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We show how the cancellation between the nucleon and h, (1232} contributions to finite-energy sum

rules for mN ~ mN amplitudes can be used to determine the mN N and m. Nh coupling constants. We

then apply the same method to finite-energy sum rules for the pN ~~N and pN ~ pN Reggeon

amplitudes. A unique solution is found, for which the pN N nonAip coupling vanishes and the

pNb, coupling is of the M1 type. The relative size of the pNN flip and pNE M 1 couplings

is also in agreement with experiment.

I. INTRODUCTION

Phenomenological studies of two-body reaction
amplitudes' have revealed a number of remark-
able correlations between direct-channel reso-
nance contributions and crossed-channel Regge
exchanges. These similarities are usually de-
scribed in the framework of finite-energy sum

rules (FESR's}. They imply a semilocal equival-
ence between the low-energy contributions and

the extrapolated Regge term. One of the best-
known examples of this phenomenon is the zero
structure of the peripheral N* resonances in nN

elastic scattering. ' For all resonances, the posi-
tions of the zeros in their Legendre functions are
at roughly the same values of t, and are in agree-
ment with the zeros in the Regge terms, This fact
comes about because the dominant resonances in

nÃ scattering have the "correct" relation between

their masses, spins, and parities.
It has recently been showns'4 that standard

FESR's can be derived al.so for Reggeon-particle
amplitudes. One would therefore expect these
amplitudes to have duality features analogous to
those of ordinary two-body amplitudes. As an ex-
ample, consider the pN- rN amplitude (where p
is a Reggeon) shown in Fig. 1(a). The direct-chan-
nel N* resonances [Fig. 1(b)] are the same as
those in wN elastic scattering. This makes an
extension of the duality features seen in mN mN

to this amplitude seem fairly straightforward.
In this paper we want to discuss how duality re-

quirements on Reggeon amplitudes constrain the

AN* couplings. We shall only consider the two

lowest N* contributions: the nucleon N(938} and

&(1232}. We believe that a study of these states
can be particularly fruitful for several reasons:

(i) General arguments (given in Sec. II) and the

specific example of xN- mN suggest that the dual-

ity connection between N and & is particularly
strong.

(ii) The low spin of N and 4 makes a straight-

forward evaluation of their contributions techni-
cally feasible.

(iii) The pNN and pNd Regge couplings have
been thoroughly studied both experimentally and
phenomenologically. On the other hand, there are
unfortunately very few data on the pNN* couplings
for higher-mass N*'s.

In addition, any predictions for the H and &

couplings can be compared to those previously
derived in other dynamical schemes, such as in

the static model. ' It is interesting to observe
(see Sec. V} that many of our results are quite
similar to those obtained in the static model. It
should be emphasized, however, that restricting
ourselves to the N and 4 contributions is a matter
of choice rather than necessity. In fact, since
duality connects all the N*'s to each other, it
should be relatively straightformard to generalize
the results of this paper to the heavier N*'s.

In deriving the AN and pN& couplings we shall
take full advantage of the available duality con-
straints. These consist of FESR's for two differ-
ent Reggeon amplitudes. The first is the pN- mX

amplitude shown in Fig. 1(a). Counting helicity
and iso~pin, there are eight distinct amplitudes
to which we can apply the FESR. The pN- pN
reaction of Fig. 2(a) provides us with another
eight amplitudes. These latter amplitudes are
in general unmeasurable, being obtained by fac-
torization from a 3-3 reaction. However, the
N and & contributions [Fig. 2(b)] can be calculated
in terms of the usual pNN and pN& couplings.

In the forward direction the discontinuity of the
amplitude in Fig. 2(a) is proportional to the in-
clusive cross section for m'p - m X. This was

why the Reggeon FESR's [commonly called
FMSR's (finite-mass sum rules)] were first
derived' for the forward elastic Reggeon-parti-
cle amplitude of Fig. 2. Here we shall use the

duality constraint also away from the forward
direction. The derivation of the FESR in this
more general case is discussed in the Appendix
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III and IV arp rather technical and may be skipped
in a first reading. W'e summarize our results and
discuss their comparison with data in Sec. V. W' e
also comment on the relation of our results to
those obtained in the static bootstrap model.

II. THE 1V-h(1232) CANCELLATION

(o) (b)

FIG. 1. (a) The Regge limit in which the n'p mph
amplitude is proportional to the p'p- ~'p Reggeon am-
plitude. (b) TheN* intermediate states in the pW-~N
amplitude.

We should stress that while this is the first
time that all duality constraints have been im-
posed simultaneously, there have of course been
many previous applications of Reggeon FESR's.
In fact, it is the success of these studies that
inspires the present calculation. The inclusive
FMSR has proved' to be a valuable tool both for
obtaining triple-Regge couplings and for estimat-
ing relative magnitudes of quasi-two-body pro-
cesses. The nonforward FESR~ was recently
applied' to study p and f resonance production
in m p - m m+n. The resonance couplings to both
the m and A, Reggeons were found to be in good
agreement with semilocal duality.

From the point of view of the present work, an
especially interesting application of the FMSR is
one by Finkelstein, ' who studied the N* contribu-
tions to the pN-pN forward amplitude [Fig. 2(a)].
Qn, the basis of the observed smallness of the pNN
helicity-nonf lip coupling he argued that the N and
& had to cancel in the FMSR. Since we shall make
no assumption about the pNN coupling in the pres-
ent calculation, we do not impose this condition
on the N and the ~. Rather, the cancellation turns
out (see Sec. 1V) to be a prediction of our scheme,
as is indeed required for over-all consistency
(since we also predict that the pNN nonf lip cou-
pling is small). The full power of the duality con-
straints becomes particularly apparent when one
compares the FESR's we shall use to the FMSR.
While the FMSR applies' to one (nonf lip} ampli-
tude in the fonoard direction, we shall consider
e&ght amplitudes as a function of the momentum
transfer between the nucleons.

In Sec. II we briefly review the N~ contributions
to FESR's for mN- nN amplitudes. On the basis
of this example and on general arguments we de-
duce an empirical rule that relates the N and &
residues in the Reggeon amplitudes. The forma-
lism for dealing with the Reggeon amplitudes is
developed in Sec. III. In Sec. IV we study the con-
straints imposed on the pNN and pN& couplings
by the empirical rule found in Sec. II. Both Secs.

