" and found
to agree with available data.

To conclude this section we must comment on
two exceptional values of 0 in our basis specifica-
tion (5.6) which would lead to trivial representation
mixing in Eq. (6.3). If, on the one hand, 8 =e,
= tan '(m/P, ), then

Q.' Pi 'oi~. /2 (6.22)

would transform purely as [(3, 3) —(3, 3)J under the
algebra [W„.W,' j. This is unacceptable when we
consider the static limit p~/m-0. One ex-
pects in this limit that the Q,' should belong to a
static SU(6) algebra,

Q, ]b~& 8 o8X,/2. (6.23)

This is clearly incompatible with Eq. (6.22).
If, on the other hand, 0 = e~ = —tan '(P, /m),

the L and 0 bases coincide and Eq. (6.23) is trivi-
ally satisfied, but there is no representation mix-
ing. Aside from being phenomenologically unten-
able, this situation is totally incompatible with
the spirit of our approach. Since m is a measure
of spontaneous chiral-symmetry breaking, in the
limit m-0 we should recover a chiral-symmetric
world with degenerate SU(3) x SU(3) multiplets.
In particular, the pion must become degenerate
with a J = O', G = + state. Within the quark model,
such a state can only have I= 0. Therefore, the
pion would lie in a (3, 3) [9 P, 3) representation.
However, a glance at Eqs (6.17) shows that with
6 = 6~ this limiting behavior would not be possible.
The exclusion of the angles 0, and Ol indicates
that for finite quark mass m, there is always
some nontrivial mixing.

The algebraic properties of various operators
(e.g. , Q', and D,"")can consequently be discussed
independently of any specific choice of 6. It is
of course still interesting to ask if any specific
values of 0 are preferred. This is really a dy-
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namical question. For simplicity, however, one

might prefer 0 = 0. This choice satisfies all the

requirements we have posed and corresponds, in

fact, to the original form of the Melosh transfor-
mation. '0

VII. DISCUSSION

In the previous sections we have utilized exten-
sively a quasiparticle approximation for the had-
ronic wave functions on the null plane. We will
now try to clarify this approximation scheme and
point the way for probing more deeply into the
precise structure of the wave functions. Let us
begin by looking at the SU(6) && O(3) classification
group. One notes that while we have assumed
the existence of an O(3) group, we have constructed
explicitly only the generator of its O(2) subgroup.
The reason for this is fundamental in the null-
plane approach: The angular momentum compo-
nents J, and J, are —like the Hamiltonian —dynami-
cal quantities. "" There is, consequently, no
possibility of specifying Z, and d, (and hence L,
and L, ) in terms of the quasiparticles alone,
since —like the mass —these quantities depend on
details of the force which binds the quasiparticles
together.

In the free-quark model, the dynamics are
trivial, and J, and J, may be explicitly written
down. An SU(6) x O(3) classification algebra has
thus been constructed by Melosh" for this case.
The approach is not without drawbacks, however.
First of all, there is in the free-quark model no
PCAC relation, so there are no definite predic-
tions for pionic transitions. Secondly, the require-
ments of boost invariance and satisfactory angu-
lar momentum properties require that the repre-
sentation mixing involve states with different num-
bers of quarks, "a significant departure from the
original scheme. This poses no difficulty for ma-
trix elements of states of the same mass, but it
spoils the results obtained for arbitrary mass
transitions. Additional terms in Eqs. (6.3) and
(6.20) vitiate the results obtained here.

For these reasons it seems clear that the as-
sumption of free-quark dynamics is too severe
for a realistic description of physical processes.
Thus we adhere to a more general picture of
quasiparticles bound by some (possibly complex)
interaction. One should emphasize, of course,
that the resulting algebraic structure is still the
same as that which has been employed in the suc-
cessful phenomenological analyses.

An alternative approach to the angular proper-
ties —short of a complete dynamical solution of
the theory —is to study the chiral transformation
properties of the relevant Poincare generators.

