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Determination of the 5++-5' mass difference*
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The 3-3 phase shift obtained from m+ p and m p scattering is used to determine the positions of the

poles in the S matrix corresponding to the b, + and the b, . The mass difference is then given by the

separation of these poles.

INTRODUCTION

Electromagnetic mass differences have long
been a challenge to our understanding of hadron

physics; the oldest and most famous example is
the still- to-be-understood proton-neutron mass
difference. Until now the only unambiguous exper-
imental determinations of mass differences have
been for stable particles. This is understandable,
since unstable particles have lifetimes very much
shorter than 1/mass differences, and care must
be taken in defining the mass of a resonance. It
is also regrettable, since common to all of our
present-day understanding of hadrons is the be-
lief that there is no fundamental difference between
stable and unstable particles; they are all mem-
bers of quark algebra multiplets, or members of
Regge trajectories, or whatever.

Recently Ball et al. ' have shown that present
r'P scattering data are sufficiently reliable to
permit a determination of the location of the pole
in the 3-3 scattering amplitude to an accuracy
better than the expected electromagnetic mass dif-
ferences. The important feature of their analysis
is the observation that the location of the pole is
essentially independent of which resonance formu-
la was used to fit the data, even though the param-
eters (M and I') in each formula range over sev-
eral MeV, depending on which formula mas used.
A properly designed resonance formula has cor-
rect analytic properties in the physical region and

a nearby pole on the second sheet which gives the
rapid variation characterizing the resonance. The
differences between resonance formulas are dif-
ferences in the treatment of distant singularities
which one hopes would not affect the pole param-
eters very much. It is gratifying that this seems
to be the case in m-nucleon scattering as the pole
position is the fundamental quantity: The position
and residue of the pole define the resonance from
the S-matrix viewpoint; they mould be the expected
output of a Lagrangian field theory.

The primary goal of this paper is to obtain the
experimental n,"(1236), a'(1236) mass difference
in a model-independent manner. %e hope this

will help show that precision m-nucleon scattering
experiments are of value, and that their signifi-
cance does not depend on making "internal Cou-
lomb corrections" which cannot be done accurately
in the absence of a specific model for hadronic
interactions.

In this paper me extend the work of Ball gt gl. '
in three ways. First, the formulas they use do

not, strictly speaking, have the correct analytic
structure in the physical region, because they do
not treat exactly the essential singularity at
threshold caused by Coulomb scattering. The
strength of the singularity is only of order n, the
fine structure constant, but we are interested in

determining masses to sufficient accuracy to see
electromagnetic mass differences of that order.
Following %Kong and Noyes, ' and Hamilton el aI. ,

'
we give formulas of the correct analytic form
and show that with the present experimental ac-
curacy this singularity is not important, provided
one uses the so-called "nuclear" scattering am-
plitudes, as was done in Ref. 1. Second, we use
the nem data and phase-shift analysis of Carter
et at. ' Third, we perform a similar extrapolation
for m P scattering, again using the data and analy-
sis of Carter gt a/. ' In making the extrapolation
for m P scattering, we have been guided by the
rule that our formula should have the correct
analytic structure on the right. %e thus explicitly
take into account the difference between the ~'n

channel and the 7T P channel thresholds, the ex-
istence of Coulomb scattering in the Tt f channel,
and the inelastic process ~ P- yn. Comparing the

pole positions we find for m'P and v P scattering
gives, we believe, the first reliable determination
of the b",~' mass difference.