The first purpose of this section is to review
the cancellation between the N and &(1222} con-
tributions to FESR's for mN m¹ We then pro-
ceed to give general arguments as to the reason
why the cancellation is expected to occur also in
other amplitudes. In the approximation where
the N and the 4 masses are equal and the pion
mass is neglected, we show that the cancellation
in nÃ- mN can be simply understood analytically
and imposes a constraint on the nNN and mN&

coupling constants. Finally, on the basis of the
mN example, we formulate the cancellation con-
straint that we shall impose on the Reggeon am-
plitudes.

The FESR's can be written down only for nN- mN amplitudes that are odd under s —u cross-
ing, i.e., odd functions of v,

v=— ~ (s -u) =s -m'+ 2(t —2p, '),
where m (p, } are the nucleon (pion) masses. The
standard way to ensure this is to form amplitudes
of given t-channel isospin:

T' (sN-wN)—= gfT(s P-s P)s T(w'P-s'P)].

(2)

The odd-crossing amplitudes are then, in terms
of the usual t-channel helicity-nonf lip and helicity-
flip amplitudes A' and B: A' ', B', vA'', vB(',
etc. Each additional factor of v in front of the
amplitude has the effect of suppressing the low-
mass N, ~ contributions to the FESR while en-
hancing the contributions of the higher-mass
N*'s. Thus, for the nucleon, v= v„, where

is a. small number at small [f ~ (in this paper we
shall restrict ourselves to the region —0.6 & i ~0).

(a) (b)

FIG. 2. (a) The p p p'p Reggeon amplitude as ob-
tained from a high-energy limit of the ~ ~p ~'7( p am-
plitude. (b) The Ã* intermediate states of the pN pÃ
amplitude.
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It follows, then, that for the FESR to efficiently
constrain the N and ~ contributions we should
consider only the amplitudes A' and B', which
do not have additional factors of v.

We shall now briefly discuss th=. resonance con-
tributions to the FESR's for the A'( ~ and B(' am-
plitudes. The phenomenon we want to point out,
namely the mutual cancellation of N and &, has
of course been observed several times before in
previous studies of FESR's (see, e.g. , R f. 2).
The reason we discuss the cancellation here is to
emphasize its usefulness for determining coupling
constants.

In Fig. 3(a) we show the contributions to
ImB (f =0) of all the N' resonances listed in theIm
Particle Data Group tables. " The nucleon 5-func-
tion contribution is represented by the area of the
box. The dominance of the N and & over the hi h-
er-r-mass contributions, as well as over the extra-
polated Regge term" (dashed line), can be clearly
seen. Hence the validity of the FESR, even with
a cutoff around v/2m= 2 GeV, requires the N and

2 pal V4''- t (4)

nuc eon Born term con-It is well known that the nucle B
tributes only to the 8, not to the A amplitude.
Hence the nucleon contribution t A' '

b
i n o is suppressed

y a factor v. According to Eq. (3), v„= —p'

the &e to cancel rather accurately. This is seen
even more clearly in Fig. 3(b), where the same

eV . At thiscontributions are shown at t = —0.6 Ge '.
r-mass * s and thenegative value of t, the higher-m N*'

Regge term, having a steep t dependence ha
be

ce, ve
come very small. The N and the ~ oe, on the other

an, have only a weak t dependence.
The resonance contributions' to the A't am-

in ig. a . The sit'ua-plitude at t =0 are shown in Fi . 4
ion is now very different: The N and the 4 are

comparable or smaller than the heavier N*'s.
Hence there need not be any d

' fy, an in act there is
no cancellation between N a d & Thn . e reason for
the small ma itugn' de of the N contribution is read-

p i e can be expressedily understood. The A' ampl tud b
in terms of the usual invariant amplitudes A and
Bas

(a) Im B~+'(t=O) (GeV )
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FIG. .3. The N~ contributions to the rN-7' ampli-
tude B(+) at (a) t=0 and (b) t =- 0.6 GeU . The nucleon

y e area of the box.Born-term contribution is given b th
All established (Ref. 10) N* resonances are included
with a Bright-signer shape and the normalization de-
termined using the narrow-width approximation. The
dashed line represents the P' + P" R
of Ref. 11.

egge-pole terms

"-100

"—150

FIG. 4. TheN* contributions to the xN ~N ampli-
tudeA'& ~ at (a) t=0 and (b) t=-0.6 GeU . The reso-
nance contributions were calculated ' F'as in ig. 3. The

egge-po e terms ofdashed line represents the p+p' R — l
Ref. 11.
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= —0.02 at t =0. However, we also see from Eq.
(3) that [ v„[, and thus the whole nucleon contri-
bution, grows very rapidly as t becomes negative.
At the same time the heavier N* contributions
are expected to decrease. Thus the only way the
FESR can remain valid is for the & to start can-
celing the N as t becomes negative. That this in-
deed is what happens is seen in Fig. 4(b), where
t = —0.6 GeV'.

As indicated above, the cancellation between N
and & is a natural consequence of the validity of
the FESR and the following two facts:

(a) The nucleon and 4(1232) contributions are
considerably larger than those of the higher-mass
N*'s, except in amplitudes where suppressing
factors of v occur.

(b) The spins of the N and 4 are low, implying
a weak dependence on t (apart from the t depen-
dence coming from factors of v). Qn the other
hand, the N* resonances that dominate at larger
masses have higher spin and thus steeper t de-
pendence. Likewise the Regge contribution falls
off quickly with increasing —t.

Both (a) and (b) should be valid for many other
reactions besides mN- nN. We would then expect
an analogous cancellation to occur also in these
reactions. In particular, for the Reggeon ampli-
tudes pN mN and pN- pN that we shall consider
here the contribution of the heavier N*'s should

be relatively smaller than in nN- w¹ This can
be seen, e.g. , from the FMSR for pN- pN forward
scattering. On the average, the resonance con-
tribution at a mass % should equal the Regge term

M=m=1 GeV, p. =0 (5)

where M is the 4 mass. We have checked that
this approximation generally agrees with the exact
results to within 20%.

