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It is shown that vacuum stability determines the Cabibbo angle 8c. From a simple example we obtain
tan'Hc f p. '/ f„p,„' and a nonelectromagnetic EI = 1 interaction. The effect of charm is included.

We also discuss the superweak model of C P violation as an isotopic rotation through an angle Hc~.

I. VACUUM-STABILITY CONDITIONS

By way of introduction consider the classical
Heisenberg ferromagnet. " This is an infinite
magnet with a spin density S(x), The Hamiltonian,
H = H, + eH', is the sum of a term H, which is
rotationally O(3) invariant plus a term dP
= -uB X(x) which breaks the O(3) invariance.
Here p, is a positive constant and B is an applied
constant external magnetic field. W' is rotation-
ally O(1) invariant about the axis defined by B.

The ground state of the ferromagnet, in the
absence of an external field, is a threefold infinite-
ly degenerate vacuum IM), with the direction M,
the magnetization, defining the different vacua.
Each vacuum IM) is sufficiently rich to build up a
complete Hilbert space to describe the states of
the fer romagnet.

The vacuum energy of this system is given by

F(8) = (MI[H, - uB s(x)]IM&

= const- u, IBIIMIcos8,

where M = (Mg(x) IM) and 8 is the angle between
M and B. Requiring that F(8) be a minimum,
E'(8) = 0, F"(8)&0 implies 8 =0, so that B and M

are parallel.
As we show below, these same ideas applied to

the problem of symmetry breaking in he strong
and weak interactions can determine the Cabibbo
angle, 6&. The result we find requiring vacuum
stability of an effective Hamiltonian is

tan 8o=f u /f&u&

This result is in agreement with the experimental
value' 8o = 15'. Equation (1) with f„/f r
= 1.26+0.02 has 8o = 17'. Before establishing (1)
we briefly review Dashen';- theorems which serve
the purpose, if satisfied, of guaranteeing vacuum
stability.

Suppose in the ferromagnet we had 8 and M not
parallel. Then one finds that the spin waves,
corresponding to Goldstone excitations, have corn-
plex frequencies, implying vacuum instability.
So vacuum stability requires that the external

field 8 point in the same direction specified by
that O(1) subgroup of O(3) that leaves the vacuum
invariant.

The vacuum-stability condition is implemented
by requiring that Dashen's theorem be satisfied.
Let IM&»„, be the physical ground state, with
Bt 0, and

IM& = »mIM&, „„,.

Then Dashen's theorem 2 of Bef. 1 requires the
explicit breaking Hamiltonian to be such that

F(8)= (MIe' 'eH'e ' 'IM)

have a local minimum at 8= 0. Here J = j5(x)d'x
is the angular momentum. ' It is easy to see that
the requirements sF(8)/88 = 0 and PF (8)/88 88& 0
are met provided B and M are parallel. Once the
invariance group of the ground state is specified
the invariance group of the explicit symmetry
breaking is restricted and corresponds to that
subgroup that leaves the vacuum invariant.

Let us next consider the internal-symmetry
group SU(3) x SU(3) with generators Q and the
Hamiltonian H = H, + eH'. Here H, is SU(3) x SU(3)
invariant and eH' breaks this symmetry. Then we
have Dashen's theorems:

Theorem 1. Let Ivac) be the ground state for H.
Then

F(u&) = (vacIe'" oeH'e ' oIvac)

has a minimum at e = 0. The proof is elementary
but will not be given here. From theorem 1 follows

Theorem 2. Let IO) be the ground state of H,
defined as IO&

= lim, , Ivac). Then

(Fa&) = (0 Ie' oeH'e '' o 'IO)"
has at least a local minimum at (d = 0.

These theorems imply that if the symmetry of
I0) and H, are not identical, so that there are Gold-
stone excitations, then these Goldstone bosons,
when the degeneracy is lifted, will have real mass-
es corresponding to a stable vacuum. These
theorems also imply the domain structure of
chiral-symmetry breaking described by Mathur
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and Qkubo. '
Dashen's theorems, when applied to the sym-

metry of the strong interactions, constrain the
form of strong symmetry breaking as was shown

by him. If we include weak interactions another
theorem will be useful for our purposes of estab-
lishing 8~.

