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General singular Regge surfaces j = a(t) of the continued partial-wave amplitude are considered in
connection with the requirements of elastic t-channel unitarity. In the absence of shielding cuts,
threshold branch points of the trajectory function a(t) can be used for ordinary and for complex
Regge-pole surfaces in order to obtain compliance with the unitarity condition. For complex pole
surfaces, there are important constraints concerning the way in which the threshold must appear in
a(t). Branch-point surfaces are discussed in detail. It is shown that hard branch-point trajectories a(t)
with t-independent character generally cannot be made compatible with elastic unitarity by using
threshold branch points of a(t). Shielding cuts in the j plane are a natural requirement for these
singular surfaces. The notions of “shielding cuts” and “hiding cuts” are defined briefly.

I. INTRODUCTION

The requirement that the continued partial-wave
amplitude F(Z,j) satisfies {-channel unitarity is a
very important constraint for models of high-en-
ergy diffraction scattering.! Recently, much at-
tention has been focused on multiparticle unitarity,
which is relevant for the generation of conven-
tional Regge cuts. The Reggeon calculus® provides
a field-theoretic method for finding amplitudes
which satisfy the j -plane discontinuity equations
resulting from multiparticle {-channel unitarity.
In particular, renormalization-group methods are
very helpful for the infrared problem associated
with the Pomeron trajectory near (j,¢)=(1,0). It
is interesting to see that there are strong-coupling
solutions where the renormalized Pomeron tra-
jectory is a singular Regge surface which, as a
function of ¢, has a branch point at £=0.®> Pom-
eron trajectories of this type have been proposed
earlier in connection with rising cross sections
and for other purposes.*:®

It is important to note that the Reggeon calculus
does not take into account two-particle unitarity in
the {channel. In the strong-coupling case, the
resulting renormalized Pomeron trajectory is a
hard Regge surface which, a priori, violates
two-particle unitarity.!*® In previous papers,” we
have shown how this unitarity condition can be sat-
isfied with the help of shielding cuts.”® These
cuts are due to soft branch-point trajectories
which are closely correlated with the Pomeron
trajectory itself, and which coincide with it at the
threshold ¢{=#£,. In their secondary sheets, they
provide a refuge for the hard Regge surface as we
continue the amplitude through the two-particle
branch cut. Without the shielding mechanism, the
Regge surface would have to change its character
suddenly during the continuation, and this it cannot
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do as a singular surface of an analytic function of
two complex variables (continuity theorem).”

Although shielding cuts can be constructed for all
kinds of hard singular surfaces of the amplitude
F(¢,7), this mechanism is not the one an ordinary
Regge pole surface uses in order to comply with
elastic ¢{-channel unitarity. Rather, a pole tra-
jectory a(?) acquires a branch point at the thresh-
old {=t, so thatfor t=1¢, (-1,

a(t+i0) = a(t —i0) =iC(t = {,)* (D *V2 4. 0-
(1)

This threshold behavior is in accordance with the
resonance character of the corresponding {-plane
poles for Ret>t, which are in second sheets of
the ¢ plane.'’®

It is the purpose of this paper to explore general
singular Regge surfaces «(t) with branch points
at the elastic threshold ¢{={,. We want to see to
what extent this mechanism can be used in order
to obtain compliance with ¢-channel analyticity
and unitarity requirements without the introduc-
tion of shielding cuts in the complex j plane. As
we have pointed out, this is the conventional uni-
tarization method for ordinary Regge-pole tra-
jectories. We show that it can also be used for
complex Regge-pole surfaces. These surfaces
have a left-hand branch line in a(¢) starting at the
crossover point of their branches. However, we
find important restrictions as to the way in which
the threshold cut for ¢=¢, must be introduced into
the complex trajectory functions. Simple models
are often excluded.

Then we consider hard branch-point trajectories
with {-independent character. Here we find that
it is generally no¢ possible to satisfy the unitarity
and analyticity requirements by the introduction of
a threshold branch point into the trajectory. This
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result shows that, for these singular surfaces, it is
necessary to have shielding cuts in the j plane of
the amplitude.

