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From general arguments, the imaginary part of every elastic scattering amplitude at sufficiently large
impact parameter is governed by the two-pion exchange cut in the t channel. Consequently, the
large-impact-parameter tail of the Pomeron is not an SU(3) singlet. We calculate the contribution of the
tail (typically about %\of 0 ,,) approximately, and thereby predict observable differences between
high-energy total cross sections for wp and K p, and between pp, Ap, 2p, and Zp. We estimate the
asymptotic difference between 7rp and pp cross sections. We also obtain nonzero estimates for the
diffractive helicity-flip component of elastic scattering and for diffractive contributions to processes such
as mp — A,p and K p — K *(890)p. We predict cross sections for A, and K* at Fermilab, and elastic
polarizations, e.g., in pp — pp and Ap — Ap, at asymptotic energies.

I. INTRODUCTION

Total cross sections and elastic scattering at
small ¢ are approximately constant at very high
energy. This indicates a singularity in the
crossed-channel angular momentum plane, near
J=1at t=0. It is called the Pomeron, and is pre-
sumed to be related to diffraction scattering.

One expects diffraction scattering to be inde -
pendent of the isospin projections of the incident
particles, and hence expects the Pomeron to have
I=0. This is confirmed by the observation that
mp, Kp, and pp differential cross sections are
large compared to their /=1 exchange counter -
parts 77 p~7°, K, p ~Ksp, and np—pn, which fall
with energy like s**~2, where o< 0.5 near ¢=0.

More generally, the Pomeron is often conjec-
tured to have quantum numbers identical to the
vacuum, including being a singlet in SU(3). We
will present here a theoretical argument that, to
the contrary, the Pomeron deviates from being an
SU(3) singlet in much the same way that the mass
operator does. In fact, the nonsinglet behavior in
our theory is caused by the mass splitting. For
example, we predict oy, -0y, and o,, —0a, to re-
main nonzero at the highest energies.

The total cross section can be expressed as an
integral over positive -definite contributions from
each impact parameter b. These contributions are
proportional to the interaction probability at b,
and are given by the Hankel transform of the imag-
inary part of the nonflip amplitude,

M(b)=2ls fodtJo(b\/——t)M(t). (1)

This formula is equivalent to the partial-wave
series at high energy. M (b) can be extracted

from the data by using the approximation
M(t)= (16mdo/dt)'/%s, which neglects spin flip and
the real part.

The impact-parameter amplitude M (b) is related
to production processes through unitarity. At large
impact parameter, say b= 1.5 F, it must be main-
ly the “shadow” of production processes which in-
volve pion exchange, since the pion is the lightest
hadron, and therefore produces the force of long-
est range."? Pictorially, a virtual pion from the
“cloud” around one particle interacts with the
“cloud” or “core” of the other. These processes
generate a two-pion cut in the imaginary part of
the elastic amplitude, with threshold behavior
(t-4m,2)°%*°-° where a=ap(dm,®)~1. This pro-
duces

M(b)ocb=2¢g=2mnd (2)

at large b. The exponent in Eq. (2) is determined
by the mass in the ¢ channel, and the two-pion
state is thereby dominant.

The dependence of the two-pion exchange tail on
b is determined by the position and threshold be-
havior of the branch cut. We have discussed its
energy dependence in a previous paper.? It will
suffice at present to say that it increases rather
slowly —e.g., in pp scattering it increases by a
few mb between s =300 and 3000 GeV?. The power-
law falloff which is associated with pion exchange
in exclusive processes, such as charge-exchange
scattering, is canceled by the sum over states in
unitarity.

Our objective here is to relate the strengths of
the tails for various observable processes, which
include elastic scattering of v, 7, K, p, A, 2, =,
on a proton target. The nonsinglet SU(3) character
of the Pomeron follows directly from the fact that
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the SU(3) analogs of the 27 state in the ¢ channel,
e.g., KK, are suppressed at large b because of
their much larger mass. At small b, all contri-
butions are suppressed by unitarity, so that contri-
butions from KK cannot be enhanced there. The
theory can be tested directly by observing the non-
exponential shape of do/dt for |t|< 0.2 GeV?,
which is sensitive to the strength of the two-pion
cut.