Theorem 3. Let (vac), the physical vacuum, be
the ground state ofH= pcHU~ ', U~ = e' 7' ~ with
H indePendent of e~. Then

Ec(8c}= (vac-(H /ac)

satisfies

= (vacl&cHHc 'Ivac& (2)

II. EXAMPLES

Our procedure is best seen by explicit examples.
To construct examples we assume that we can des-
cribe the strong, weak, and superweak interactions
by an effective Hamiltonian at least to lowest
order in the weak interactions. No attempt will
be made to construct a complete renorrnalizable
field theory of the weak and strong interactions
(such as a natural gauge theory) or to show how

the effective Hamiltonian can be obtained from a
complete theory in some approximation. A satis-
factory complete theory does not exist. Interest-
ingly, our results can be obtained from an effective
Hamiltonian. This effective Hamiltonian is con-
structed in accord with existing experimental
phenomenology so that, hopefully, a future com-
plete theory will reduce to this effective Harnilto-

Ec(8c) = 0 Ec (8c}

This theorem follows from the observation that
H satisfies theorem 1. Consequently,

E(8) = (vac(e" o7He ' c7~vac)

= Ec(8+ 8c}

satisfies E'(0}=0, E( }0& .0This implies Eqs.
(3).

The vacuum-stability conditions (3) can deter-
mine 8~. The rule of this game is to pick an in-
variance group for (vac), pick an H (independent
of 8c), and calculate Ec(8c). The minimum of
Ec(8c}fixes 8c. The stability conditions (3) just
guarantee that the Hamiltonian is diagonal with
respect to the correct ground state. H then satis-
fies va, cuum stability and Ivac) is its ground state.

The conditions of theorem III are quite universal
and the same ideas can be applied to other prob-
lems. For example, we will describe a super-
weak model for which CP violation is a rotation in
the internal space in the same way that strangeness
violation is implemented by a universal rotation.

nian in a suitable approximation.
The effective Hamiltonian we consider is

H = Ho+ H ~~ +Hv(0) + HL„. (4)

N = —,'(1+ y, )N,

f~ = —,'(1+ y, )l.
Here N~ transforms like an SU~(2) doublet. For
convenience we use the usual (6', 3f, A) SU(3) quark
triplet, q. Charm can also be introduced.

The electromagnetic interaction H, , M
= eJ~™A„

plays no role in what follows, so we ignore it.

A. An elementary example

Let us assume H» in the 33+ 3S representation
conserves electric charge, parity, CP invariance
and that H is specified as

H=H, + aXX+ b(XX+ 3fX)+H~(0).

Consequently,

H= QHUc

=H, + (acos'8c+ 2b cos8c sin8c)XX

(6)

+ (a sin'8c —2b cos 8c sin8c )3f 3f

+ [a cos8c sin8c + b (cos'8c —sin'8c)](X'X + 3f X)

+He(8c)

H, is SU(3) xSU(3) invariant and it is assumed
that in the absence of the additional terms in (4)
the vacuum symmetry is SU(3) invariant. This
implies that the SU(3) x SU(3) symmetry of H, is
realized by degenerate SU(3) multiplets and an
octet of pseudoscalar Goldstone excitations identi-
fied with the physical w, K, q. The SU(3) x SU(3)
symmetry of H, is principally broken by H». We
assume that this term transforms like the neutral
members of the (3, 3}+(3, 3) representation of
SU(3) x SU(3). Other pure representations may be
considered, but we do not do this here. The
33+ 33 model of Qlashow and Weinberg a,nd Gell-
Mann, oakes, and Renner' adopted here is in
reasonable agreement with existing experiments. '

The effective weak-interaction Hamiltonian (in
the absence of strangeness violation) is taken to be

Hg (0}= (G/v 2 )Zq Jq
+ H. c. ,

where
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with Hv(8c) = UeH~(0) Ue '. To compute the vacuum
energy we must specify the invariance group of
the physical ground state /ac). This physical
~vac) we assume, in accord with observation, con-
serves the third component of isospin and hyper-
charge to O(G}. Consequently,

(vac (Hv(8e) ~vac) = O(G)

and

(vac i(XX+ 3I X) ivac) = O(G).

From (7) one obtains for the vacuum energy cor-
rect up to O(G)

Fe(8e) = (vac ~H /ac)
= const+ (&3(UJ, —(U,)0)

x[-,'a(sin'8e —cos'8e} -b cos8e sin8e]

= H, + m ~(XA. —tan'8e cosy313I) + Hv(8e) .

(12)

This implies

tan'8e = ~my, mp = 0. (13)

In terms of the parameters e, of the Gell-Mann-
Oakes-Renner model'

H' = Ho + e 0 Uo + eaU8 + eq U3 + Hg (8e ) .