~ ( 23}gn( )-02n&(t )
dt d gg'

where a(0)=2. Since o. z(t)& 0 for f& —0.6 the ex-
ponent of %' is smaller than 2, implying relative-
ly smaller contributions of heavy N~'s in pN- pN
than in mN- mN. The available data' are consis-
tent with this duality prediction.

As an illustration of how the cancellation be-
tween N and & can be used to determine coupling
constants, let us consider the N, 4 contributions
to the A. '~-~ and B+ amplitudes in wN- nN. The
exact result for the 4 contribution is a rather
lengthy expression involving t and the &, N, and
n. masses. However, since we in any case want
to impose only an approximate N-4 cancellation,
say to within 20%, we ean use approximate ex-
pressions for the masses. The natural choice is
to assume

Using the approximation (5) the N and & contri-
butions to the amplitudes are (all units are in
GeV)

2

N 2m —s 4 —t

2
~(+) m'-s '

G+2

(6)

III. THE REGGEON AMPLITUDES

A. Invariant and helicity amplitudes for pN ~ nN

The pN- mN Reggeon amplitude is obtained by
factorization from a mN- wmN amplitude at high
energy, as shown in Fig. 1(a). The t-channel

Above, G and G* are the n'PP and m'P&" coupling
constants, " respectively. The dominant constant
term in ImB' cancels (in the narrow-width ap-
proximation) provided

g g2/G2

The same condition (7}also ensures that the co-
efficient of t in ImA' ~ is equal and opposite for
N and &. Using G'/4w =14.6 and the experimental'
mass and width of the &, the ratio (7} is 1.30
~0.10, quite close to ~8=1.125.

The above example shows that the FESR con-
straint on the N, 4 contributions to the A' and
B+ amplitudes is particularly simple in the ap-
proximation (5). The dominant terms of the N
and & contributions have to be equal and opposite
in both amplitudes. In Sec. IV we shall impose
this constraint on the crossing-odd t-channel
helicity Reggeon-particle amplitudes. We find
that the constraint should be generalized in the
following natural way:

(i} The dominant terms in the N, 4 contributions
may vanish separately for the N and the &, rather
than cancel each other (as in our vN- wN example).
It is clear that this is an equally good way of sat-
isfying the FESR's.

(ii) Terms that are proportional to the Reggeon
"masses" are treated as small and need not can-
cel. On the other hand, the momentum transfer
between the nucleons in Figs. 1(a) and 2(a) is
related to the N* spin as discussed under fact
(b} above. Terms proportional to this momen-
tum transfer have to cancel to leading order (as
in the A'~ ) amplitude above).

With this extension our cancellation constraint
on the Reggeon amplitudes is completely defined.
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(=PP) view of the same process is shown in Fig.
5. Because we want to discuss t-channel helicity
amplitudes we shall generally work in this frame.
In analogy to what is usually done for the mN xN

amplitudes we first define a set of invariant am-
plitudes for the process pp-Sm in Fig. 5. These

have the advantage of being free of kinematic sin-
gularities. We then express the helicity ampli-
tudes in terms of the invariant amplitudes.

There are four independent invariant amplitudes
that describe the process pp-3m. %e have taken
them to be P, Q, R, and S defined through"

T1 1 (pp 33) =V(p, k)y, P+ p„Q+(p, -p) —R+io„„p",p," —8 u(p, g) .
1 . „, 1

3 4 4 4 5, 58 1 2
S23

The momenta are defined in Fig. 5. The extra
factors of I/s23 have been introduced so that all
amplitudes P, Q, R, and 8 have the same Regg-
eon propagator, %'e follow the standard conven-
tion of Ref. 16 for the Dirac spinors and matrices,
except for an extra phase factor (-1)14+')2 in
v(P414) (corresponding to the Jacob and Wick "par-
ticle 2" phase convention" for helicity amplitudes).

It is straightforward to evaluate the expressions
for the helicity amplitudes from E(I. (8). Unlike
the case in nN elastic scattering both natural- and
unnatural-parity exchange contributes in the t
channel. These correspond to the combinations
of helicity amplitudes

&1 1 =~), 1+(-1}' -X.
3 4 3 4 3 4

V1 1 = T1 1 -(-1}""'T 13 4 3 4 3 4

where X and U refer to natural and unnatural par-
ity, respectively. After some algebra one finds
for the natural-parity amplitudes

—2z
++ s m [( 4m2}l/2] 22POP1 P2 P3 P4

23 34 ™
(10a)

4~~PVPOP1 P2 P3 P4
s23m(s»)'12(s34 -4m') q„sine„

x[(4m —s, )R+ 3 m(s —s, )S], (10b)

where N„-=N1/2
~ 1/2 and q56, 856 are the momen-

tum and angle of 56 in the f-channel c.m. (with

p, along the +z axis}. The unnatural-parity am-
plitudes are, to leading order in the high-energy
limit of Fig. 5,

U+(,&2s,4P+m(s„—s»+u, )Q+ 2m R+ — 1 — (s„+s»—}1)+(s»3s124}1 2 S156 1 ~S 2 S
Pl S~ S23 S23 S23

(10c)

1
+ ms»[(s» - 4m 2)'~'] q,3 sin833 [S34S123S124 34( 12}( & } (" ») ] ~

4„(4„,-4„,) () —~ - (4 ' — „)(4„~4„—)4') "' 3
23 S23

1 2 2 2+4m [s34(s34 —2s12 —2}1 }+(u —s12) ]
S23

S156(- -"-)("--- ) s
S23

(10d)

B. Invariant and helicity amplitudes for pN ~ pN

The t-channel process PP -4m is shown in Fig.
6. Because of the additional pion the kinematics
of this process is in general considerably more
complicated than that of PP -Bm. It is therefore
essential to take advantage of the fact that we
only need to consider the special case when

126 16156 =0+0-
S23 845 S23 45 23 S4 FIG. 5. The (t-channel) pracess pp -g~n-m .
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As is shown in the Appendix, the FESR for the
pN- pX amplitude is valid only under the condi-
tion (11). Thus we lose none of the duality con-
straints by restricting ourselves to the manifold
where Eq. (11) is valid.

