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We have extended a previous analysis of two-point functions, which was based on the (3, 3) model of
chiral symmetry breaking and the Wilson short-distance expansion, to the three-point functions of the
model. We obtain additional consistency requirements which now determine all parameters of the model
in terms of the pseudoscalar masses plus F~/F J'+(0), as determined from K», K», and m» decay,

Q (the slope of the scalar K» form factor) is predicted to be Ap 0.016. From this solution, we
calculate the rate for q'~gmn, but find a small result, in accord with previous calculations. %e also
find one relation between masses of the two scalar, isoscalar particles of the model.

I. INTRODUCTION II. NOTATION AND SUM RULES

In a previous paper' we utilized the Wilson
short-distance expansion' to reanalyze the various
sum rules in the (3, 3) model of chiral symmetry
breaking from a unified point of view. In addition
to confirming the validity of the older results, '
we found that a new set of sum rules should be
valid. By using these plus some plausible as-
sumptions about two remaining parameters, we
found excellent agreement with the experimental
values of F»/F, f, (0) and &, (the slope of the sca-
lar form factor in K„decay}. We were also able
to estimate I'(7i'- 3»} and I'(q'-2y) and found re-
sults within the present experimental bounds on

these numbers.
The present paper extends our analysis to in-

clude the three-point functions. In order to con-
struct a consistent solution, we find that an addi-
tional constraint must be satisfied so that our
solution is now completely determined by the
pseudoscalar masses and F»/F, f, (0). In Sec. II
we review the notation used and summarize the
previous sum rules. In Sec. III we consider the
(»K») vertex to illustrate the methods used and
also to determine the leading asymptotic behavior
of two-point functions. This will be needed in the
subsequent sections. Section IV is an analysis of
the vertex relevant to the g-g' v term from which
we can calculate I'(q'- qx»). At this point we as-
sume zero wave-function mixing, which was our
approximation in the previous paper. ' However,
in Sec. V, by a.nalyzing the (q»K) vertex, we find
an additional constraint on this mixing, which,
when combined with the value of F»/F„f, (0),
yields small but nonzero mixing. In Sec. VI we
look again at the analysis of Sec. IV and find con-
straints on the remaining scalar-meson masses.
Finally, in Sec. VII we summarize our results
and discuss some difficulties of the model along
with possible extensions of it.

We use the following definitions of the PCAC
(partial conservation of axial-vector current) con-
stants and the wave-function normalization con-
stants:

(0)Aq '~ ») =iPqF, , (0(A„'(K)=IP„F»,

(0) At ( q) =zp„F„cosy, (0(At (
q') = ip„F„-sing,

(oi V'„[»)=fP„F„,

and

&0~ v, , ~
») =~Z. , &0( v, , )K) =~Z„

(0( v, ) q)=v&, cosy, (0( v, (
q') =-~z, sing,

(0[ v, [ q) =v'Z, sin8, (0[ v, [q') =~z, cos8,

&oi u, , i ») =vZ„.

(2)

In terms of these definitions, three sets of sum
rules can be obtained. From PCAC and Eqs. (I)
and (2} only, we find

m F m~ FE m F
~z, Ez~ v'Z „

m„F„3 F,
~z 2v 2 v~Z cos(8 —y)

x (m „'cosy s incp —m „'sing cosrp),

4m 'F m„'F, 3F,
v'Z» &Z, v Z, cos(8- y)

x(m„'cosy cos8+m, .'sinx sin8) .