Our model also provides an estimate of the
large-impact-parameter contribution to helicity
flip in elastic scattering, and to inelastic pro-
cesses such as mp-A,p, Kp~K*(890)p. The
model is interesting from a theoretical point of
view, in that it displays convincing mechanism
whereby diffractive contributions to these pro-
cesses are nonzero. The model further leads to
numerical estimates, which suggest that the dif-
fractive contributions to these processes will come
into view, via their energy dependence, at Fermi-
lab energies. The numerical estimates for inelas-
tic processes are somewhat less certain than for
the nonflip elastic amplitude, because only in the
latter case does unitarity require M (b) to be posi-
tive definite, so that cancellations cannot occur
from small b.

II. THE MODEL

In this section we describe a method for calcu-
lating the strength of the two-pion exchange tail in
various physical processes. The method entails
estimating the coefficient of the asymptotic form
(2), and then assuming that form to hold down to
b~1F. This procedure is somewhat crude, but
nevertheless useful, in that it reveals the approxi-
mate dependence of the two-pion effect on masses
and coupling constants, and also confirms that the
estimates which we obtain phenomenologically are

J

® dt’

of reasonable magnitude.

The majority of the amplitude at large impact
parameter is generated by pion exchange pro-
cesses which involve a low-mass system at one
end of the exchange.? The importance of low mass
will become apparent shortly. The contribution of
these processes to the imaginary part of the elas-
tic amplitude is represented by Fig. 1. This dia-
gram, in which particle a can be said to disso-
ciate into 7+ ¢, implies the loop integral

g d*qM,,(s', t)
Ma(s, )= 1673 fqo[(k—q)2 —r;:Z][(k'—Q)z—mf]

®3)

M, and M,, refer to s-channel absorptive, i.e.,
imaginary, parts. Further dissociations, with
their corresponding two-pion cuts, are implicit
in the internal amplitude M,,. We do not need to
consider cut terms generated by dissociation of
the proton, if they do not also involve dissocia-
tion of particle a, because our interest here is in
diffevences between various particles a. The
modifications to (3) required by spin and isospin
will be discussed shortly.

Our present objective is to calculate the Hankel
transform (1) of Eq. (3) in the limit of large b. We
will then use the asymptotic form downto b~1F
in order to estimate the contribution of the tail to
the total cross section. The correctness of this
procedure can be checked by direct numerical
integration of Egs. (1) and (3), which we discuss
at the end of this section.

The discontinuity across the two-pion exchange
cut in Eq. (3) is an absorptive part in both s and ¢.
It is equivalent to the Mandelstam double -spectral
function for the box diagram, integrated over the
mass of one side of the box. By means of the
standard Feynman parametrization method, we
rewrite (3) as a dispersion integral in ¢:

__& ds’ '
M°(s’t)_161727s f Q Mﬂp(s t).[o (tf_t)[t/(t/_to)

s'=(k+p-q),

]1/2 ’

(4)

Q =[s%-2s(s’ + m,2) + (s’ -m,})]'?/2Vs ,

to={m,2s% + s[myt—=m,2(s'+ m, 2 + 2m,%) + (' =m?)(m2 = my?)] + m2(s’ —=m. )’} /Q%s .

Assuming as an approximation that M,,(s’, t)=s’f(t), which corresponds to a constant 7p differential
cross section, and letting s -« with s’=(1-x)s, we obtain

at’

My(s, 1) =S M (s t)fldxl_x fm
a ) 8772 ™ ’ A x ‘0 (tl_t)[tl(tl_to)]I/Z ’

4
w2

o [xm,2 +(1 =x)m2—x(1 - x)m,?].

to=

(5)

(6)