It is important to verify that the three condi-
tions (11) are compatible with the four-dimension-
ality of space-time. Among the nine linearly in-
dependent variables s;& that we use to describe
the six-point function in Fig. 6 there is one kine-
matic constraint. Thus the value of the last ratio
in Eq. (11) is completely determined by the first
two ratios (and the other independent variables).
It turns out that the value 0 is indeed one of the
possible values for the last ratio (given that the
two first ratios vanish). We can see this most
simply by constructing explicitly the momentum
vectors of all particles in Fig. 6:

p, =(3 (s„)' ', 0, 0,p),
p, =(-,'(s„)' ', 0, 0, -p),
~12 ~l ~2

S34+ S12 —S~6
, q sin8 0 q cos8

2LS34)

&56 -=&5 +P6
(12)

',«2 ', —qsin8, 0, —qcos8
(S34)

PP -Pg/S33
= -P./s. .
=Pp/S43
= —p,/s„

O, cot&, , —1 +0 —,—

FIG. 6. The (t-channel) process pp x m m m'.

where

p = 3 (S„—4 m 3)'i3,

1„„[(.,—,.— „)'-4,. „]"', (12)
LS34(

1
2pq cos8 = 3 (s333 s»4) P .

It is readily verified that Eq. (11) is indeed sat-
isfied by this choice of momenta. All the remain-
ing six variables are, however, unconstrained in
the representation (12}. It is particularly impor-
tant to notice that Eq. (11) implies that all the
momenta p„p„p„and p, are proportional to a
single vector P, . This makes the kinematics for
the process PP-4g no more complicated than that
for PP -3m discussed above.

We can now define the invariant amplitudes 8,
dl, e, and S analogously to Eq. (8),

r» (PP «4w) = iV(P414) [8+ 3 (P33 gyp) 8+ /PC+ P (PP33P'33) S] (ps3)3 (14)

We use script symbols to distinguish amplitudes describing PP -4m from those of PP -3n. The helicity
amplitudes with given t-channel naturality are

OI „=— [(4m' —s„)8+ m(s», —s», ) 8+ 2mB+ (s„—s»}S],
2mp

(15a)

st, = 8,,i, , (-'[s„(s», —s„,)'+(4 ' —s„)[(s„—s„—s„)'—4»s„gsl
Bm s 4) P qsin8

+ S34(S»3 —S»4) 8 + 2m(S33 —S»)(S|33—S»4) I)), (15b)

2q
++ (15c)

Z

3/3 . [S34s + 2m(spp —s») Q]
2m(s, 4j P sin8

(15d)
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C. Crossing symmetry

In Sec. I we saw that the cancellation between
N and 4 is expected to occur only in the crossing-
odd amplitudes. It is therefore essential to form
combinations of s- and u-channel amplitudes that
have a definite symmetry under crossing. In ana-
logy to Eq. (2) for wN-wN scattering, this means
that we consider the combination

T~'~(wX-wwN)= 2[T(w P-w w P)

+vT(w'P-w'w'P)] (v. =+)

(16)

(a}

with a similar relation for the six-point ampli-
tude.

Figure 7(a} shows the combination (16} in the
t channel. Let us call the invariant amplitudes
of the first term in Eq. (16)P(3, 4},Q(3, 4), etc.
Wewould then expect the amplitudes of the second
termtobe, uptoasign, P(4, 3), Q(4, 3), etc. Here
P (4, 3) is obtained from P(3, 4) through the analytic
continuation implied by p3 —p~, i.e., s»3 s,~,
s23 s24 and so on . To see how this come s about,
we first observe that the second term in Fig. V(a)
becomes, under C conjugation, the amplitude of

(b}

FIG. 7. (a) The combinations of pp 3~ amplitudes
(~ =+1) that have definite isospin in the pp channel. (b)
The amplitude related by charge conjugation to the
second amplitude of Fig. 7{a).

Fig. 7(b). Now the amplitude in Fig. 7(b) is iden-
tical to the first term of Fig. V(a}, provided we
make the replacement p„A —p„X,. Hence by
Eq. (8) we have

T(7(b))=v(p, A, )y, P(4, 3)+ ji56Q(4, 3)+(p, -ji, ) —R(4, 3) + io„„p",p," —S(4, 3) u(p, A.,).1
p v 1

S24 S2~
(17)

The symmetrized amplitude (16) can now be constructed by C conjugating Eq. (17) and adding it to the am-
plitude of Eq. (8). Taking into account the C-conjugation properties" of the various couplings in Eq. (17),
one gets

T"'(pp 3w) = &(p~ &4) ys a [P(3, 4) + &P(4, 3)]+ji„I Q(3, 4) + 7'Q(4, 3)]

1 1 1 1
+(p', -p'~} —R(3, 4)+ T —R(4, 3) + io„p~p" —S(3, 4) —r —S(4, 3) u(p, A ).

S23 S2
pv

S24

(18)

The crossing symmetry of the Reggeon ampli-
tudes becomes especially simple when

sj.56"8 =0 (to leading order in s») .
S23

(19)

This is the condition, analogous to Eq. (11), that
must be satisfied' for FESR duality to be valid.
Equation (19}further implies

S23 ——S2 (20)

so that s»- —s» under P,—P~ crossing.
The behavior under crossing of the invariant

amplitudes in Eq. (18) is the result of two separ-
ate analytic continuations: (a) the s»- —s» con-
tinuation [we assume Eq. (19) to hold], and (b)

the v-=2(s,» —s», )- —v continuation. In discuss-
ing FESR's for the Reggeon amplitudes only the
behavior under v- —v is relevant. We must there-
fore explicitly take into account the effect of s»- —s» in Eq. (18). This is readily done since the

s» dependence enters only in the p Reggeon propa-
gator. The signature of the p trajectory being
odd, s»- —s» implies a minus sign in the cross-
ing behavior of the full amplitude.