(3)

By removing the (3, E)8 (K, 3) combination from
(0~ T(J„(x)y (0}}~0), we obtain
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~Z„F„= F„VZ, sin(e- y),
3

2~2

4vZ, F„-vZ, F„=3F„~Z,cos(q -y, ).
Finally by removing the (1, 1) and (3,8) (3, 3}
combinations from (ol T(q( (x)qs(0))l 0&, it fol-
lows that

4Z. —ZK+6Zo =9Z. ,

Z» —Z, = —((Z, v Z, sin(B —q(),
3

K

(4)

3(0, I', I') = 3,~ [D,",(I') -D~(I')]

S(l' 0, I') = 3,~ [D,",(I') —D"„(I')],

S(I', I', O) = —,z [D,",(I') -D,",(I')],

where

((,",(('(= f d'*8'"(O(lT'(w, (*(v, (O()(lO),

(8)

4ZK —Z„=3Z8 .
It should be recalled that Eqs. (4} and (5) involve
single-particle saturation of exact sum rules.
For a detailed derivation of Eqs. (4) and (5) we
refer the reader to Ref. 1. In addition to Eq. (5),
the wave-function normalization constants for the
other scalar particles can be written in terms of
Z„Z„Z„Z„Z„,e and 9. These results will
be quoted when needed in Sec. VI where we discuss
the remaining scalar mesons. Finally, we recall
that in the approximation where 8=y =0, Eqs.
(3), (4), and (5) have the sointions

ZoL =1, —=0.86, —"=O.Sl,

—K =1.28, ~ =1.40, —"=-0.29,p

u, (x)u, (0) = 5„A(x)+ ,'D, ,„U,(x-}+~ ~ ~,

v, (x)v, (0) =5,iA(x) —kD, „U,(x)+ ~ ~ ~,

v((x)u, (0) = —k D...V, (x) + ~ ~ ~,

u, (x)v, (0) = --,'D„,V, (x)+ , ~ ~ ~

(9)

kl ((*(= ' f d'~ "((((lT'((x(,((;(kl ((&.

We now consider the limits on S(q', k', p'},
where (q'- ~, k' fixed), (k'-~, q' fixed), and

(q'-~, p' fixed), which imply (x-o), (y 0), and

(»- y), respectively. These limits involve the short-
distance expansion of products like u, (x)vi(0).
Since these were analyzed in Ref. 1, we quote
the results here.

In general we can write

X = 11.6', m „=985 MeV .
From these one ean calculate

where

ilk 3d(ik 3(k) ( (0 ik+ J(( ik k(( if)

For the conventional measures of symmetry break-
ing, this solution gives (II=IIp+e((u((+ekuk)

C = kk/e(&= -1.39

and

c, -=& olu, l 0&/&oi u. l 0& = -0.33.

III. &En VERTEX

The advantage of treating the (»Kw) vertex
first is that in addition to using the short-distance
expansions, we have low-energy theorems avail-
able in all three variables. We define

$(~2 p2 p2} — d 4+ d 4Y e 4 q e ky

Equation (9) is simply a group-theory expansion
of the products. That is,

A(x) = —,', Q [u, (x)u, (0)+ v, (x)v, (0)]

A(x)- g(x)I+ Q a, (x)u((0)+ ~ ~ ~,

U, (x) -P;(x)l+f(x)u;(0)+ ~ ~ . , (10)

and is the (1,1) combination of the u's and v's.
Likewise, U;(x) and V, (x) represent the

(3, 3')(9 (F, 3) combinations, and the "+~ ~ " stands
for the other possible representations. Equation
(9) is an algebraic identity. Now, however, the
Wilson analysis' is a procedure for determining
the short-distance behavior of A(x), U;(x), etc.
In the (3, 8) (8, 3) model, these take the form

~&ol T(v, (x)v,(y), (0))l o&. (8) V((x) -y; (x)I+f (x)v, (0) + ~ ~

Using the PCAC relations, we obtain the following
three low -energy theorems:

where the leading singularities of the coefficients
are
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a Qqg(x)-,~, a, (x)-,~ 4,x x

l},(x)-,~ „y;(x)-,~ „ f (x) - ~,

and 6 is the dimension of the (u„v,) fields. Terms
which have been neglected in the expansion are
less singular. The sum rules of Eq. (5) are valid
provided that ~ &&, and we shall assume that
this inequality is satisfied.