The integration variable x is the fraction of a’s
momentum which is carried by c¢ in the lab, or
center of mass, frame. {,is close to its minimum
value of 4m,? only when x is close to 1. There-
fore, only x=1 contributes to the cut near the
branch point at 4m,%. Thus the total cross section
at large b is generated by inclusive production of
the low-mass system c in the fragmentation region
x2 0.9. To determine the behavior of the cut in
this region, we neglect terms of order (1 —x)? in
(5) and (6), and interchange the order of integra-
tion to obtain

L g2 f dt'(t'—m, 2P
Mas, > gguza Mool 0 ) =iy

mE=ml+mpi-me®. (1)

This result displays the discontinuity in ¢, and is
valid when 4m,2< t’ < 4(m,*+#?), which deter-
mines the upper limit of the integral. This region
of validity is reasonably large on the scale of m,?,
except in applications where m,~m,, which are
discussed separately in the Appendix. As {’'—~o,
the true discontinuity probably oscillates, in a
manner which depends on off-shell effects. We
ignore these effects, as an approximation, since
we are interested in the region near 4m,?, which
governs large b.

To calculate the behavior at large b, we approxi-
mate M,,(s, t) by its value at an average ¢=7, and
use (1):

1‘20(5‘1))m (gz/gsﬂzmq)M‘vm(sy T)

><f dt(t—4m, 2P 2%t~ 2K (bVT).

amy2

(8)

Using the asymptotic form of the Bessel function
K,, we find the behavior

2 4
- - g°my _
M,(s,b)~ T6nss Mag,(s,T)
X exp(—-2mb)/(mb)? (9)
at large b.

This exhibits the asymptotic behavior claimed in
Eq. (2), with @ =1 because we assumed an energy-
independent cross section as an approximation.
Our normalization is defined by o, =M (s, 0)/s.
Total absorption (the center of the partial-wave
unitarity circle) corresponds to M(s,b)=4m.

In order to estimate the absolute contribution of
the two-pion tail to the total cross section, we ap-
proximate M,,(s, ) by M,,(s,0)exp(Af/2). As-
suming a 7p slope A=10 GeV~2and 7 =10m,?, we
have M,,(s,T)=~2.65s0,,. Note that we require
M,,(s,t) at the unphysical point {=7 only because
of our method for estimating the Hankel transform
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FIG. 1. (a) Particle production by a collision involv-
ing a long-range pion. The kinematic region of interest
is where the particle or system ¢ has small transverse
momentum and large longitudinal momentum, e.g.,
x=pg /p,',’ ~0.9. (b) The elastic amplitude (absorptive
part) which arises from (a) according to unitarity, in
triple-Regge notation. This amplitude has the two-pion
exchange branch point at ¢ ~4m,2. At t=0, it is simply
the total cross section associated with (a), by the op-
tical theorem. (c) Two-pion cut contribution to a typical
inelastic (diffraction-dissociation) process. Momentum
labels are also shown.

of Eq. (7). The actual process under discussion
(Fig. 1) involves only physical ¢ <0. We integrate
the asymptotic form for 5>0.9 F, and obtain the
result that if

M,(s,b)=Nexp(-2m,b)/(mb) (10a)
then
oa=f M,(s,b)bdb=3.3N mb. (10b)
0.9F

We now obtain an estimate of the large-impact-
parameter cross section associated with Fig. 1, or
Eq. (3), by combining Egs. (9) and (10):

2 2 2 2\-2
0, g% 0np(m,° + m %= m,?)

% (0.00017 GeV?). (11)

This equation can be used to make a crude estimate
of the tail contribution to any process. For ex-
ample, a typical value of the strong-interaction
coupling constant would be g?/4n~5 GeV2. For
low-mass states m,, one has typically m.2+ m,>
-my>~ 0.6 GeV?. Therefore, 0,~0.8 mb. For a
high-mass state it is convenient to relate g2 toa
decay width. Assuming particle ¢ to have spin 0,
for simplicity, and neglecting the pion mass, we
have g?=161m,*T,_ ., /(m,2 - m,?). Therefore,

0o x Ty ngrm®/(m.%2 = m?2). This demonstrates that
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states with large m, will contribute little to the
tail.