We can now write down the isospin combinations
of the invariant amplitudes in Eq. (18) that have
given symmetry under v- —v crossing. Denoting

P"=- 2 [P(3, 4) + 7P (4, 3)]

and similarly for Q, R, and S, the following am-
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plitudes are odd under v- —v:

P&'&, q'+), R(-), and S(+) (21)

Finally we note that the combinations of invariant
amplitudes that correspond to a given t-channel
helicity [see Eq. (10}]also have definite symmetry
under v- —v.

The crossing symmetry properties of the pN-PN amplitudes in Eq. (14) can be found in an
analogous way. The combination of physical am-
plitudes is shown in Fig. 8. There are now two p
propagators, so that no extra sign is introduced
by s»- —s» and s„-—s„. The amplitudes
that are odd under v- —v are

FIG. 8. The combinations ofPP 4x amplitudes
(7 = +1) that have definite isospin in the pP channel.

1s

-G +u(P, q)Pw u„(P, X,), (24)

(22)

D. The N and 6(1232) contributions

In calculating the diagrams of Figs. 1(b) and

2(b) with N and & intermediate states we need to
know the N and & propagators and their couplings
to mN and p¹The nucleon propagator and the
mNN coupling is standard. ' For the 4 propagator
we have"

where p2 is the proton momentum.
The pNN coupling is determined by the high-en-

ergy behavior of the w p- w'n amplitude [Fig. 9(a}]

T~ ~ (w P- w'n} = iu(P4X, )[A+2 (P, +P, ) B]

xu(PSA ). (25)

In the t channel, B corresponds to pure helicity
flip and A' [defined in Eq. (4)] corresponds to pure
helicity nonf lip at the pNN vertex. It is conven-
ient to define a parameter P such that

Qu„(P, Z)u„(P, Z) s» B= (P —2 m) A, (26)

(P'+ M) ' 2
6M I M2 Pppv gpv+ rpru

1
+ M (r„P. r.P„), (2—2)

where M is the ~ mass and u„ is a spin--,' spinor
normalized to —1. The 6"(X,)-p(A )+ w+ vertex

where P is (asymptotically) only a function of
t =—s». A pure helicity-flip pNN coupling (A' =0)
then implies P =t/2m

We define a complete set of pN& couplings ana-
logously by expressing the m'p - m ~" amplitude
[Fig. 9(b)] in terms of the invariant amplitudes

gy) . ~g4:

1 1 1
~~,~,(w'P- w'~") = iu„(P4&.) P3gg+ —(P, +P.)"g.+ P",(it, +It'. )g. + —. (P, +P,) "(ft, +it.)g, r, u(p. &) .

S23 S23 S23

(27)

Finally, we shall give the relation between the couplings g„.. . , g4 in Eq. (27) and the M1 or Stodolsky-
Sakurai" coupling for the pN& vertex. If we write the M1 coupling in the form"

1
&&",&,

(w'P-w'&") =u "(P & )u(P g)~ (P +P )"(P P)'(P +P-)' —&
23

(28)

we have 7r

g = —2E

g2 =[(M+ m)2 —s„]E,
g3 =2ME,

g4
——0.

(29)

(b)

It is now straightforward to calculate the con-
tribution of the N and the Ll to each of the invariant
amplitudes in pN mN and pN- pN. We shall only
give the result in the approximation (5} of equal

FIG. 9. Amplitudes for the processes (a) m p 7( n

and (b) ~+P —~b, at high energy. Note that the definit-
ion of the momentaP2 andP4 is different from that in
the previous figures.
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N and & masses and with the m mass set equal to
zero.

The nucleon contributes equally to both isospin
combinations (r=+) in Figs. 7(a) and 8. In terms
of the w P -As amplitude A and the parameter P
of Eq. (26) the nucleon Born term in PP -3w [Fig.
1(b)] is (in units of GeV)

vertex). The isospin coefficient of the d in the
combination (16), relative to the w'P - w'w'P am-
plitude, is thus d„where

(32)

~) & QA

( 2 )(P )! We shall denote

G, = —, . (i =1, . . . , 4),
I goy

—S~23
(33)

To find the nucleon Born term in the PP 4m

amplitude of Fig. 2, letA, -=A(s», s») andA,
-=A(s„, s,5) be the w P - w'n amplitudes in the "in-
itial" and "final" states of Fig. 2(b}. Similarly,
let P, —= P(s») and P, =—P(s,5). Then the Born-term
contribution to the invariant amplitudes is

(,) A, A2
4 ( )(P+P2)

where the g& are the pN& couplings of Eq. (27),
G* is the wN& coupling [Eq. (24)], and I' is the &
width. Then in the approximation (5},

P~~" =d„[-4(G,+2G, +G,)+3s„(G,+G, )

—s„(3G,+G,)],
Q~~) = dg2(G2+ 2G3) —2 S«G, + 2 S,2G, ],

Rsl = —3d, G3(s34 —s12) ~

Si~) =d, [4(G, +2G, +G, ) —3s,4G, + s»G, ] .

)) 1 A A2
2 (m s»3)

(31)

In deriving Eq. (34) we used the duality constraint'
s155/s23=0 [see Eq. (19)].

The isospin coefficient e, of the ~ in the pP 4m

reaction (Fig. 8) is the same as in wN- wN:

123

(p, - p, )4 (m s 123)

2

I
3

(35}

Above and in the following we treat the amplitudes
A» as being real. They have a mell-defined phase
from the p signature factor, which can be taken
out as a common factor in all equations.

By isospin, the & contribution to the w p - m'm P
amplitude in Fig. 7(a) is ——, of its contribution
to the w+P - w w+p amplitude (note the extra minus
sign, compared to wN-mN, coming from the porn

Let

1 gl(s»)g, (s53)Gly= 3, 2 ., (3, 2 =1, . . . , 4).
ivl Sj23 'Q&& L

(36)

Then the ~ contribution to the invariant amplitudes
of the Pp-4w reaction is, in the approximation (5)
and assuming C&~ =Q, &,

1 1
(G24 34} 34 13 (s12 s55}( G33 2G12 4G» G14+G23} s12 55(2 Gll

d)c =eg2G22 4G33 4G23+-,'s„G»+(s»+s„)(- —,'G» —G»+G13)+2s»s55G11],
(7')

(37)

&~ =e„[8(G44+G„-G34)+6s34(G33+G») —(s»+s„)(4G„+G»+8G»+4G,4+2G„+4G„)+2s»s„(G»+2G„)],

1S'5' =e,(s,e —s12)(-G»+ 2G»+Gl, -G,4+G2, ) .