1. REGGE POLES AND SHIELDING AND HIDING CUTS

For completeness, and in order to introduce our
notation, let us briefly review the unitarity proper -
ties of an ordinary Regge pole trajectory j = a(¢).*!
We write the amplitude F in the form

F(ty] ) = (t - to)JG(ty.]) ’ (2)
with
L AQ) _
G(t)= =g + B, @)

where B(t,j) does not have a pole at j = a(f). The
elastic unitarity condition is then given by

G™M(t,7) - G (¢t,j)=2ip(D(t - t,) (4)
with

1/
ip(t)=-(t°;’) °

arg(t, - t)/2=0for t<¢, .

(5)

By the superscript II we denote the continuation
into the second sheet reached from the physical
sheet through the elastic cut in the interval

tys t<t;; t; is the first inelastic threshold. In
particular, we have

G (t+40,7)=G(t¥i0,7)
in this interval.

Using Eq. (3), we may take the limit j -~ a(f) in
Eq. (4) and obtain

a(t) - a"(t)=2ip(t)(t - 1) VCM(®) (6)
with
() =A"(t) [1-2ip@E)(t - £,)* P B"(¢L, a(t)]™
(7
and
B'(t, a(t)= .lirr:t) B'(t,5) . (8)

The limit j - a"(¢) in Eq. (4) gives the conjugate
of Eq. (6) with @ ~—a", p~—p, A"~A, B"-B. If
we take the limit {—~¢, in Eq. (6), we see that a({)
has a branch point at ¢={, as indicated in Eq. (1).
We are interested in cases where a(f,)>0 and
C''(t,) =C(¢,) is finite.

In deriving Eq. (6) we have assumed that there
are no other singular surfaces of the amplitude
G(t,j) which coincide with the Regge pole a(t)
at t=t,. The presence of additional trajectories of
this kind could, of course, change the threshold
behavior of a(t). As we know from previous work

on shielding cuts, we can then even arrange that
a(t) is regular at the threshold.

In order to give a different and simple example,
consider the function

-1 <j —d()\Y* ()2
VT cosmj \ c(t) > V't cosmj

9)

where d(t) and c¢(f) are appropriate real analytic
functions which have no singularities at £=¢,. We
ignore the singularity of the second term at =0,
which should not be present in the physical sheet
and which can easily be removed.

The amplitude (9) has a branch point at j =d(t).
We define the physical sheet of the j plane by
drawing the cut to the left and demanding that
(j —d)V* is real where d is real and arg(j -d)=0.
In addition to the branch point, we have a pole sur -
face a(?) which satisfies the equation

alt)=d(t)+c@)[(t, - ) ] *V2 (10)
This pole is in the physical sheet of thej plane for
klarg(t, - t)| <m, assuming that a(#) in Eq. (10) is de-

fined as the branch which is real for real ¢<{,.
The residue of the pole in G(¢,j) is given by

Kc(t) K=1]a(t)+1,
R(’)=—m[(to—[) He® vz (11)

which shows that the simple pole is modified for
t—t, where it coincides with the branch-point
trajectory. We obtain with a(t,) =d(t,)

1/K
G(t,j)=-VE,cosm a(lo)<]. f(zi)(t )> .

At the threshold =1, the trajectory function a(?)
has a branch point like

a(t)= a(lo)'*' C(to)(to - t)K[a(‘°)+l/2] +*0t .

G™'(t,j)=

12)

The cut in the function G(4,j) given in Eq. (9)
is a special case of a “hiding cut.”* In order to
explain this, and for future reference, we give
here a brief definition of the concepts of “shielding
cut” and “hiding cut.”