With the convention (XA), & 0 and using the fact that
vacuum SU(3) x SU(3) breaking is much larger
than SU(3) breaking, the vacuum value of H' is a
minimum for y = v. (This corresponds to 3(z- -3Ia.)

Finally we have the Hamiltonian that satisfies
vacuum stability with respect to ~vac):

H' = H, + m ~(XA + tan'8e3l'3I) +H~(8e }.

where

U'= qA.'q

and

(U'), = (vae i
U'ivac) .

(8) The quark mechanical masses are

m~ = ('-, )'"e, —(2/V3 }e,,
m~= (';)"'e, + e,/v 3 —e„
m(p= (3) E'o+ ea/v3 + e3,

and the relations (13) imply

Including the terms of O(G} ean only alter our con-
clusion by a very small amount.

The vacuum-stability condition, theorem 3, re-
quires that F'(8c) = 0 or

(~3(UJ. —(U,).)
x[a sin8e cos8e -b(cos'8e —sin'8e)] = 0. (9}

Since SU(3) is broken in the physics, l vacuum much
more than isospin,

v 3 (Ug, —(U,),x 0,
and (9) implies

tan28e = 2b/a. (10)

H=HO+m), (XA —tan 8e3(3I)+H„,(8 }, e

where m ~ = a + b = a(l + —2tan28e) is the mass of
the X quark. Note that (11)has the 3I-quark mass
negative relative to the X-quark mass. This im-
plies p„'/p~'&0 and is the signal that (11}does
not yet satisfy Dashen's theorems. To satisfy
Dashen's theorems we transform H by U~
= e'~~ s" with K„= —', (1 —y, )% and y an angle to be
deter mined. So

Note that if the vacuum were SU(3} invariant,

(Ug, = (U,), = 0, so (9) is trivial and 8e is undefined,
corresponding to the well-known fact that SU(3)
must be broken to define 8~.'

Substituting (10) into (7}the Hamiltonian is

2(&2e, + e,) vYe,
&2i so —268 &2eo + es

(15)

The almost-Goldstone-boson masses are calcu-
lated as

p„'f„e.W2+ ~„
plC ft 60&2 2e8

(16)

so using p, 'f, /g f««x1, Eqs. (15) and (16) imply

W3e,
W2~, + ~,

(17)

with errors in excess of 50%%up. From (16) one has

&3e,
V 2 Eo+ 6'8

(18}

tan'8c = f.V.'&faber'.

The relation is (1), which is good.
The Hamiltonian (12) also implies the presence

of a nonelectromagnetic ~nI~ = 1 interaction Often.
this term is estimated from the observed K'-K
mass difference. However, the purely electro-
magnetic contribution to this level shift cannot be
calculated reliably, ' and it competes with the e3U3
term. But conventional electromagnetism, be-
cause of Sutherland's theorem, "contributes only
a tiny faction of the observed q- 3m rate. So the
observed rate is good evidence for the presence
of a new nonelectromagnetic QI~ = 1 interaction
such as e3 U3 to which Sutherland' s theorem does not

apply. From the observed q-3~ rate one finds"
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2 sly ps~ 26'
my —Sly V3 Es —6s

(20)

so that 8c is related to the q-3v rate. Using (16)
and (17) one finds from (20) 8c = 15'. Of course,
there are large uncertainties in this estimate.

Suppose we relax the condition gl) ~ —,
' for the

Hamiltonian given by (19}. Then we can add a
term d(Pd' -OVR} to (19). Going through the vacuum

stability exercise one finds 8~ specified in terms
of the unknown parameters a, 5, c, d of 0 but it is
not given purely in terms of the known parameters
6p 8 3 of B'. So the angle 8~ is fixed and nontrivial
if 6 4 0, but it is not computable in terms of

in agreement with (17). The e, U, term also con-
tributes to hI= 1 baryon and meson mass shifts
with the right sign, but using (17) it is about a
factor of 3 too large" in magnitude.

These relations (18) and (15) have appeared since
the early literature on this problem. Oakes" as-
sumed an initial Hamiltonian of the form H=Hp
+ aXX+Hv(0}, so the strong interaction was
SU(2) x SU(2) invariant. Upon rotation H- UcHUc
and throwing away a large strangeness-violating
U, term Oakes obtains (18) and (15). Although this
procedure is not justified, it suggests the relations
among the various small parameters given by (18}
and (15). Similar results are obtained in the pro-
grams of Cabibbo and Maiani" and Gatto, Sartori,
and Tonin. " These approaches find the origin of
the weak angle in the dynamics of higher-order
weak interactions (which have no explicit part in
our approach).