IV. DERIVATION OF THE pNN AND pNd COUPLINGS

Using the formulas given in Sec. III it is now
straightforward to investigate what constraints

the requirement of N, & cancellation, as formu-
lated in Sec. II, imposes on the pNN and pN~ cou-
plings, %'e shall treat the four pN4 couplings
g„.. . , g, [Eq. (27)] and the relative size of the
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Q (P&+~+ql+~+-'S&+~) =0
N, 5

(q~'&- lS&'~) =0. (38b)

Using Eqs. (30) and (34) one finds that both equa-
tions give the same constraint:

KY G
g4 p A. (39)

The U, amplitude of Eq. (10d) turns out to give
the constraint (38b) once more.

Next consider the N, + and N+ amplitudes, Eqs.
(10a) and (10b). Cancellation of the constant term
in the N and 4 contributions to S&'~ requires

9v2 G
g +2g

4
—A. (40)

The N, amplitude is similar to the A' amplitude
of n/V- nN scattering [see Eq. (6}]in that neither
N nor & contribute a constant term (independent
of s„and s») to the brackets in Eq. (10b). Ac-
cording to our discussion in Sec. II we should then
require the linear term in s34 to cancel. This
gives

G
g —4g = — (3P —2) —A.

16 G*

Solving Eqs. (40} and (41) for g, and g, we find

g, = — (P+2) —A,G

g, = (P —2) —„A.G

(42)

pNN helicity-flip and -nonflip couplings [parame-
trized by P in Eq. (26)] as unknown parameters,
to be determined by the cancellation constraints.
The (arbitrary) over-all normalization is fixed
by the m P - m'n amplitude A. There are altogether
16 helicity amplitudes for the two processes pN
-mN and pN-pN, half of which are crossing odd.
Hence we have an overconstrained situation: The
N and ~ have to cancel in eight helicity amplitudes,
while there are only five unknowns.

We shall start by considering the pN- xV helic-
ity amplitude U„given in Eq. (10c). Remember
that we always work in the approximation (5), I
= m=1, with p, =0, and that the duality condition
(19) must be satisfied. According to Eq. (21) we
have to choose the isospin combination 7'=+ in
Fig. 7(a) for the amplitude to be odd under v- —v

crossing. Since the cancellation has to work for
all values of s,4 the coefficients of both s„and sy2

in Eq. (10c) have to vanish:

where we used Eqs. (7) and (39) in the latter equal-
ity. The only nontrivial solution to Eq. (43} is

P = 0 [+ O(t}] . (44)

From the definition of P in Eq. (26) this implies
that the A' amplitude is small compared to B in
m P - n'n at high energies. The size of "small"
here is measured by the accuracy of the N, ~
cancellation and the approximation (5). Both are
expected to be better than 20%. Note also that as
indicated in Eq. (44), there is no constraint on a
possible linear t dependence in P(t}.

By Eq. (39}, P=0 imp)ice g, =O. Neither the N
nor the 4 then contributes a constant term to &+, ~

Hence, here as for the A'& ~ amplitude (cf. Sec.
II) we should require that the term linear in s,4

cancels. It can be seen from Eqs. (37) that the
& contribution is determined by the couplings g,
and g„whose values are already fixed by Eq.
(42). Thus we have a consistency check. Using
the value (7) for the G~/G ratio we find that the
linear term in s,4 indeed cancels exactly.

It can further be seen from Eqs. (31) and (37)
that the terms in Ot„ that are linear in s» and

s56 also cancel. In the forward direction (s„=0,
s» =s„=t) this cancellation implies, through the
optical theorem, '

dt 3 dt
—(v-p-vn)= ——(v p-v& )

o 2 6' + o ++ (45)

for all (moderate) values of t This relation wa. s
previously derived by Finkelstein, ' who used the
smallness of the pNN helicity-nonf lip coupling as
as an argument for requiring the N and the & to
cancel in the inclusive FMSR. It is noteworthy
that this cancellation is "accidental" from the
point of view of our cancellation constraint, which
only restricts the coefficients of s„[cf.general-
ization (ii) in Sec. II]. However since we already
predicted that pNN helicity-nonf lip is small, over-
all consistency requires the relation (45), through
Finkelstein's argument. It is very encouraging
to see that all constraints seem to lead to a con-

We have now satisfied all the cancellation con-
straints for the pN- zbf helicity amplitudes. Note
that the pe% helicity-nonf lip/helicity-flip ratio,
as measured by P, is still unconstrained. Con-
sidering next the Bt„amplitude of the pN- pN
reaction [Eq. (15a)], we see from Eq. (22) that
we should choose 7 = —in Fig. 8 to have a cross-
ing-odd amplitude. From the N and ~ contribu-
tions in Eqs. (31) and (37) it is readily seen that
cancellation of the constant term requires

A, A, P, P, =, g,(s»)g, (s„)=4A, A, I8, P»
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sistent scheme, although the reason for this is
rather unclear at present.

The leading contribution to the ~, amplitude
[Eq. (15b)] comes from the term proportional to
S. It is again straightforward to verify that the
N and & contributions to (B~' cancel (to leading
order) when the couplings g, and g, are given by
Eq. (42).

The „amplitude automatically satisfies the
cancellation rule, as neither the N nor the 4 con-
tributes a constant or s34 dependent term. The
same is true for the N contribution to ~+ (with

P =0). However, the 4 does contribute an s,~-de-
pendent term to%,+ unless

(46)

With Eq. (46) all pN& couplings are determined.
At the same time all the pN-pN amplitudes have
been shown to satisfy the cancellation constraint.
We still have to go back and check those pN- nN

amplitudes for consistency in which the constant
term of the N (or 6) contribution vanishes because
P = 0. According to our rules we must then de-
mand that the leading s„dependence cancels.
For the U+, amplitude, the absence of terms of
order ss4' in the brackets of Eq. (10c) is ensured
by Eq. (46). Similarly for U, , Eq. (46) is the
condition for no s34 terms.