(1). Shielding cut. This is a soft branch-point
trajectory j = a(t) associated with a hard singular
surface j = a(t) of the amplitude G(4,j). It is the
purpose of this trajectory a,(f) to remove the
singularity atj = a(f) into a secondary Riemann
sheet of the j plane as we continue the amplitude
from the physical sheet of the ¢ plane through the
two -particle branch cut starting at ¢={, into the
second sheet. The trajectories a(t) and ay(¢) must
coincide at the threshold {=1{, and the character
of the shielding surface a, is dependent upon that
of the surface a.”
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(2). Hiding cut. This is a soft branch-point sur-
face j =a,(¢), which is called for if the amplitude
G(t,j) has singular trajectories a({) with branch
points in ¢ which must not be present in G(¢,j).
Generally, the branch point of a(¢) is not in-
herited by G(¢,7) if all branches of a(f) associated
with the Riemann surface of this branch point ap-
pear in G in a completely symmetric fashion so
that we have full uniformization. If the branch
point of a(t) at t=¢,is not algebraic, we have an
infinite number of branches which cannot be all in
the physical sheet of the j plane. It is the task of
the hiding cut to remove all but a finite number of
branches into its secondary Riemann sheets.

As an example, suppose

a(t)=ay()+ By (XNt —t )" (13)

is the trajectory of G(¢,j) with k being irrational.
The functions ay(¢) and B,(f) are real, analytic, and
regular at t=¢,. Then the amplitude G(¢,j) may de-
pend upon these functions in the combination

i n/ K
(’—ﬁ‘ft—)@) —(t-t (14)

where 7 is a positive integer. The hiding cut is as-
sociated with the branch point atj = ay(¢), and it is
drawn to the left. The physical sheet of the j plane
is defined so that (j - ao)"/" is real for real a(?)
and arg(j - a,)=0. We find then that only those
branches a, of @ are null surfaces of Eq. (14) in a
given region of the ¢ plane, for which

™
larg(t —t)+2mv| < -

v=0,+1,+2 ... . (15)

As we see, the hiding cut is hiding two things:
the branch point in ¢ of a(¢) and almost all branches
of a(t). Of course, hiding cuts can also be used in
cases where « is rational. Then we have a finite
number of branches, and a hiding cut can remove
some of these from the physical sheet of the j
plane.*'°

In the example given by Eq. (9). the branch point
of a(t) at {=t. coincides with the threshold ¢,. The
character of the cut in a(t) is different from what
is required by the unitarity condition for G(¢,5),
and the hiding cut adjusts this character as needed.

III. COMPLEX POLE TRAJECTORIES

In this section we consider complex pole sur-
faces. We are interested in particular in the case
of two crossing trajectories a.(f) and a_(t) as-
sociated with a square-root branch point at £=¢..
The amplitude G is then of the form
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L A(t,j)
G(t,j)= U - a0l =]

AL A0

Sited ica B 19
where
A at)
A=z m am

and B(t,j) is the rest which is regular atj =a (¢).
We now insert the ansatz (16) into the unitarity
condition (4) and take the limits j — a ,(¢) and

j —a'(¢). The resulting conditions for a,(t) are
given by

[ay(t) —al(D)][a ) - a"()]
N %‘lt’ (t=t)2:(O"V2AN a (1) (18)

and

[ai(®) - a.O)][a(t) -a_(1)]

21 1

== (U= 1) ONAG al0) . (19)

We are interested in the threshold properties of
the trajectories «,(f) which are required by these
equations. It is reasonable to distinguish two cases
which are characterized by a.(f,)#a_(¢,) and
alty)=a_(t,), respectively.

Case 1. Let us assume that ¢.# ¢, and
all(ty)=a(t,) . (20)

a.(ty)# a_(t,),
Then we have

A(, a}(1))
lim 2200 _im AL, 21
M el - a0~ A0 @
where the functions A (¢) are the residues defined
in Egs. (16) and (17). We find that the conditions
(18) and (19) can be satisfied with finite residues

At(to) =A1¢I(to) ’ (22)
and with the discontinuity given by
ay() - all(t)=2ip ()t - t,)*+ DA, () 23)

for = ¢, t—1,
It may be useful to give an example which sat-
isfies the assumptions (20). We write
Gt ==l -a.0]i - a.(®O]c™* @)