In fact, one can show that the null-plane operator

qs -iÃ(x+) q5( +)eiN(x+&
a

—& a ( I .2)

has the following properties: (i) It is conserved,
i.e., (djdx')Q', =0; (ii) the canonical fields i, v,
and y obey the same commutation relations with
Q', as with Q5. Thus the Q'„just like the static
charges Q'„can serve as the generators of chiral
symmetry. " If we now define a fictitious vacuum
state"

~Q(x'))=e'"t* '10)

then

(7.3}

Q,'i ti(x')) = 0, (7.4}

In this spirit'4 Weinberg and others have investi-
gated the commutation relations of the chiral
charges Q', with the mass and helicity-raising
operators. We anticipate that within the present
framework these relations wi11 provide significant
constraints on the mass and spin properties of
the states.

The essential feature underlying our model is
the spontaneous breakdown of chiral symmetry.
As emphasized by Nambu and co-workers, ana-
logous systems exist in the form of, say, ferro-
magnets (where rotational symmetry is broken)
or superconductors (where gauge invariance is
broken}. Our primary emphasis so far has been
on the spontaneously generated fermion mass
(analogous to the energy gap of a superconductor)
and the associated quasiparticle excitations. An-
other striking feature of systems of this type is
the degenerate, or asymmetric, ground state
(vacuum). This ground state is not structureless:
In the BCS ground state of a superconductor for
example, there are an infinite number of electron
pairs. The analogous vacuum structure in chiral
models is manifested by the nonvanishing expec-
tation value of 0 in the o model or of gg in the
Nambu- Jona- Lasinio model. Loosely speaking,
the vacuum is described as being comprised of
0 mesons or of quark-antiquark pairs in these
two models.

The structure of this chiral sea is exhibited
in the Nambu-Jona-Lasinio model by a transfor-
mation (the analog of the "Bogoliubov transforma-
tion") from the asymmetric physical vacuum to
a fictitious chiral-symmetric vacuum. In the
null-plane formulation of the a model adopted
in Sec. III, a similar construction is possible.
As the "dressing" of the vacuum results from
the acquisition of a vacuum expectation value by
the 0 field, one anticipates that the dressing op-
erator will, at fixed x', be closely related to the
translation operator for the v field, e'"~" ', where

N(x') = 2(o) d'y 5(x' —y")&'o(y)
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i.e., lQ(x')) is a chiral scalar. Equation (V.3)
thus demonstrates that e '"'+' specifies the struc-
ture of the chiral sea.

We expect the construction (7.3} to be generally
valid. In a quark model (such as the Nambu-Jona-
Lasinio model) the chiral sea is comprised of
quark-antiquark pairs, with each pair being rough-
ly equivalent to some effective a field. Any de-
tailed distinctions will, in fact, be irrelevant un-
til one begins to probe the short-distance struc-
ture of the chiral sea. In order to understand how
this may be done, let us consider what happens
when a fermion excitation is present in the sea.
Interaction between the fermion and the sea will
produce a local deformation or polarization of the
sea. In other words, the effective field o(x) will
become c-number function f(x) which is asymp-
totically constant, but is locally distorted by the
fermion. This situation can be represented semi-
classically by the state vector"

l())) = at exp f2 d'y 5(x'- y') f (y}s'&(y)~ lfI(x')) .

(7.5}

In a similar fashion one can represent quark-anti-
quark and three-quark states. The expression
corresponding to (7.5) is then complicated by the
wave function describing the positions of the vari-
ous quarks.

In the discussions of Secs. V and VI we have
considered the effects of interactions only inso-
far as they generate the quark's mass. This is
justified for the calculation of matrix elements
of Q', by the arguments of Sec. IV, whereby chiral
representation mixing is seen as a direct con-
sequence of the spontaneously generated mass.
The same approximation has been used to calcu-
late matrix elements of the first moment of the
electromagnetic current and has been found to
be phenomenologically viable. For higher mo-
ments of the currents, which probe in greater de-
tail the distribution of charge within a state, we
expect this approximation to become less reli-
able." In deep-inelastic scattering, where the
bilocal structure of the states is directly probed,
the approximation will become completely in-
valid. This process thus permits a direct probe
of the interactions which bind the quasiparticles
and polarize the sea around them.