Since the identity operator (f ) does not contribute
to the three-point expansions and the next leading
term is f(x), we find from Eq. (6) that with l'large
and k' fixed

Cp and C, which will be needed in the succeeding
section. Our aim will be to achieve a form like
Eq. (7) for other three-point functions in cases
where we do not have all three low-energy theo-
rems. From equations like Eq. (7), a complete
low-energy expansion of the form

a+ bq'+ ck'+ dp'
(q' —m, ')(k' —mx')(p' —m „')

(15)

can be constructed.

IV. THE q-q' VERTICES

S(l', k', l')- -D,",(k')f(l'),

S(k' l' l') -D,",(k')f(l'),

S(l2 l2 k2) Du (k2)f (l2)

(12)

In this section we analyze the vertices

e"*d'xe ' 'd y(0~ T( ,v, ( )xv, ,(y)u, ,(0))~0),

(16)

where f(l') is the Fourier transform of f(x)
We are now in a position to compare Eq. (7) and

Eq. (12). Evidently, if we set k2=0 in Eq. (12) and
let l' get large in Eq. (7), they should agree. Re-
ferring to Eq. (7) and Eq. (9), we see that the &(x)
term will not contribute to the limit because Eq.
(7) always involves differences of diagonal terms
Also, since we take vacuum expectation values,
only (0 ~ uo~ 0) —= C, and (0~ u, ~

0) —= C, contribute.
Using D,",(0}=Zx/mx', D,",(0) = Z, /m, ', D~~(0)
=Z, /m„', which are consistent with our saturation
approximation, and comparing Eq. (7) and Eq.
(12), we find

~Z„F,= (-', )'"C,+ —C, ,0 ~3 8&

which we label S888& S880& ' ~ . etc. Since our only
low-energy theorem involves &„&~,= av, (x)+Pvo(x),
we cannot obtain a complete set of equations like
Eq. (7) from low-energy theorems alone. Evalu-
ated at (0, q', q'), the low-energy results are

»...+PSo.s = —[D.".(q') —D".,(q') —~2 Di.( q)088 ~3 88

+~2D",.(q')],

aS,O, + PS,~ = (—',)"'[Doo(q') —D",,(q') —(1/v 2) D,",(q') ],
aS,~, + PSoso = (j)'"[D,",(q') —Doo(q') + (1/W2) D",,(q'}],

S.a.. PS+. = (3)"'[D.".(q') - Dlo(q')],

(17)

where

~Z„F„=—C, .
Ws

2v3

Co = —(~Z~ F, + 2 ~zx Fx),

C, = —(vZ, F. vZ, F,).2
8

From Eq. (13) it follows that

(13)
a = — ' (m ~' cos' cos 8+ m ~

'
sing sin 8),

~z, cos(6 —(p)

P = " (m „'cosy sin&p —m „'sing cosy) .
vZ, cos(6 —cp)

On the other hand, if we let k' become large and
set q =0 in Eq. (16) and make use of Eq. (9), we
find (interchanging k and q in the notation)

S„,(0, q', q') —-(-')'"[D,",(0) + ~2 D,".(o)]f(q')

S,,(0, q', q') —-(-')'"Dl.(0)f(q'),
(18)

Note that the relation among vZ, F„v'Z Fx,rand
~Z„F„which is implied by Eq. (13) agrees with
Eq. (4), which was obtained by an entirely different
approach.

Thus we find that our low-energy theorems are
consistent with the short-distance expansion for
the (xKw) vertex and lead to a determination of

S;,0(0, q', q') —-(3)'"Dl,(0)f(q'),

S;..(o, q', q') —-(-.)"'D,".(o)f (q'),

where the subscript i assumes the values 0 and 8.
Comparison of Eq. (17) and Eq. (18) suggests that
we write



THREE-POINT FUNCTIONS, CHIRAL SYMMETRY, AND THE. . .