(to —ty +1/2
* VT cosmj ’ (24)
with
a,(t)=a (t)+ (t - t.)"?b (1) ,

c(t)=(t - t,)c, (1),
where we ignore again the singularity at £=0. The
functions a,, b., and c_ are regular at t=¢, and
t=t, and their analytic properties are as required

(25)
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otherwise. The amplitude (24) has complex Regge-
pole trajectories which satisfy the equations

a(t)=a,t)

+ l:bc"’(t)(t -1,)

LU — —z)am)n/z}l/z
VE cosma,(t) " °

(26)
By expanding the square root, we see that the
branch points of a,(t) at the threshold £=¢, are
characterized by the discontinuity relation (23),
with the residues given by

t
At(to)::F 2_(1::%?7)%.—([_0) . (27)

We note that, in general, the inequality of a.(Z;)
and a_(¢,) together with the centrifugal j dependence
of the amplitude imply a rather complicated struc-
ture of the pole surfaces a,(f) at the threshold
t=t,. If we write

at(t) = ac(t)i (t - tc)l/ZBc(t) ’ (28)

we find that the branch point at ¢ =£, must be
present in a.(t) as well as in B.(¢), at least within
the framework of the assumptions we have made.
In this connection, it is of interest to consider
complex trajectories of the frequently used form

a,(8) = a,(t) (at)/? (29)

with a=const. As we have learned, in this case
we cannot obtain compatibility with elastic uni-
tarity by having a threshold branch point in a(¢)
and constant residues A,({;). Rather, in order to
satisfy the relations (18) and (19) without shielding
cuts, the functions A,(f) must themselves have
branch points at £=¢,. Specifically, we have the
requirement that for ¢~

At (t _to)x(ato)l/z ,

provided B(f, a'(#)) is sufficiently nonsingular in
this limit. These branch points of the residue

are not present in the amplitude G(¢,j) itself, and
in Eq. (16) they must be canceled by contributions
from B(f,j). Generally, such compensations are
done with appropriate j -plane branch-point surfaces
which coincide with a,(¢) at /=¢,. But under these
circumstances it is usually much simpler to use
shielding cuts in order to satisfy elastic unitarity
without a threshold branch point in a(¢).

Case 2. From our previous discussion of com-
plex pole trajectories with a.(f,))#a_(¢,), itis
plausible that compliance with Eqs. (18) and (19)
may be more straightforward for pole surfaces
of the form (28) which coincide at ¢£=¢,. In the
following we assume that

at)=a_(t)=a.lt,), i.e., B.t)=0,

(30)
ad(ty) =alty) .
Then we obtain the conditions
2
H=—al()]z,, = == (t-t a (tg)+1/2
[ac( ) Olc( )]g to W/To_( 0) o
x lim A"(¢, a(1)) (31)
!—’to
and
Al t
lim A GeO)_ (32)

o AG, a1 (1)

A simple way to satisfy these equations, which
also avoids a double pole of G(¢,7) atj =a(¢,)
=a.(t,), is obtained by choosing the function A(Z,j)
of Eq. (16) for our case as

A(t,j)=[j - acv)]C(t, ), (33)
with

C'M(ty, () =Clty, aclty)) . (34)
Then we have

A(t, " (D))= [al(®) - ac®)]CE, (1) , (35)

and the discontimuity relation (31) reduces to

ac(t) __alcl(t)z _277' ([ _ to)a,_.(to)+1/2
0

T
X Clty, a(ty) (36)

for ¢~ 1,

An explicit model for case 2 with a.(/,) = a(t,)
can be obtained from Eq. (24) with b.(!)~0 and
c(t)—~0 for t~t,, but c(?)/b.(¢)~finite.