Finally we observe that the relative size of the
pN& couplings of our solution is, according to
Eqs. (39), (42), (44), and (46),

gx g2 g3 g4= —1:2:1:0.
Comparing this with Eq. (29}, we see that the
unique pN4 coupling which satisfies all our con-
straints [in the approximation (5)] in the M1-type
coupling.

V. DISCUSSION

We shall start by summarizing our results for
the couplings and discussing their comparison with

data. It should be remembered that all our pre-
dictions can be trusted only to within 20@, due

to the approximations we have made. In partic-
ular, we have treated the momentum transfers
as "small, " effectively ignoring t-dependent terms
in the relative magnitudes of the Reggeon cou-
plings.

(i} The relative size of the vÃN and wN& cou-
pling constants is determined by Eq. (1). This
result followed directly from the FESR constraints
on the mN- mN amplitudes, but was also needed
for consistency between the constraints on the
pN-mN and pN- pN Reggeon amplitudes. Equa-
tion (f) agrees within 15'%%up with the vN& coupling
determined from the narrow-width approximation'4

and 6 /4v =14.6.
(ii}We predict [Eqs. (26) and (44)] that the pNN

helicity-nonf lip coupling vanishes so that the pNN
coupl. ing is dominantly helicity-flip. This is in
agreement with standard phenomenological re-
sults. For example, a recent Regge-pole fit" to
the w P - v'n reaction obtains A' l/sB l= 0.04 at
E =0.

(iii) The only pNE coupling that satisfies the
FESR constraints is the M1-type coupling first
suggested by Stodolsky and Sakurai. " This cou-
pling is known to describe the data well (cf. p.
270 of Ref. 1).

(iv) The relative size of the pNN helicity-flip
coupling and the pN~ M1 coupling leads to the
prediction (45). The agreement with data is
again very good —see Fig. 3 of Ref. 9.

According to (i)-(iv), the FESR's applied to
the reactions mN-mN, pN-nN, and pN-pN de-
termine the relative magnitudes of all relevant
couplings to the N and ~ intermediate states. Be-
cause the equations are linear, the absolute nor-
malization is arbitrary for each reaction. The
reason that one can obtain such strong predic-
tions is that the N and ~ intermediate states com-
pletely dominate the imaginary part of certain
amplitudes, as evidenced by Figs. 3 and 4. We
do not claim to know the reason for this domin-
ance —we have merely taken advantage of it to be
able to constrain the X and & parameters inde-
pendently of those of the heavier N*'s.

It should be clear that the FESR's provide many
more constraints than those we have exploited
here. For example, one may look at amplitudes
like vB~ ~ in which the N and ~ do not cancel. Be-
cause of the extra factor of v, the heavier X*'s
are relatively much more important in vB than
in 8~". Thus one should be able to connect the
contributions of the heavier N*'s to those of N
and &.

The success of the present scheme strongly
suggests that our assumption of N, & dominance
in the crossing-odd pN- mN and pN pN ampli-
tudes is correct. Thus duality in Reggeon ampli-
tudes, as expressed by the Reggeon FESR's,
seems to be closely analogous to duality in or-
dinary particle reactions. This is, of course, in
agreement with previous experience. ' It is also
interesting to observe that the conditions (11) and
(19) were essential in order to obtain our results.
These conditions were derived from analyticity
requirements on the Reggeon amplitudes (see
Ref ~ 4 and the Appendix). There are no corre-
sponding conditions for particle amplitudes.

In our way of imposing the FESR constraints,
the existence of a large number of seemingly in-
dependent but mutually consistent constraints is
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rather mysterious. We first encountered this
phenomenon in our nN- zN example of Sec. II.
Both the A. '~ and the B"amplitude gave the same
relation (7) between the vNN and vNn coupling
constants. In Sec. IV we found that there were
many more FESR constraints than adjustable cou-
plings; however, the pNN helicity-flip and pN4
M1 couplings satisfied all conditions. Another
intriguing consistency was the "accidental. " can-
cellation between N and 4 in a "small" term
(~ Reggeon masses) of the forward pN pN ampli-
tude, which led to Eq. (45). Although the N and
& may not dominate the heavier N* contributions
to this term, the cancellation can be understood'
as a consequence of another of our predictions:
the smallness of the pNN helicity-nonf lip cou-
pling. This prediction requires, through semi-
local duality, that all N*'s cancel semilocally.

It is clearly very encouraging to see that all
constraints lead to a unique and consistent set
of couplings. It would be important to better un-
derstand the reason for this consistency, and to
further enlarge the set of related couplings. The
couplings that we have found here may have im-
portant implications for many other processes.
For example, it has been suggested, " that the
suppression of exotic double-particle exchange
amplitudes is related to the small value of the
pNN helicity-nonf lip coupling. Since we have im-
plicitly neglected exotic exchanges, this is another
indication of the over-all consistency of our ap-
proach.

We believe that the t-channel view we have
adopted can give valuable insights into the pNN*
couplings. An indication of this can already be
seen from the pNN and pN~ couplings that we
discussed in this paper. In the reactions pN- mN

and pN- pN both natural- and unnatural-parity
exchanges are allowed. The leading unnatural-
parity trajectories m, A„h, . . . have intercepts
close to 0 and are thus predominantly real at
small momentum transfers. Hence one would
expect the sum over the N* resonances to be
small in all unnatural-parity exchange amplitudes,
independently of the exchanged isospin and the
(helicity-flip or -nonf lip) coupling at the NN ver-
tex. This is different from natural-parity ex-
change amplitudes, which may be small for one
coupling (say, pNN helicity-nonf lip) but are large
for the other coupling (pNN helicity flip). It im-
plies that the cancellation mechanism between the
N* resonances must be different for unnatural-
and natural-parity amplitudes. In zN —mN, the
cancellation of N and & in B '~ implies a noncan-
cellation in vB~ . This is desirable, because the
pNN helicity-flip coupling is large. For the pN- vN unnatural-parity amplitudes U&+'~ [Eqs. (10c)

and (10d)], however, we want a small N+& con-
tribution in both U,', and vU~, . The only way this
can be achieved is by having the N and & vanish
separately, rather than by cancellation, in U,", ~

It can be readily seen that the self-consistent cou-
plings of our solution, namely, pNN helicity flip
and pN4 M1, are precisely such as to ensure the
separate vanishing of N and & in all unnatural-
parity amplitudes of pN- mN and pN-pN. In fact,
we could have derived the dominance of the pNN
helicity-flip coupling simply from the require-
ment that the N should decouple from unnatural-
parity exchange amplitudes.