We have verified the above estimate by numer -
ically integrating Eqs. (3) and (1) after inserting
“form factors”

exp{C[(k-q)* + m,*)}exp{C[ (k' -q)*- m,*]}

into (3) to suppress the far -off-shell part of the
pion propagator. In the case a=m, c¢=p, for ex-
ample, with appropriate factors for spin and iso-
spin included, as described in Sec. III, the result
agrees with Eq. (9) for b~3 F, for all reasonable
values of C, e.g., 1-4 GeV~2. It lies higher by as
much as a factor of 4 for b~2 F, and below by a
factor of 2 at b~ 0.9 F. These errors tend to com-
pensate each other, so that the estimate of the
cross section given in Eq. (11) is about right. We
therefore believe our estimate of the cross section
associated with the tail to be accurate to within a
factor of 2-3.

This uncertainty is not a serious problem at the
moment, since we wish to compare the relative
strengths of the tails for different processes. The
ratios among o, for various processes should be
given fairly accurately by the asymptotic forms.
The absolute magnitude for one process can then
be determined from experiment.

III. TOTAL CROSS-SECTION DIFFERENCES

In each specific application, we must include
additional factors to account for spin and isospin.
This chore may be simplified by evaluating the
spin factors at ¢=4m,?, with the pions on the mass
shell: (B-q)?>=(k’'-q)*=m,% The discontinuity
near t=4m,?, and hence the behavior at large b,
will be unaffected by this approximation.

Let us first consider a=7 and ¢ =p in Fig. 1.
Because of the spin of the p, Eq. (3) acquires a
factor 4(-k-k’ +k-qk’-q/m,?), which we can re-
place by

dm®+ (mo®+m = mS2V/mP=4m+ m,®.

It also acquires a factor of 2 due to isospin, since
two charge states of the p are possible for each
charge state of the incident pion. With these fac-
tors, Eq. (11) yields 0,=0.69 mb. (We use o,,=30
mb, and obtain g2/47=2.81 from the measured

p width of 146 MeV.)

The result o, =0.69 mb is an estimate of the
large-b part of o,, which comes from the dissocia-
tion m—p7m. As a test of the plausibility of this re-
sult, we note that the Deck model® for diffractive
dissociation predicts an integrated cross section
for mp ~ pmp which is similar to Fig. 1, except for
a factor oq(mp)/0, (mp)e=0.14. This factor arises
because the Deck effect requires elastic scatter-

ing of the virtual pion. The diffractive cross sec-
tion for 7"p—-7"p% is ~ 0.2 mb. With the 7% ~
state, this leads to an estimate of (2)(0.2)/0.14=3
mb for Fig. 1. This estimate includes contribu-
tions from all impact parameters, and shows that
our result of 0.69 mb for the tail at large b is
reasonable, but could be too small by up to a fac-
tor of ~ 2.

Now consider the SU(3)-analogous situation
where a =K and ¢ =K*(890). Using Eq. (11) and
the appropriate spin and isospin factors, we ob-
tain o =0.23 mb. Thus we predict o,, —0x, =~ 0.5
mb as a result of the two-pion cut from meson
dissociation. States other than p/K* in the role of
¢ could increase this value somewhat, even though
they are suppressed by the factor (m,2+ m - m,?)"2.
The presence of a 27 cut in the internal elastic
scattering, which we have ignored, will also tend
to increase it.