IV. BRANCH-POINT SURFACES

First, we consider briefly soft branch-point
trajectories in connection with elastic {-channel
unitarity. It is convenient to introduce the func-
tion™®

(to - t)J

¥(t,j)=G™(¢,5) +ip(t) 087

, (37)
which has no branch point at £=/,. If the inverse
amplitude G~ has a branch-point surface j = a(¢),
it is evident from Eq. (37) that this same surface
is also present in ¥(¢,7), and vice versa. As a
rather general example of a weak cut, we con-
sider the expression

WL, i)=at, )i —a@®)]®+b(t,7), (38)

where B is real, and the functions a(¢,j) and b(¢,7)
are regular atj =a(¢). With the function y as
given in Eq. (38), the amplitude G(¢,j) has a soft
branch point at j = a(¢), provided
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(t, = 1)™")

cosm a(t) (39)

bolt, a(t))#ip(t)

The elastic unitarity condition is satisfied with
the ansatz (38), provided the trajectory j = a(t)
as well as the functions a(/,j) and b(¢,j) have no
branch point at the threshold ¢ ={,. Note that these
conditions actually imply the requirement (39) as
long as there are no shielding cuts present. With
shielding, the limits j — a(¢) and ¢ ~¢,are no
longer interchangeable in general. For example,
a term in y(¢,j) of the form

U -a 0P, (40)
with
a)=a()+clt-1¢,), (41)

can generate the branch point (¢, —)*(*)"¥2 for
Jj—-a(t).®

We now turn to the question of hard branch-point
surfaces. From Eqs. (37) and (38) we can already
see the difficulties which arise if we want to make
hard cuts compatible with elastic unitarity using
only threshold singularities of a(¢), but no shield-
ing cuts. With 8>0, we have

G L)< [j - a(t)]? forj~a(t) (42)
if
lim [j —a(t)]'ﬁ[b(z,j)—ip(t)“'—“l’] -0

i~alt) cosm ]

(43)

Since the trajectory «({) has a branch point at
t=t, we have a'(¢t)# a(?). Furthermore, the sur-
face a'(¢) satisfies the equation

Gt a"(£))=0 (44)

unless there are intervening additional j-plane
cuts which could move a' as a null surface into
a secondary sheet of the j plane. Since

SN =L . . (to_t)ljl
W(t,j)=G "(t,J)—zp(t)—COSM. , (45)
with
(b =8}y = =(t, =ty +2cosmj(t —t,) , (46)

the branch-point surface j = @''(¢) is also present
in ¢ and hence in G™!, although it is not a hard
branch point of these functions.

By construction, the function y(¢,j) is regular at
t=t,. Hence the threshold singularities of the
branch-point surfaces @ and o' must not be in-
herited by ¢. If these singularities are not alge-
braic, this requires the existance of a hiding cut,
as we have explained in Sec. II. For example, if
we write

a(t)=aq(t)+ (), - 1), (47

with a () and c(?) being regular at ¢ =¢,, we could
express Y(¢,j) in the form

W, j)= a(t,j)[(i—;%(D)w A —I)T +b(L,7) .

(48)

The hiding cut is due to the new branch point at

J = a,(¢) with the branch line drawn to the left in
the j plane. For real a,(t), the physical sheet of
w(t,7) is defined by the requirement that (j - a )~
is real for arg(j — a,)=0. Since the main branch
a(t) of the trajectory (47) is defined by (¢, - £)*
being real for arg(f, —t)=0, with a cut along the
real axis for ¢ > ¢, we see that this branchj =a(f)
is a null surface of

J = ag(t) \V* 8
(e
in the region defined by

klarg(t, — )| <7 . (50)

For values of / where the inequality (50) is not
satisfied, the trajectory a(¢) becomes a null sur -
face of (49) in a secondary sheet of the j plane
reached through the hiding cut. If k<1, the entire
branch «(#) is a null surface in the physical sheet
of the j plane. The second branch a'(¢) of Eq.
(47) is a real analytic function with

ks larg(t,-t)| <2m .

Under the previous conditions, it is a null surface
of Eq. (49) at least for points with |arg(t, - t)| =,
provided k<1. We have, of course, for {={,,

a''(t+ i0)=a(t£:0),

and o' has a cut to the left of £=¢, (k=% is an ex-
ception).