VIII. DEEP-INELASTIC SCATTERING

We have already mentioned that deep-inelastic
scattering provides a sensitive probe of hadronic
wave functions. In this section we will expand
on this remark briefly and discuss the relevance
of the present approach for this problem. We re-

call that inelastic lepton-hadron cross sections
are specified by the absorptive parts of the cur-
rent-hadron forward scattering amplitudes

))'r(q, ) ) = fd xe"'*( )I[J,"(*),z(0)](p), (8.1)

where J," denotes some linear combination of the
vector and axial-vector currents. It is well known
that in the deep-inelastic limit (q -~ with (
= —q'/2q P fixed} the x integral of Eq. (8.1}is
dominated by contributions from the nuH. plane,
x'=0. Causality further restricts these contri-
butions to the light cone, x' = 0. Thus, assuming
a canonical (scaling) structure for the light-cone
commutators, we obtain the expression

'x e"*C,"," "(x'}

&2m(()/+~((5) =
~ (8.3)

for arbitrary values of $. This prediction is, of
course, contradicted by experimental data~' which
show a ratio decreasing from a value close to 1
at E =0 to about —at E = 1.

To obtain an accurate description of the struc-
ture functions it is clearly necessary to incorpor-
ate into this naive picture further details of the
quasiparticle interactions. This may be done in
several ways. One is to study the moments of
the structure functions, fd( ("E,(t). These mo-
ments, as is well known, are related to matrix
elements of the local operators 0"„~' ' ' "~(0) gen-
erated in the Taylor expansion of the bilocal

x(plJ„(x, 0)l P)~, . (8.2)

Here C,"," "(x') denote (c-number) functions with
canonically prescribed singularities at x' = 0 and
J„(x,0) are regular bilocal operators. The vari-
ous "structure functions" E&($) are simply Four-
ier transforms of the dominant bilocals.

In principle one can calculate the structure func-
tions directly in terms of the null-plane wave func-
tion of the target state l p). However, since the
operators J," do not annihilate the vacuum, and
since we lack for these operators any simple ana-
log of the mixing equation (3.20), we can no longer
justify the use of the quasiparticle wave functions
of Sec. V. Stated differently, the operators J,"
(unlike, say, the Q', ) are sensitive to details of the
the interactions between the quasiparticles and to
the structure of the chiral sea in which the quasi-
particles reside.

For a rough orientation let us briefly ignore
these complications (as if the dynamics of the
free-quark model were valid). In that case we
would obtain4' the result
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J„(x,0). One might search for some analog of
the mixing equation (3.20) which would describe
the properties of the 0"„&' ' '"n simply in terms of
the quasiparticles. Alternatively, one can focus
attention on the wave functions and investigate
the relations of the quasiparticle picture to the
standard quark-parton description. 4' These ques-
tions are presently under study.

and

(A6)

This expression can now be used in (Al) and (A2)
with the unambiguous results:
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APPENDIX A: THE AXIAL CHARGES

(PI Q!I o& = ' o»m(PI&:I &r&
(t&~+PI&)' q-p

(A1)

Similarly, the matrix elements of the null-plane
charges (2.8) are

The various charge operators associated with the
axial-vector current in the case of Nambu-Gold-
stone realization of chiral symmetry must be de-
fined with care. In this appendix we discuss this
problem and derive some of the important prop-
erties of these charges.

One starts with the well-defined matrix elements
of the axial-vector current (Pl A,"(0)

I a& given by
Eq. (2.4) of the text. The matrix elements of the
static charges defined by Eq. (2.1) are related to
the above by

0 when m 4nzq

.&PI&!I o&»
2Pn q~=o

when m =mg .

Note the vanishing of this matrix element when
m tm~ is a result of cancellation between the
pole and nonpole terms in (A5), whereas the non-
zero result for the case m =m~ comes from the
nonpole term alone. The conservation of the
static charges is derived from substituting (A8)
in the simple relation

(A7)

The correct definition for these charges in the
chiral-symmetric world must correspond to the
m„-0 limit of the above.

Let us first consider the static charges. Using
(A6), we can conclude~

&PIQ'l~&= ' ", 1&m &Pl~:I o&.
(P +t I&)',.;, ,

Because of the pion-pole term in (pl &," I n&, how-
ever, both of the limits (Al) and (A2) are path-
dependent and hence not well-defined.