S«, (0, q', q ) = —-(»)'"[D,"o(0)+W2D,"»(0)][D,",(q') -D" (q'} —v 2D,"o(q') +W2D"o(q')]/N, ,

S«~(0, q', q') = ——(3)'"D,".»(0) [Dao(q') —D«{q') —(I/W2)D»o(q') ]/N, ,

S; (0, q', q ) = —
8

(-', )' 'D," (0)[D" (q')-D" (q') (I/v 2)D" (q )]/N,
(19)

S;00(0, q2, q2) = —(3) ~ D,"0(0)[DBO(q ) —D80(q )]/N~,

where the N& are to be chosen such that, for ex-
ample,

[D,",(q') —D«(q')]/N, -g(q') as'q'-
Using the asymptotic forms of the D„(q'} as de-
termined by Eq. (14) and Eq. (9), we find that

N, =
I (2v'Z» F»+u'Z, F,),

N2 = N3 = ——(2 u'Z» F» —2 v Z, F,), (20)

(~Z» F» ~Z. F„}.

Note that Eq. (19) now satisfies Eq. (18) by choice
of the N&. That it also satisfies Eq. (17) is a non-
trivial constraint. However, it can be shown by

use of the sum rules, Eq. (4), that, for example,

——[oD»»(0) +pDSO(0)] = N3
8

as required. In fact, Eq. (17) is completely sat-
isfimi.

Since S;»(0, q', q') = S,;„(q', 0, q') by symmetry,
we have only to construct S;»(q', q', 0) in order to
have a complete low-energy specification of
S;,,(q', k', p'). Rather than construct this function
for all possible cases, we now assume that
8= y =0 so that D,', (0) =0, i.e., we have no q-q'
wave-function mixing. Similarly, we assume
D«(0) =0. We also look explicitly only at the ma-
trix elements relevant to the g-q' o term in order
to calculate F(ri'- q»w). For this we need

lim lim (q' —m „2)(k' -m „')[S„,(q', k', 9')+ ~2 S«0(q', k', p')]»~=, ,
P~m I~k ~m

which is proportional to the cr term. However,
we note from Eq. (19}that both S,«(0, q', q') and

S«o(q', 0, q') are proportional to D,"o(0) and hence
are zero in this approximation. In addition

Itm S„,-S„,(q', q', P') - D,",(P')-0.
P~~,p2 fixed

Therefore, in our approximation we choose
S«,(q', k', P') =0 in the low-energy region.

To construct S«,(q', q', 0), we first note that
from the short-distance expansion (q' large}

S...(q', q', o)-- -(~)'"D" (o)f(q') .088 » 8
3 88

From considering the quantum numbers involved,
we expect that

S«,(q', q', 0}= ——(3)'"D",,(0)

x [D,",(q') —xD," (q') —yD,
" (q') ]/N .

Since we want the A(x) piece of our short-distance
expansion to cancel, we choose x=1. y and N
are determined by the requirements tha, t

1. [D,",(q') —D,",(q') —yD,",(q') ]/N- f{q')for large q',

2. All three expressions for So«(0, 0, 0) agree.

From these we find y =3/~2 and N
=~2(4/WZ»F»+ 24Z„F,). Note that although we

assume D,",(q') =0 for small q', we do not neglect

v~ ~,/F, ' = 0.29 —(0.34 GeV2)/m, ' .
Using the result' '

F(ri'- t7»»} = 14.8(o» /F, ')' keV,

(21)

we find 2 & F & 17 keV for m8 in the range 500
S m, ~ 700 MeV. Although F(ri'- qww) is not yet
determined experimentally, this value seems
rather small for a strong decay width. This pre-
diction of an anomalously small decay width has
been a feature of previous calculations based on

the (3, 3) model of chiral symmetry breaking as
well 5 e7 e9 il0

V THE VERTEX &vo sv4p4)

This three-point function is of interest for two

reasons: First, it has an almost complete set of

its asymptotic contribution to S,«(q', q', 0) for
large q'.