A further effect which will increase the tail con-
tributions to o, oy, and o, -0y is the dissociation
of the nucleon. We estimate this effect crudely
as follows: The tail in pp scattering for b>1 F
amounts to =~ 10 mb.* This corresponds to 5 mb
from dissociation of each nucleon, if we ignore
the small effect of double dissociation. The tail
in 0, due to nucleon dissociation should there-
fore be =~ (5 mb)o,/0,,. We estimate this as
=~ (5 mb)og,/0,,~2.4 mb, by using factorization®
and evaluating oy, and o,, at a lab momentum
~20 GeV/c. This momentum is relevant to the
tail in ox, at ~200 GeV/c, because the elastic scat-
tering in Fig. 1 takes place at an invariant energy
squared of (1-x)s~s/10. The corresponding con-
tribution to o, is (5 mb)oy /04, (5 mb)o,, /0,
=~3.1 mb. Adding this effect to the previous ones,
we anticipate diffractive contributions to o,,~0,
on the ovder of 1.5-2 mb. This is smaller than
the measured value, which is ~3.7 mb at 200
GeV/c (see Ref. 6) if one averages over 7* and
K*. The measured value, however, includes con-
tributions from lower-lying vector-meson ex-
changes. A full analysis of the energy dependence
is needed to extract the Pomeron part of the mea-
surement.

The ratio of the tail contributions due to the
dissociations (K ~K*1)/(n—~ pn) is ox/0, =0.34.
This ratio is quite insensitive to our assumptions
for estimating the absolute values of g, and o,. It
is very close to the value 5 which would result
from assuming exact SU(3) invariance everywhere,
except in the requirement that only the two-pion
state appears in the ¢ channel. This is because
the factor (m,?+m,?- m,?)"2 and the factor
4m 2+ (m,2+ m,% - my?)?/m,? which comes from
spin are about equal for a=m, ¢c=p, and a =K,
c=K*. At the same time, the ratio of coupling
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constants g,,»/gxxxr determined from the mea-
sured widths of p and K* are close to the pure
SU(3) prediction.” Our theory thus predicts

Onp >0k, in @ natural way, based on the fact that
the SU(3) coupling 778 is larger than K78 by a
factor of V3, where 8 stands for the octet of vec-
tor mesons. Hence the pion cloud amplitude of 7
is stronger than that of K. The breaking of SU(3)
in the cross section occurs because of the break-
ing in masses— specifically, the small pion mass,
which makes dissociations involving pions domi-
nate at large b.

Now let us consider the case where the incident
particle @ in Fig. 1 is one of the 3* baryons N, A,
=, E. In the role of ¢, we include the 3* and 3*
baryons. States of higher mass will be less im-
portant because of the factor (m,%+m,2— m,?)72,
as discussed previously. Thus we have a=N,
c=N, A; a=A, ¢c=3%, Y*(1385); a=Z, c=A, T,
Y*; anda=%, c=%, =*(1530). First consider the
3% intermediate states. Equation (11) must be
modified because m, ~m,, as shown in the Appen-
dix. We find a mass dependence «m, 2. The
cross section associated with the tail whena=N
and ¢ =N is 0? ~4 mb. Using SU(3) with f=0.4
and d=0.6 to relate the coupling constants, and
taking proper account of isospin, we predict

0./(\1/2)/0(;,/2)=_;_ dzmpz/mzz

-0.30,
o2 [oWB = 8 f2 2/ 2 1 & P, m
=0.38,
and
0% /04D = (f —=d Pm,2/ma
=0.02.

These ratios are determined mainly by the cou-
pling constants, and are therefore insensitive to
the approximations used in estimating the absolute

value 01/~ 4 mb. Now consider the 3* states for

c. We estimate ¢§/2’~2 mb by numerical integra-
tion. We determine the coupling constants for
TNA, TAY*, 7Z2Y*, and nE=* from the measured
widths of the resonances. This is essentially
equivalent to obtaining them from SU(3), since
SU(3) is known to work well for the 3* decays,
when the natural phase-space factors are includ-
ed.” We find 0§/?)/0$/=0.58, 0@/? /6'3/?=0.18,
and 02 /6%/2=0.16.

Combining the 1% and 3 results, we predict
Opp =Opp=3.6 mb, 0,, —05,~4.1 mb, 0,,-0z,~5.6
mb. These numbers are somewhat crude, but il-
lustrate the direction and approximate size of the
total cross-section differences which are to be ex-
pected.

+

Using the impact-parameter projection of Miet-
tinen,* we find the pp cross section at s=1000
GeV? to be ~20 mb for »>0.8 F, and ~4 mb for
b>1.6 F. Our estimate of ~ 6 mb for the contribu-
tion of the two-pion cut due to dissociation of one
of the protons appears reasonable in the light of
these numbers.