The question is whether the threshold in «(?) is
of any help in satisfying Eq. (43). Suppose we
have <1, so that a simple zero of the factor in
square brackets in Eq. (43) is sufficient. We know
that the function &(Z,7) has no branch point at ¢=¢,.
Hence the singularity of

(t, = 1)*")

bt a)=ip() =y

(51)
must be introduced into b via the surface a(!). For
the dominant term in the limit {—~£;,, we can
achieve this with the help of the branch point in
a(t) as given in Eq. (47) by writing

"1 J —ao(t)
VE cosmj < c(t) ) (52)

and equating k with @({,)+3. However, this choice
does not help for other values of {&. We cannot
choose k =a(f)+3 in Eq. (47), because y(t,j) de-
pends upon K, and this dependence would introduce

b(t,j)=
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a branch point at #={, in the function .
As is well known, what is called for here is a
shielding cut.”® For example, we may write

1 j - ao(t) (i+1/2)/
VI cosmj < c( >

with the branch line drawn again to the left. Then
b(¢, a(t)) satisfies Eq. (51) for k|arg(t, - t)| <m,
and hence is a hard branch-point surface of G(¢,;)
as required in Eq. (42). The compliance with the
unitarity condition is due to the shielding cut and
has nothing to do with the threshold introduced in-
to a(t). The latter only complicates the model,
and we may simply set Kk =1. More general ampli-
tudes with shielding cuts may be found in Ref. 7.
In order to see the difficulties of hard branch-
point surfaces with elastic unitarity from another
point of view, it is of interest to follow the argu-
mentation we have used for pole trajectories in
Secs. Il and III. For this purpose we write the
continued partial-wave amplitude in the form

Alt,5)

G(U)=m +B(t,7) , (54)

where it is assumed that 3>0 and

lim [j-a@®)]®B(j)=0. (55)
j~a(t)

b(t,j)=- ,  (53)

In general, the function B may still have a branch
point atj =a(?), but it should be less hard than
the dominant one. Branch-point surfaces of log-
arithmic character can be handled analogously,
and we will not discuss them here explicitly.

With the ansatz (54) and the unitarity condition
(4), we obtain in the limitj - a(t)

[a(®) —a"@®)]P=2ip(t)(t - t,)* D C"(1) (56)
with
() =A"B)[1 - 2ip(t)(t —£,)*P B¢, a(d) ] .
(57)

We assume here that there are no additional
branch-point surfaces present in G(t,j) which
coincide with a(f) at ¢t=t,. In particular, there
should be no shielding cuts. Then we obtain from
the unitarity relation in the limit j — a"(¢)

[@"(t) - a(®)]®= -2ip(t)(t - )" PC(t),  (58)
with
c(t) AlD) (59)

T T+2ip(D)(E — 1) (" B(, 2" ()

From the limit ¢— ¢, of Egs. (56) and (58) we ob-
tain the condition

. [a@) -au@)® cl'(?)
I -] i (“‘““ ) (60)

C(t)

For general §>0, this requirement is clearly not
compatible with simple forms of the function
C(t), for example C(t,)=C"(¢,)=const. Roughly,
we must have for t—~1{,

Cll (t)
C(?)

which indicates that a S-dependent branch point of
C(t) at t=1, is required.

In order to solve Eqs. (56) and (58) explicitly,
we make the ansatz

~-(-1)%, (61)

tim [a(t) - @ (O] = 2220 (¢ - 0 v2,
ttgy ()
(62)
lim C(t) =~ Cot - )%ty = 1),
t-’to
so that for t~¢,, =14,
C(t+i0)=Cy(t - t,)°* Ve
Then Eqs. (56) and (58) reduce to

2a,\° +imB/2 (A+1/2) B
\/T—Q e (- to)
0

[ %)

_CQ e“,(yu/z)(t _ to)a(to) +1/2+a+7, (63)
Vi,

which implies, with =0, £1,2, ...,
y=3(8-1)+n,

X=-3+ % [a)+3+0+7]
(64)
=[a(to)+0+n]ﬁ_l ’

2Cy _ inn <2a >B
-‘72;2 e Wf .