Our results are a consequence of our choice (6)
of the HamiltonianH and the invariance group of
the physical ground state. 8 appears to violate
strangeness because of the large b(XX+ 5(A} term.
Since the physical ground state is strangeness-
conserving up to order 6, the vacuum-stability
condition requires that we rotate away the b term.
Then the strong interaction is strangeness-con-
serving but the weak interactions are not. The
rotation angle, in our example, is completely
specified in terms of symmetry-breaking param-
eters ~'p 8 3 that appear in the diagonalized Hamil-
tonian8' that satisfies all vacuum-stability con-
ditions. As these parameters are connected to
exp'erimental numbers we may calculate 8~.

We may consider a more general example than
(6). LetH» conserve Q, P, CP and have (hl( ~-2.

Then the Hamiltonian is uniquely specified as

H=H, + aXA+ b(XZ+ XX)+ c(5'6'+ KK)+Hv(0)

(19}

Application of theorem 3 yields as a solution to the
vacuum-stability problem the Hamiltonian (14) with

parameters we can control.
It is just this problem that prevents a calcula-

tion of 8~ in gauge models. " In gauge models of
the weak interactions, with the strong interactions
included, which are renormalizable and natural
(in the technical sense) the vacuum-stability
conditions can fix 8C. However, typically, 8~
is specified and nontrivially given in terms of
Lagrangian parameters that are not known ex-
perimentally. As is well known, parameters
abound if we allow all couplings consistent with

gauge invariance, renormalizability, and continu-
ous and discrete symmetries, and one typically
finds in the effective Hamiltonian a term like XX
that prohibits a calculation of 8~. Within the con-
text of a satisfactory renormalizable field theory
the problem of computing and getting the observed
answer for 8c (rather than simply fixing the angle
in terms of unknown parameters) is completely
unsolved. However, should such a field theory
yield the effective Hamiltonian (19), then the pro-
blem is solved utilizing vacuum stability.

B. Spontaneous violation of strangeness

The HamiltonianH given in (6) can be the con-
sequence of spontaneous violation of "strangeness".
This is accomplished by writing

H =H, + aXX+ b(KXQ+ H. c.)+Hv(0)+H(P, W„},

(21)

where Q is a complex scalar field with "S"= 1 so
that (21) is "strangeness"-conserving. H(P, W„) is
the Hamiltonian for the Q field and 5'& is a gauge
vector field introduced as a compensating field
for the local transformations A. —e' @

A.,
Q —e' ~"'Q. H(P, W„) is arranged so that (P},a 0.
Then 8'„acquires a mass by the Higgs mechanism.
The remaining real fields Q' and 8'„can be made
massive, so (21) with the displaced field Q'
= Q —(p)0 has the same effective structure as (6).
We return this example when we consider CP
violation.

This example is completely unrealistic and is
given for illustrative purposes only. It is not
difficult to construct realistic renormalizable
gauge models of the weak interactions which im-
plement spontaneous strangeness violation (in-
cluding charm). However, all such realistic,
renormalizable, and natural models known to the
author at most fix 8~ and do not allow a computa-
tion in terms of known parameters.

C. Charm

If one assumes that the weak cha, rges belonging
to SU(3) obey an SU(2) algebra, as is required if
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we are to have a gauge theory, and that they have
both strangeness-violating and strangeness-con-
serving components, then the semileptonic currents
have (dS[= 1 neutral components. This is associ-
ated with the fact that SU(3) does not have two com-
muting SU(2) subgroups. If one goes to SU(4), there
are two commuting SU(2) subgroups and by ar-
ranging these properly one avoids neutral in Si = 1

currents while retaining the desired currents.
This Qlashow-Qiopoulos-Maiani mechanism"
offers symptomatic relief for the problem of no

observed QSi= 1 neutral, semileptonic currents
comparable to ihSi = 1 charged currents. If it is
really the solution for this problem, then we will

see charmed states. "
To include charm we introduce the SU(2} doub-

lets

(22)

and the effective weak Hamiltonian

H~(0) = (G/v2)(J& ~ J&+ H. c.}. (24)

There is, of course, an additional U(1) current
required to construct the electromagnetic current.
Our discussion remains unaffected by its inclu-
sion.