The above estimates imply that the two-pion
contribution to o,, is larger than the contribution
to o,p. The two-pion cut therefore produces an
asymptotic difference between baryon-baryon and
meson-baryon cross sections. If we speculate, for
example, that the small-impact-parameter cross
sections become equal at extremely high energy,
then 0,,/0,,~ 1.12. This ratio is significantly dif-
ferent from 1, although it is considerably smaller
than the data at s=~400 GeVZ.°

IV. SPIN-FLIP PROCESSES

The process in Fig. 1 also implies peripheral
contributions to elastic scattering with helicity
flip (e.g., ¢ =A, with flip coupling at one 7NA ver-
tex and nonflip at the other). These contributions
have the same energy dependence as the nonflip
ones. Therefore, on theoretical grounds, we
predict that the Pomevon does not conserve S-
channel helicily.

The asymptotic behavior (2) also holds for
helicity-flip amplitudes. In order to discuss the
magnitude of the flip amplitude, it is therefore
convenient to consider the ratio of flip to nonflip
at large b. In pp scattering, we find a ratio of
=~ 0.7 for ¢ =nucleon by numerical integration. An
approximate calculation of this ratio is given in
the Appendix. A similar ratio holds for ¢ =A, so
we obtain M, _(b)/M,.(b)~0.35 at large b. A fac-
tor of 3 is included in this ratio, because dissocia-
tion of either proton will contribute to M, ..

We neglect the spin of the proton which does not
dissociate, so M, _ means Mé%_%% or My_y_y_yin
the usual helicity amplitude notation. The two-
pion cut generated by dissociation of bo/: protons
in pp scattering would contribute to double-flip
amplitudes, including My, _,_, which has n=0, and
is therefore nonzero at {=0. This double dissocia-
tion effect involves nm scattering and two dissocia-
tions, and will therefore be quite small— probably
about 0.04 times the nonflip Pomeron. This is
relevant to the validity of high-energy Coulomb
interference experiments.

According to our model, M, _=-M_,, while
M,,=M__. This is evidence that, when the two-
pion tail is added, the Pomeron still has natural
parity. This result is also true for inelastic dif-
fractive processes, which are discussed in Sec. V.

Because the Pomeron contributes to helicity-
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flip amplitudes, via the two-pion cut, and because
significant real parts away from ¢=0 are implied
by the observed energy dependence of do/dt, via
dispersion relations,® we predict polarization ef-
fects in elastic scattering to persist to very high
energy. To estimate the polarization in pp scat-
tering, we use

M, =is11.5Re?®' J (RV-1)V =1
+i51.947%3-% J (r V= 1),
R%=8.47+0.33(Ins —in/2),
72=2.92(Ins ~in/2) (12)

in units where GeV =1. This formula approximates
the measurements of g,,, and do/dt at CERN ISR.
The first term is central in impact parameter,
with a radius which expands extremely slowly with
s. The second term is peripheral in impact pa-
rameter, and we assume it to correspond to the
two-pion tail. Without the exponential factors,

the first term would be a grey disk of radius R,
and the second a 6 function at b=7. Real parts
are generated by the —in/2 terms, which are as-
sociated with Ins. This association comes from
crossing symmetry and analyticity— just as in the
case of an even-signature Regge pole, for which

[1+exp(-ima)]s® < exp[ a(lns - zim)].
For the flip amplitude, we assume
M, _=isC1.947%3-9% J (»V=1), (13)

which is peripheral in impact parameter. Without
the exp(3.93¢) factor, it would correspond to a &
function at b=7». We set C=0.35, our predicted
flip/nonflip ratio at large b. This leads to
M,_/M,,~0.016(Ins)*>*V=f near ¢=0. The result-
ing polarization, P=2Im(M, ,M%_)/(IM, )%+ |M, _|?),
is shown in Fig. 2. The change in sign of P is as-
sociated with a zero in ReM, _. It follows from
the expanding peripheral nature of the flip ampli-
tude, and is therefore a rather general prediction.
The effect of assuming a slower growth of M, _, by
including a factor 1n(500)/(Ins - 7/2) in Eq. (13),
is also shown. With this assumption, the zero in
P moves to very small - ¢{. Our model also pre-
dicts a definite overall sign for the polarization
(which may correspond to the sign shown in Fig.
2).