The principle of PCAC furnishes the means to
resolve this ambiguity: We should start with
m„cO where no ambiguity arises and take the
smooth m, -O limit. Let us now rewrite Eq.
(2.4) as

(A2}

&P, v. l ~& = (&f.) 'q„&PI A."-I ~&»

Substituting (A4) into (A3), we get

«&I&!
I i.„=(&;".— ., ". «&I&."I

(A4)

(A3)

Using the PCAC relation ~„At'=m, 'f, g, we can
easily rederive Eq. (2.5},

(A9)

One thus obtains the result,

(A10)

It is trivial to establish that Q,' are invariant
under rotations. In contrast to the case of con-
ventional symmetries (Wigner type), however,
these charges are not boost-invariant (hence they
are not Lorentz scalars). To see this, we observe
that the right-hand side of (A8) would be boost-
invariant only if the 4-vector &PIP," I a)» were
proportional to t)". The fact that this is not the
case for Nambu-Goldstone realization of the sym-
metry can be seen from a simple example: When
both a and P are single nucleon states,

.&p, sIA'I p &, = .u. (J )r, ~,(/)

1
= —(&.p)

(A5) = (0' v),„, (A11)
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(Pl 4!I ~&

11 .) Y.+ '
a+ = q~=o

(A12)

This expression is manifestly boost-invariant in
the x' direction. These charges are not con-
served. This can be seen as follows:

0 d„, 4 o' = iq {-J3IO.'I~&

m -'

(A13)

where v is the velocity of the nucleon. When the
nucleon mass is nonzero, this is clearly not boost-
invariant. On the other hand, if m = 0 and

~
v

~

= 1,
the symmetry is realized in the conventional
(Wigner} mode.

We turn next to the null-plane charges. Since
the right-hand side of (A7) is independent of m,
(the pion pole being automatically absent}, we
have simply 4, (x), 0,'( y)}6(x' - y' ) = (1 + o,)6'(x - y),

2 2

[o(x), 8 o ( y) ]6(x' —y' }= 2i6'(x —y),

[v, (x), 8 v ( y)]6(x' —y') = —'i5„5~(x —y) .

(B3)

(B4)

(B5)

All other commutators (anticommutators) vanish.
The fermion field components ( (x) = a(1 —n, )g(x)
are dependent fields related to {{,(x) by an equa-
tion of constraint. Its commutation relations with
other fields are hence determined from those for

In the o model

whereas the "equations of constraint*' only involve
8 =8/Bx = 8' and 8'=8/Bx'.

In the v model, the dynamically independent
fields are g, (x) = —,'(1+ a, )g(x), o(x), and w(x). The
canonical conjugates for these are p, (x), 8 o(x),
and 8 x(x), respectively. The canonical commu-
tation relations are

APPENDIX B: NULL-PLANE QUANTIZATION g (x) = dy e(x —y )[ia~ 8~+GP(o+i7r ~ ry, )]
2&2

We collect here null-plane quantization rules
which are useful for understanding results in the
text. Details on this procedure can be found in
Ref. 22.

The null-plane components for 4-vectors are

x y, (x",y, x') .

Note also Eqs. (B4) and (B5) can be integrated
in the variable x to give

(B6)

x'=(x'+x')/v 2,
x' = (x ', x ') .

The scalar product is

(Bl)
[o(x},o(y}],+,+= —~4'e(x —y }6'(x' y'),

[v, (x), x,(y)]„+,+= —,'i6„e(x——y }6'(x' y') .

+ + Vx ~ y=x~ y~ —x y -x y =—g»x y,
which also defines the metric tensor g„, .

In the canonical formulation of null-plane dy-
namics, the variable x' plays the role of "time."
The "Hamiltonian" is P =(P' —P')/W2. The
"equations of motion" involve 8, =8/Bx'=-8

(B8)

The choice of the Green's function e(x —y ) in
Eqs. (B6), (BV), and (B8) is determined by the
requirement that the Poincarb generators (de-
rived from the &&grangian by the usual variation
procedure) have the correct Hermiticity proper-
ties and satisfy the Poincard algebra.