There are now two rotations U~(8„) and U6, (8&p ):

where 5', X, ~ are as before and 6", the charmed
quark, is a strange partner of the (P. The $" mass
should be larger than the masses of the other
quarks but not too large. " The weak current is

Jp = Ng(2T))'pNI. + Ng(AT)rqNI+l&( , r, )rqlz,
—(23)

where the charged current inH22, (Hc) is

~p = ~l. ye+I, cos8g + ~l.yp~g sin8g

+ (P~y& xL cos8~ —PL, yI1%1. sln8(.-

with

(28)

8c = 8x —
8(p . (30)

It is important that the A. and 6" not be degenerate
in (26) with aa = a„. If this is the case, Hc

= 8~ —8z. = 0 and there is no strangeness violation.
From (28} we have

tan 82P
= mg/m~,2 tan'8), = ~/m (31)

Since we have assumed equal 0'(P and XX mixing
in (26) we obtain an additional relation,

~ mz(1 -~/m„}' = m~m&(l -m~/m~ )'. (32)

Assuming that the strange quarks are more mas-
sive than the nonstrange, m /mi«1 and

m~/m~ «1, and (32) implies

m, /m~. = m~/m~. (33)

Since the charmed quark is the most massive
mz &m2, and (33) implies m~&mz. This means
that the nonelectromagnetic isospin-violating term

3 U3 has the cor re ct sign to agree with observed
AI = 1 mass shifts. These inequalities also imply
mz/m~ & m~ /m~, so (31)implies i tan 8„i &

i tan 8~ i.
Assuming, consistent with the above and existing

spectroscopy, mz»ma„ma, &m2, (31) implies
iHJ»aH~i, so that Ha=8~. Using this, one has

m», f.p, ' v3e,.

2f 2 &22 2)
A. cos8~ —g sin8}, ,

g-X cos8~+ A. sin8&,

6"- (P, 'cos8~ —(P sin8~,

(P -(P cos8~+ 5"sin8+ .

The effective Hamiltonian is assumed to be

H = EI, + a~I'6" + a~XA.

+ b((P'5'+ XX+ H. c.)+H~(0)

(26)

(26)

Kith the crude estimate from q —3m, -v 3 c3
= (0.7)(&2@,+ e, ) as in (19), one obtains

tan Hc
-—(0.8}f„l,'/f»l »'. (36)

So the result for the Cabibbo angle remains essen-
tially intact.

If we allow unequal mixings of (P'(P and ~, then
(32) and (33) are lost but (31) is retained. If we

include terms like c3I3I or dt's(P in H, then (31}is
lost and we cannot relate the angle 8~ to experi-
mental numbers.

with H, SU(4) xSU(4} invariant and a~ 22 a~ positive
constants.

If one minimizes the vacuum energy

E(8~2 8&P ) = (vaciU~U2PHU~ 'Ui 'ivac) (27)

with respect to 8& and 8&, carrying out the same
exercise as for our previous example, one obtains
for the Hamiltonian that satisfies vacuum stability

H = , H+ m(P'(P' ta+n'8~ Pd')

III. SUPERVfEAK CP VIOLATION AS A ROTATION

H = H + H s„+H22(0) + H, „+H~„

where

(36)

Phenomenologically, 'the only observed in, Si= 2

weak effect is of order G' in the K~-K~ mass
difference. So such a, iASi= 2 term should be
present in the effective Hamiltonian. Ne write

+ mq(XA, + tan'8 q313I) + H222(Hc), (28) Hs~ = fG2(U~U~ —U, U, ) (37)
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is (nS(= 2 and f is a constant =1. For Hss we

take, as in (21),

H» = aXA. + b (X3f Q + H. c.) (38)

in evaluating the vacuum energy, will take care of
this.

The solution to the vacuum-stability problem is
achieved by the rotation

with a and 5 real constants and Q a scalar field.
As in Lee's discussion of CP violation" we allow
the vacuum value of P to be complex,

(39}

Assuming P to have large mass the net effect of
(39) is to have for the effective H» the following:

H» = aXX + bp(cosy(X3f + 5 A) + i siny(X3f -%X)) .

(40)

We could also have simply taken (40) as our start-
ing point.