The two-pion cut effect for A dissociation is
smaller than for N by =~ 0.4. We therefore pre-
dict a A polarization in Ap - Ap which is similar
in shape to Fig. 2, but smaller by a factor of 2-3.

V. INELASTIC PROCESSES

The mechanism of Fig. 1 also leads to diffractive
production of inelastic states, i.e., diffraction dis-

sociation. This includes spin-parity changes
0--1"and 0--2*. For instance, we can have
a=K, a’=c=K*(892), or a=7, c=p, and a’=A,.
Therefore, the Pomeron will not respect “Moryi-
son’s rule” because of the two-pion cut, if for no
other reason.

To estimate the diffractive production of K*(892),
we use ¢ =K*(892) and obtain the K*K*n coupling
constant from the width of w— 7%, using SU(3) and
vector -meson dominance. We calculate the loop
integral numerically, including appropriate spin
and isospin factors, and form factors as discussed
in Sec. III. The result is again rather insensitive
to the choice of form factors. The produced K*
has helicity + 1 only. This indicates that our
Pomeron is purely natural parity in the ¢ channel,
which forbids helicity zero. We find M(b)=0.15
exp(-2m,b)/(m,b)® at large b. Extrapolating to
small b in a way which makes the amplitude small
for b<0.9 F, and integrating the cross section
over ¢, we predict o=~ 1 ub for diffractive
Kp—~K*(892)p. At low energy, this reaction is
dominated by vector-meson and pion exchange.

At energies above 100 GeV, the interference
term between the diffractive contribution and

the ordinary Regge exchange should become vis-
ible in the energy dependence. If standard duality
arguments hold for vector-meson production, the
Reggeon contribution to K™p -~ K*“p has a rotating
phase while K*p —K**p is mainly real. The dif-
fractive contribution is mainly imaginary, and
will therefore interfere more strongly in the for-
mer reaction than in the latter. The sign of the
interference term, which determines which cross
section is larger, is hard to predict, but would

Ol

-0.2L

FIG. 2. Predicted polarization in pp scattering. The
solid curves correspond to Egs. (12) and (13) at s=200
GeV? (upper curve at t=—0.4 GeV?) and s=2800 GeV2.
The dashed curves correspond to a slower rise of M,
with s, as described in the text. The energies are
again s =200 (upper at t=—0.4 GeV?) and 2800 GeVZ.
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nevertheless be worthwhile to measure.

We also estimate the diffractive contribution to
mp~A,p, by numerical integration of the triangle
diagram [Fig. 1(c)]. We use ¢ =p, and obtain the
necessary coupling constants from the widths of p
and A,. Because of the masses of these particles,
the two-pion cut actually starts at ¢~ 1.6m,® in-
stead of 4m,? (anomolous threshold). The asymp-
totic behavior (2) is correspondingly modified. The
integration of Eq. (3) is complicated by the fact
that one of the internal pions in Fig. 1 can be on
the mass shell, which generates an extra real part
in the final amplitude. Our predicted cross sec-
tion is ~1-2 pb.® The ratio of helicity-2 to heli-
city-1 A, is M,(b)/M,(b)~ 1.5~ 2. This leads to
M,(t)/M,(t)~ (2 GeV~!)V=1 near t=0. The mea-
sured A, production is ¢ ~ 18 pb at 40 GeV/c.*
This should correspond to

1/2
ORegge *0 diff +2(0Reggc0diff) cos¢.