APPENDIX C: ALGEBRAIC PROPERTIES OF Q',

Using the definitions (3.5) and (3.11), in the o model we have

Q.'(x+) = d'x'dx q,'(x)y, —'q. (x)+ y(x)8 x.(x) (C 1)

where P(x) =o(x) —(o) satisfies the same canonical commutation relations as o(x) given in Appendix B.
Now, g(x) and x,(x) commute with the first term in (Cl) and

[4(x), 4(y)B-v. (y)]. =, = -iv. (x)6'(x'-y')6(x -y ) -4i6'(x'-y')8'-'[m. (y)e(x -y )1,

(C2)

[v~(x), Q(y)8 v, (y)]„, , + ig(x}6„6'-—(x —y ) 6(x —y )+ 4i6,~6'(x —y )8 ' [Q(y)e(x —y )].
Upon integrating these equations in the variable y, we arrive at the commutators [P(x), Q,'] and [x,(x},Q,']
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given in Eq. (3.14). It is to be noted that canonical null-plane quantization rules in the o model already

give rise to "Schwinger terms" in (C2) which result in the surface terms in (3.14). These surface terms

do not contribute to matrix elements between localizable states.
To study the algebra satisfied by Q, and Q,', we observe that Q, =Q, are just generators for the ordinary

isospin. Hence,

[4., Qb 1 = ie.~A. . (C3)

Furthermore, since each term in the integrand of Q„Eq. (C1), is manifestly an isovector, it follows that

[i.', i, ]= .A,'. (C4)
A

The only nontrivial commutator is therefore [Q,', Q', ]. Using definition (Cl) and the quantization rules of

Appendix 8, it is a straightforward exercise to obtain

[Q,'(x'), Q,'(x')] =ie„,Q, —,'i6„—(o) d'x'dx d'y'dy 6'(x'-y")

x [8~'a( y)6 (x —y ) + o( y)6'(x —y )

+8"~o(x)6(x —y )+o(x)5'(x —y )+f,6'(x —y )J.

The second term vanishes upon change of integration variables x—y.

(c5)

APPENDIX D: MAGNETIC-DIPOLE TRANSITION OPERATOR

We indicate the derivation of (6.20) from (6.19). For clarity, we consider the case of 1+i 2 and focus
our attention on the a~A, aL term only.

Using new variables P~, q, related to P, and P, by

(D1)

we get

From (5.6) and (6.12) we see

a~( p, s) = a~(p, r)R(y, Q~ O, y),"

and

a ( p, s) = R '(4, 6, —8, —q)'„a ( p, r) .
Consequently,

(D3)

(D4)

and

a~(p, s)A., az(p, s) = g a„(p, r)X, e ' "' ,io, (8—~-8) e' '&''
a&, (p, s)+a„(p, s)X, a„(p, s)

(D5)

8
a~( p, s)X,—a~(p, s) = g a„(p, r)P.,(R( ,'ia, )R '—+—-,'i ),"ao„(p, s) +a„(p, s)X, —a„(p, s) . (D6)

Evaluating the curly brackets in (D5) and (D6) and combining these results, we obtain

al (p, s)A.,e' + ——az(p, s) =a„(p, r)X, (e' I,+1",g,e™+I',o, +I, o e" ),"a„(p,s),
aP, P, bq

where

8 E 8 1
+ —— I = ——sin —,'(0 -6)

1 gp p g~& 2
p

2 L,

sin(6I —8) ng

pg p~ +m Bp~

sin(6~ —6) m 8 6
Pj P'~ + m 9P~

(D6)
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The derivations for the bl. X,b term and for the case of 1 —i2 are identical. These results together imply
Eq. (6.20).

It is to be noted that the derivative terms in I', do not affect the total transverse momentum of the states
on which D""operates; they affect only the internal wave function of the quarks. To be specific, con-
sider the action of ao(p)(B/Bp~} a„. (p) on the state (5.14). Concentrating only on the transverse degrees
of freedom,

a()(p~) a()(p~} d'q, f(q, )a()(q~)b(q(-q~) ~ o) =f(p~)a„(p~) b„(-p~) ~
0)+f'(p, )a((p~) b(~(-p~) ~

0)
J. J.

when this state is contracted with some other state [with wave function g(q~), say] to form the transition
matrix element, the derivative on b ' above will get transferred to g as well. The algebraic properties
of these operators can therefore be inferred as if the derivatives were not there.
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