It is relevant that the parameter y is determined
by the character of the branch-point surface
j=a(t). Hence the function C(¢) must have a B-in-
dependent branch point at the threshold ¢=¢, with
a cut drawn to the right. The parameter o is rela-
tively free, a priori. It allows changing the char-
acter of the threshold in a(?) at the cost of a left-
hand branch line in C(f). No such left-hand branch
line has been introduced in the ansatz for a(t),
since this would correspond to allowing additional
branch-point surfaces in G(¢,j) which ceincide at
t=t,

Let us suppose, at first, that B(f, a'()) is not
too singular for ¢—{, so that the properties of
C(t) are those of A(t) in this limit. Now

A@®)= lim [j -a(®]®6(t,5), (65)
i~a(t)
and since a(?) and G(¢,j) do not have left-hand cuts
starting at ¢=¢,, we expect 0=0 for A(¢). Then the
equations (64) require
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A(t)'ﬁAo(to _ t)( B-1)/2+n ,

a(t)= a(t,) +const X (¢, — plaltd +n1/Bry/2

(68)

Since G(¢,7) has no B-dependent branch points at
t=t, these aspects of the cuts in A(¢) and a(?)
must cancel in G. Generally, such cancellations
require the help of shielding and hiding cuts, as
we have seen in the first part of this section.

The properties of C(t) required by unitarity may
also depend upon B(¢, o' (¢)), provided this func-
tion is sufficiently singular for {—~{, A detailed
discussion shows again that a complicated branch-
point structure of the amplitude is necessary for
t—t,, which generally requires shielding. (The
special case 8=2, corresponding to a double pole,
will be discussed elsewhere by S. Paranjape.)

V. CONCLUDING REMARKS

There is no problem with elastic ¢-channel uni-
tarity if only ordinary Regge-pole trajectories
and soft branch-point surfaces are present in the
complex angular momentum plane of the amplitude
G(t,j). The first-order pole surfaces have thresh-
old branch points and move into secondary Riemann
sheets as expected for resonance poles. The
Regge cuts are generated by the pole surfaces via
inelastic /-channel unitarity as demonstrated by
the weak-coupling limit of the Reggeon calculus.
These branch-point trajectories are soft and have
nothing to do with elastic unitarity.

For pole trajectories with left-hand branch lines
due to the crossover of a finite number of
branches, we can still satisfy elastic unitarity
with the help of thresholds in the trajectory func-
tions, although we have seen that there are im-
portant restrictions concerning the detailed prop-
erties of the threshold branch points of the com-
plex trajectory functions.

The situation concerning elastic {-channel uni-
tarity is completely different for hard branch-point
trajectories, whether they have left-hand cuts or
not. For these surfaces a threshold branch point
is generally not sufficient to make the amplitude

compatible with elastic unitarity. On the con-
trary, such branch points generate considerable
complications with the analytic properties of the am-
plitude G(¢,;). On the other hand, the introduction of
shielding cuts inthe j planeis a very efficient way of
satisfyingunitarity.” Thereis thennoneed for any
threshold singularity of the hard branch-point tra-
jectory. We find that elastic {-channel unitarity
implies shielding cuts for hard branch-point sur-
faces, while, similarly, inelastic unitarity gen-
erates the familiar multi-Regge cuts and Regge-
particle cuts.

It is quite possible that the Pomeron is actually
a hard branch-point surface,* or a structure in-
volving such branch points.® In particular, singu-
larities of this type are to be expected if the total
cross section should continue to rise indefinitely.
Our results show then that shielding cuts are re-
quired. These shielding cuts may well be phenom-
enologically relevant. (An explicit model will be
described elsewhere by S. Paranjape.)

On the other hand, if one assumes that there are
no shielding cuts, but only the usual branch-point
trajectories generated by multiparticle unitarity,
then our results indicate that the Pomeron must
be a pole trajectory. This situation corresponds
to a weak coupling limit in the Reggeon calculus,
and it may lead to difficulties with decoupling theo-
rems.

Although we have considered in this paper only
elastic unitarity, our discussions can be extended
to more general two-particle thresholds and cou-
pled channels. The shielding and factorization
problem of hard branch-point surfaces has been
discussed previously.'?
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