The relative phase factor, cos¢, will be close to
1; S0 0gyr = 1.5 ub implies Ogegge~ 9.1 ub. The ratio
of amplitudes is then (0gisr/Ogege) />~ 0.3 at 40
GeV/c. Assuming an energy dependence oy =con-
stant, while Ogege< 1/, We predict o~7 ub at
Dy =200 GeV. The actual cross section is likely
to be somewhat larger because o, Will increase
slowly with s.

VI. CONCLUSION

We have given a serious theoretical argument
for the existence of diffractive production of heli-
city-flip amplitudes, including production of reso-
nances such as K* and A,, and for sizable SU(3)
nonsinglet diffractive contributions. All of these
follow from the same mechanism as the large-
impact-parameter tail, which manifests itself in
the small-¢ slope increase in pp scattering at the
ISR. That mechanism is the long-range tail in
impact parameter, which is due to the two-pion
t -channel threshold. The basic physics is very
simple, although numerical estimates are model -
dependent. A large number of predictions for
high-energy cross sections and polarizations are
testable, and will provide checks on the estima-
tion procedures and ideas. Because of its effects
at small ¢ and high energy, the large-b tail has a
surprisingly large effect on interesting observables
in high-energy physics.

APPENDIX

When particles a and ¢ in Fig. 1 are both nu-
cleons, the approximations leading from Eqs.

(5) and (6) to Eq. (9) break down because m,~m,.
In this case, we proceed as follows. Including
the spin of the nucleons introduces a factor

Vi =2 (") m, + iy +q) u™ (%) into Eq. (3). By
Lorentz invariance and the symmetry of the inte-
grand, we can replace ¢ in this expression by
(+k')A+(k +p)B/s. Evaluating A and B at the
pion poles, (k=p)2=m,2=(k'-p)*-m,2=0, and
taking the limit of large s, we obtain 4 =x/2 and
B=2m>2(1 ~x)-m,2+tx/2=~2m>(1 -x). Hence
Vi =xt/2-mg*and Vy_y= (1 -x)m(-1t)"% Over
most of the important region of x, we can replace

Eq. (6) by ¢t,~4[m,*+(1 -=x)*m,*]. Then Eq. (5)
yields
gz
MY (s, t) WM,,(s, t)
dt/(t/_4m"2)3/2
X
lm,Z (tl_t) ztl (Al)

for the nonflip amplitude (Vy, included). Compar-
ing this with Eqs. (7) and (11), we obtain

0.=8%0,,m, 2% (0.00026 GeV?), (A2)

which is analogous to Eq. (11). Using the standard
pion-nucleon coupling, g%/4m=15, and including a
factor of 3 from isospin, we obtain g,=5.0 mb for
the contribution of Fig. 1 to o,,. Dissociation of
the target proton would add another 5.0 mb. This
agrees reasonably well with results obtained by
numerical integration. Equations (A1) and (A2)
also hold for the SU(3) analogs of the nucleon,
e.g.,a=A, c=Z, ora=c=E.

For the flip amplitude, we include V,_, instead,
and obtain
2
(4-1) 8=l
Ma (svl)_zssmeZM‘np(syt)
dat'(t'—=4m,*)"°

x [ 1 A3
am g2 (t’—t)Qt' (A3)

As before, we replace M,,(s,t) by so,,d*"? and
make the Hankel transform, using Eq. (1) with the
Bessel function J, replaced by J,, where n=1is
the net helicity flip. Then

2 -1y - & Onp €Xp(AT/2)
Me ®) 2567 m,*

><f at(t—4am K (bVE ). (A4d)
4m g2
Via the asymptotic form for K, and the substitu-
tion t=4m,%(1+2)?, we obtain

820, my exp(AT/2) exp(-2mb)

73-3) o
Mg~ = 32V71 m,? (m,b)>"2

(A5)
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This should be a reasonable representation for
b~1-5F. The power b~°/% in place of the pre-
vious b3 results from approximations. The final
asymptotic behavior would not set in until 5> 10 F,

and is therefore irrelevant. The ratio of flip to
nonflip at b=~ 1.5 F is M- /M~ 0.6. This
agrees reasonably with the result ~ 0.7 obtained
by numerical integration, including form factors.
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