It is very interesting to observe the close rela-
tion between our results and those of the static
model. ' " Although we use a rather different
formalism (relativistically invariant t-channel
helicity amplitudes) it is clear that the basic as-
sumptions and approximations are quite similar.
Thus we make use of the near degeneracy in mass
between the N and the &, and neglect the m mass
and momentum transfers in comparison with the
baryon mass. Furthermore, we neglect the con-
tributions of the heavier N*'s to the amplitudes
we consider.

The relation (7) between the AN and vNn. cou-
plings is the same as that originally obtained in
the static model. Dashen and Frautschi have
applied the static model to amplitudes of the type
R+N-m+N, where R is a Reggeon. Their ap-
proach is different from ours insofar as they do
not also consider the R+ N-R+N type ampli-
tudes. Instead, they regard R as a member of
an SU(3) multiplet and demand consistency under
SU(3) for all couplings. They predict2'26 the pNn.
coupling to be M1, and find the same ratio (45)
between the pNN helicity-flip and pN~ couplings.
Their pNN helicity-nonf lip coupling does not van-
ish, but the predicted F/D ratio2' makes it rather
small.

There seems, thus, to be an intimate relation
between our approach and the static model. The
solutions of the static bootstrap model have been
elegantly classified" in terms of the eigenvalues
of a crossing matrix. The model has been applied
also to matrix elements for weak and electromag-
netic currents. " Our formulation has the advant-
age of being relativistically invariant. Moreover,
as we have indicated above, because we discuss
the phenomena from the t-channel point of view
it should be possible to extend our arguments to
heavier N*'s. The t-channel exchange descrip-
tion indeed becomes more natural at higher N*
masses. This can be seen, e.g.. in the zero
structure' of the heavier N* resonances in mN- mN that we mentioned in the Introduction. Fin-
ally, because duality arguments apply equally
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well to mesonic as to baryonic systems, argu-
ments similar to ours can be applied7' to meson
resonances. This is, of course, desirable for a
unified picture of hadronic amplitudes.
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APPENDIX

The purpose of this Appendix is to briefly discuss
the validity of FESR's for amplitudes of the type
R+u -R+5, where B is a Reggeon (cf. Fig. 6).
It has previously been shown' that the FMSR is
valid for the forward 3-3 amplitude (where P,
= -P„p, = -P„p, = -p, in Fig. 6). We want to dis-
cuss the generalization of this to the nonforward
amplitude. Our treatment will be closely analogous
to that of Ref. 4, where an FESR was derived for
the A+a-5+c amplitude (Fig. 5).

Probably the most novel feature of the Reggeon
amplitudes is the necessity to impose constraints
like Eqs. (11) and (19). We shall start by recall-
ing the reasons' for the constraint (19) in the case
of the A+a-b+c amplitude. Consider a 2-3 am-
plitude in the limit of Fig. 5. The Regge-pole be-
havior implies

O.12 15B(- )=.s s ~ . »
S23

(Al)

where n» ——n(s») is the exchanged trajectory. Eq-
uation (Al) explicitly displays the singularities of
T in s» (a cut from 0 to -~). By symmetry, T
must have a similar cut in s156 This means that
the Reggeon amplitude T„has singularities in the
variable s», /s». In deriving the FESR, we need
a simple analytic structure of T„ in the variable
s123y keeping K fixed, where

12$ 158/ 23' (A2)

If ~ were not held fixed, the amplitude T would not
approach the double-Regge limit as ~s», ~

—~.
Through Eq. (A2), the singularities of Ts in s»~/s»
get reflected into the s,» plane, giving unknown
contributions to the FESR. The only exception is
when s = 0 [Eq. (19)], in which case s,»/s» =0 does

not depend on s»3. The fact that e =0 is a singular
point of T„does not affect the FESR, because s123
and s»6 do not have overlapping singularities.

The validity of the above argument was verified'
in the dual resonance model (B,) and a Q' ladder-
diagram model. Both were found to have a very
similar structure. For simplicity we shall only
consider the B6 model in discussing the 8+a R+b
amplitude.

In the Regge limit of Fig. 6, the 86 amplitude be-
comes'8

1

B, = &uu»' '(1 —u) ~4 '(AB) "»(BC) 56

0

zdzz "» '~
1 2 1 2

(ABC)
Aa aC

(A3)

where

(AB) = —n»~ —n»(1 —u),

(BC) = n»su n45(l u)&

(ABC) = —n„u.

In the triple-Regge limit (s», - ~ in Fig. 6), the
ratios

~156 Q 126 16

123 s 123 ~ s ~ 123
23 45 23 45

(A4)

are all finite. Regarded as a function of n,», with
the ratios (A4) held fixed, B, in Eq. (A3) has cuts
in addition to the ordinary resonance poles. This
implies, through the dispersion relations, that the
sum over the resonances in general is not propor-
tional to a triple-Regge term, there being addi-
tional contributions to the FESR.

Let us now consider the special case of Eq. (11),
when all three ratios in Eq. (A4) vanish. This is
singular point for the full B6 amplitude. However,
all resonance poles in a,» have residues that are
polynomials, hence nonsingular, in the ratios (A4).
Thus it is clear that the function obtained by na-
ively imposing Eq. (11) on Eq. (A3),

B.= I'(- n-) I'(- n,.)(- n») "2(-n„)+8

x B,( —n»3$ 34» 56), (A5)

has exactly the same pole residues as the full B6
[under the condition (11)]. But B, in Eq. (A5) is
simply proportional to a B4 function, hence the sum
of its resonances gives a Regge term in the stan-
dard FESR sense. This shows that ordinary dual-
ity is valid also for B, when Eq. (11) is satisfied.
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