Now the "CP" violating term in (40) is propor-
tional to bpsiny, and this need not be particularly
small. But the vacuum-stability conditions,
assuming the physical vacuum has only an ex-
tremely small CP violation which can be dropped

V=UUU, (41)

(42)

and

ec~= y (43)

The Hamiltonian satisfying the vacuum-stability
conditions is

where U~ and Uc are as before and U, = e'~&' ~,
with Q, the generator of rotations about the third
component of isospin. Minimizing the vacuum
energy

F(gc, gc~) = (vac iVHV ' ivac)

with respect to the angles 8~ and 8~„one obtains,
as before,

H= VHV ~ = Ho+ m„(XA+ tan gcÃX)+He(gc)+HEM +Hsw (gc gcz)

with

(44)

H,„(gc, gc~) = fG'(cos28cJ, [(cos'gc + sin'gc)(V, ' —V,') ——,
' sin'(28c)(V, '+ V,')]

+ sinsgc cos28c(V, V, + V, V )+ 2sin28~ sin28c V [2(-', )'" U, —(1/v 3)U, —U ]

+ cos 2 gcJ, sin28c[2('-, )'" U, —(1/v 3 )U, —Us](2 cos28c V, + sin'8c[2(-', )
'~' U, —(1/&3}U, —U ]j),

(45)

=——,
' tan2~cs- (46)

As is well known, this model is in agreement with
all observed CP-violating effects." From the ob-
served K~ -2v rate one obtains from (46)

where V, = iqy, A.'q, U, = qX'q.
Accordingly, one has real CP violation that is

~nS[= 2 and gS(= 1 of order G'. The new super-
weak (b g = 1 piece, proportional to G'sin28c~sin28c,
has no presently observable consequences. What

remains is Wolfenstein' s superweak model" with
the mixing mass determined from (45):

5Kis 1 cos28
2 CP 1 + ~ ln226)

responsible for CP violation, if. its primary effect
is to induce a term i(XX —RX) in the effective
Hamiltonian, then this corresponds to the super-
weak model, "provided there is a ~nS~ =2 CP-con-
serving term in H. In a fundamental theory one
would want to determine tan(9~~, which is just the
relative strength of the f(XR —5lX) "CP"-viola, ting
term to the (X'31+ 5fX) "strangeness"-violating term
in H. This suggests that CP and strangeness viola-
tion may have the same origin. Perhaps sech terms
are induced as a quantum effect" due to weak and
electromagnetic interactions and the conjecture"
gcp- a/v is realized. One may include charm in
this picture of CP violation, but it does not modify
these ideas in an essential way.

g~= 3xi0 3. (4V)

We see that superweak CPviolation is a small
rotation about Q, as strangeness violation is a
rotation about Q, . The fundamental angle of this
rotation, 6)c, is not determined in this approach,
unlike the angle ec. Our point is that whatever is

IV. CONCLUSIONS

What this work shows is that the principle of
vacuum stability expressed in theorems 1, 2, and

3 can determine the weak-interaction angle. Some
elementary phenomenological examples yield real-
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istic results. What this work leaves unanswered
is the origin of strangeness and CP violations as
we have expressed it in our effective Hamiltonians.
Granted that these symmetries can be broken
spontaneously, but why are they broken at all? In

gauge theories of the weak interaction the structure
of spontaneous breaking in the tree approximation
is assumed from the beginning; so there are no
surprises. This problem is quite unsolved.
Possibly it would be instructive to examine vacu-
um stability on the quantum (loop) level and
strangeness violation as well as CP violation as a
quantum effect.

There may be other possible applications of
these ideas. One that comes to mind is constrain-
ing the Weinberg angle 8~. It could be that this
angle is fixed by embedding the SU~(2) xU(1) group
into a larger simple or semisimple group, "which
is an alternative to these ideas of vacuum stability.
A fanciful example of another application is worked
out in the Appendix.
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APPENDIX

Consider a pseudoscalar octet II' interacting
with a baryon octet N, The S. U(3)-invariant in-
teraction is

I= gI'„,N, iy, NP I ac = a d, ~, + i(1 —o)f„, .

To lowest order in g' the vacuum energy is given
as a function of n according to

V(o) g'F...r'.„=g'[o. 'd.„d. +( I-a) f2„,f.„j

V(a) has a minimum at o. =+, = -', x —,",= 0.64, which
is the experimental value. Since there is no rea-
son to believe terms of O(g') and higher will not
completely change this result, it is probably for-
tuitous. However, this serves as an example of
how variational principles might determine param-
eters, such as the f/d ratio.
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