In their analysis Carter et al. 4 make use of a
number of simplifications which are well supported
by their data to their present level of accuracy
and which we also assume. Specifically, we ne-
glect magnetic moment terms and spin flip in

treating Coulomb amplitudes; we take the m'P

inelasticity and likewise any purely hadronie 7t P

inelasticity to be zero; and we assume the isospin-
breaking amplitude to be of order o. , which means

1171



1172 JAMES S. BALL AND ROBE RT L. GOB LE

that the imaginary part of the 3-3 n' p amplitude
comes from 3-3 intermediate states plus yn
states, since the photoproduction amplitude is of
order ~e. There are, however, tmo respects in
which we treat the data differently from Carter
et al. ' (in addition, of course, to the major dif-
ference that we make an extrapolation in the com-
plex plane). We have eliminated their calculated
"Coulomb corrections" from their data, since we
are looking for the electromagnetic mass differ-
ence, and if those corrections really were done
correctly they mould presumably not have seen
any difference between the two charge states. We
have also chosen not to use form factors in going
from the total amplitude to the "nuclear" ampli-
tude since they simply correspond to adding extra
left-hand singularities and our analysis eschems
a consideration of distant singularities.

where T„is the "nuclear" scattering amplitude
and satisfies an elastic unitarity condition. As a
first approximation we could neglect the fact that
T„stillcontains a residual effect of the Coulomb
scattering in the form of an essential singularity
at threshold, and define a function with good analy-
tic properties,

M=-M
q3 t (4)

where q is the c.m. momentum. The analyticity of
M can be expressed in

I '=K- iq (5)

where (while we still neglect the residual essential
singularity of K at q' =0) K is a real, analytic func-
tion in a neighborhood of the physical region. We
exploit the good analytic behavior of K by making
an effective-range approximation; we fit the data
by using a third-order polynomial for K and then

EXTRAPOLATION PROCEDURE

We will begin our discussion with the simplest
case, m'p scattering, which has essentially only
one channel. We define a function with simple
analytic properties by considering the total P-mave
scattering amplitude S,

S=S- Sc+Sc

where Sc is the P-wave partial-wave amplitude
for pure Coulomb scattering,

S =e"'c

where c is the argument of (12 i+q) and q=a/v,
mhere v is the lab relative velocity. Then

S- 1 S-Sc Sc —1
~ =T = . + . =ScT+Tc y2$2i 2i

M ' =K —Q —i q'C'(1 +q'), (8)

where K is analytic in a neighborhood of the
physical region, even with the effects of Coulomb
scattering, and

where g is the digamma function. We use this
analyticity by fitting K to a third-order polynomial
and find a zero in I ' at the point on the second
sheet,

M~++ =& s = (1211.5 —50.1i) MeV. (10)

Our fit to K is

K = A.,+A,x+A, x'+A, x3,

where x=-W/140 MeV —8.5, W is the total c.m.
energy, and our determination of the parameters
is Ao = 2 608 A, = -5.&73, A2 = -5.646, and
A., = -2.550. We have used the quoted errors of
Carter et al. ,

4 y' was 1 per degree of freedom,
and the pole position in Eq. (10) was determined
with an error of 0.6 MeV absolute magnitude in
the complex plane. To calculate the error in
determining the pole position me used the standard
formulas discussed by Cziffra and Moravesik';
however, we have no way of accounting for the fact
that in the analysis of Carter et al. ' the errors for
each data point may not really be independent. We
find that within this experimental error it makes
no difference whether K or K is used for the extra-
polation, though this could become important if
there mere an improvement by a factor of 3 in ex-
perimental accuracy or if lower-energy data points
were used.

The analysis of n' p scattering is more compli-
cated in tmo ways. First, there are three relevant
channels, only one of which has an asymptotic
Coulomb interaction; second, the tmo hadronic
channels have a sizable difference in their thresh-
oM energies, which violates isospin invariance.
For this reason we must work with charge states
rather than isospin states. Hence, me take the
partial-wave S matrix to be a 3x 3 matrix operat-
ing in the states

extrapolate the corresponding M ' onto the second
sheet to find its zero. This was essentially the
procedure of Ref. 1. We check the neglect of the
essential singularity in K by defining a function
free of it"'

M '=C(1+q)M ',
C' =2vq/(e""

Then the analytic properties of M are given by the
expression
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As before, we separate out a "nuclear" scattering
matrix T„,

fact that in the energy range of the experiments
(q -q, )/q, - a.] We have fitted K, to a third-order
polynomial and K, to a constant and have then ex-
trapolated the resulting M» in the second sheet to
find its pole. We can again test the neglect of the
essential singularity by defining a matrix which
is free of it':

T —Sc TzSc + Tc (12) M 1 y 1 /2M ly 1/2 (20)

(0"' o 0~
S = 0 1 0 (13)

(0 01
We define a matrix

p 1/2T p
1/2 (14)

where Sc is now the matrix for attractive pure
P-wave Coulomb scattering in the m P channel,

where

0 *(F 0*~ 0 0)
0 1 0

0 0 lf
and

27/2)/(e 22" 1}

Then M has simple analytic properties

(21)

(22)

(0' 0 0)
p=l 0 q, ' 0

(0 0 o~')

(15)
M ' =K+ Q —zP'"pQ'" (23}

where K is a real matrix analytic in a neighbor-
hood of the physical region,

where q, q„and q& are the c.m. momenta in the
v p, v'n, and yn channels, respectively. Again,
neglecting the essential singularity at the m p
threshold, M has simple analytic properties:

q o 0)
Q= 0 0 0

o o of
(24)

M '=K-ip, (16)

yn

with K analytic in the neighborhood of the physical
region. It is convenient to perform an isospin ro-
tation on M using the states

I=—32
I=—1

2

MI =RMR (25)

and again, to first order in a, the pole can be
located by writing

M33 =K, + 3Q

—2[oq 2C 2(1+re)+ oq,2+q~2K2]. (26)

with Q defined by Eq. (9). Again, it is useful to
rotate in isotopic spin,

as a basis:

M, =RMR-',

where

(17)

We have fitted K, to a third-order polynomial,
K, to a constant, and when M» is continued into
the second sheet, we find a pole located at

(1)1/2

-(-', )'(2

t'/"
(1 }1/2

0 1

(18)

M~o = 1( s = (1211.6 —53.02) MeV .

Kl was w ritten

K, =Ao+4,'X +A.,'x'+A,'x 3,

(27)

(28)

MI has the property that the only terms of order
v e or bigger are M», M», and M», and the pole
in M appears with a large residue in M». This
makes it convenient to fit M~ ',

1

M22 '=K, —2(2q +2q ) —2q), K2,

where K, and K, are meromorphic on the right
(still neglecting that essential singularity) and the
other contributions to the imaginary part of M» '
are smaller by a factor of a. [Here we use the

with x as before and the parameters of our fit
were A,'=2.426, &', = -6.172, 42'=-6. 171,
A,'=-2.189, and K, =0.0182. It is difficult for us
to estimate the error of our pole determination
for this case because of the way the data were
analyzed. In their analysis Carter et al.' imposed
an "effective inelasticity" that came partly from
the data on m P- yn, ' and partly was to account for
the difference in thresholds. We have made two
assumptions for our fits: One was to assume a
uniform error of 1% in all data points; the second,
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which corresponds slightly better to the quoted
errors, was to assume an error of 0.01 in cot6.
Both assumptions gave comparable fits, both with
acceptable p'. From the quoted errors in the
phase shift we would estimate that the error in
this determination is somewhat greater than for
the 6".

RESULTS AND CONCLUSION

Our final result is

The residue of the poles is in principle also an
important quantity and can be calculated from the
parameters of our fits, Eqs. (11) and (28). How-
ever, it is necessary to decide in the case of the
4' precisely for which amplitude the residue is
to be calculated when one is considering differ-
ences of the order of electromagnetic effects.

We wish once again to emphasize that more pre-
cise data can substantially improve the determina-
tion in Eq. (29). Such data can and should be ana-
lyzed in a model-independent way.

M&++ -M z,o = 0+ 3i Me V . (29)

It is interesting that this mass difference is small
and, to the accuracy of the data, entirely imagi-
nary. This would never happen in conventional
field-theoretic calculations such as those of
Socolow' in which the tacit assumption is made
that the particles are stable, so all mass differ-
ences are real. It will clearly be necessary to
take into account the fact that there are open chan-
nels in explaining this result.
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