We are now in a position to find an approxima-
tion for So„(q', k', P ) except for the unknown func-
tion D«(q'). We assume that this function has the
form D« =X,/(m, ' —q') a.nd note that X,/m, ' = D«(0)
is determined by the S«,(0, 0, 0) constraint men-
tioned above. We are thus left with one free pa-
rameter. A straightforward but tedious calcula-
tion yields the following result for the a term:
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low-energy theorems, and second, it will show

that our approximation of D,"0 = 0 at low q', i.e.,
e=y =0, is not consistent. Since the procedure
for constructing approximations to three-point
functions has been illustrated in the last two sec-
tions, we simply quote our results at this point.

From the low-energy theorems for v, and u4,
we find

y (0)
2 (K 4w)»
3 tc+K —4m'

2v 2 (K —»)»
3»+K —4» '

1 4K» —9Kv —»v

3»+K —4»

(25)

S,(q', 0, q') = — [D,",(q') —D,",(q')
2~3m

—2 W2D,",(q') ],

S (q' 0 q') = (2/3)' [D" (q') -D" (q')
u'Z

K K

(23)

K K

Using the short-distance expansion, plus the low-
energy theorem for A.„, we find that

I [W2D,",(0) +D,",(0)]
2&3 WZ. F.
x [D~(q') —D44(q')],

(24)

(0 2 2)
1 (2/3)1/2 [Doo(0) + (I/~2)Dso(0)]

, q, q
VZ, I',

x [D" (q') D" (q')],

where the q' dependence follows from the low-en-
ergy theorem and the constant coefficients from
the short-distance expansion. We again remark
that the relative values of these constants are
just such as to satisfy e„A," =ev, +Pv, .

If we now equate Eqs. (22), (23), and (24) at
q' = 0, we obtain four equations in the three un-
knowns Doo(0), D,"0(0), and D,",(0). That these have
a consistent solution is not obvious, but in fact
they do, with that solution given by

where we have abbreviated Z»/m»' by K, etc fo.r
simplicity. Since these three results each con-
tain e and/or y, we seem to have three new con-
straints to be used in addition to Eqs. (3), (4),
(5). However, simultaneous solution of Eqs. (3),
(4), (5), and (25) shows that only one of the three
relations in Eq. (25) is independent when used in

conjunction with Eqs. (3), (4), and (5). Hence, this
group of equations can now be solved given the
pseudoscalar masses plus one additional piece of
information. We choose this to be F»/F, f, (0)
= 1.25 + 0.05."" The results are given in Table I.
%e see that the mixing angles Hand y are small
(6= -3', @=+3'), the» mass is in the range
950-1100 MeV, and the slope of the scalar K, 3

form factor is A. =0.016. This last result is in
excellent agreement with the measurement of
Donaldson et al. ,

"who find ~0=0.019+0.004.
Clearly we should now return to Sec. IV with

our new results and recalculate the g-g' 0 term.
Although now D,",(q') w 0 and thus S~,s0, it is ap-
parent that these quantities will be of order sinH

or since'. Since our new solution is quite close to
the old one where H=cp =0, these small changes
cannot affect the order of magnitude of our pre-
vious result. Thus, we expect 1(q'-qvv) to re-
main small. However, there is another reason
for reinvestigating the equations of Sec. IV. %e
can find constraints on the remaining scalar-me-
son masses.

VI. SCALAR-MESON MASSES

In Sec. IV we used the symmetry of the argu-
ments to find S,M(q2, 0, q') from So~(0, q', q'), but
we did not investigate the implications of the fact
that this demands

TABLE I. Simultaneous solution of Eqs. (3), (4), (5), and (25) as a function of the parameter a —=Fz/F „f,(0). The
experimental value of e =1.25+ 0.05.

FPl K F~
(MeV) g f (0)

FK Fy
Zm Zr Cv

1.21 -2' 5.09' 8.85 1082 0.014 1.005 1.216 —0.188 1.30 0.874 0.533 0.279 0.832 —1.291 —0.118
1.25 -3' 3.35' 9.02' 1010 0.016 1.005 1.259 —0.233 1.36 0.874 0.578 0.347 0.832 —1.295 —0.149
1.30 -4' 1.58' 9.14' 952 0.018 1.005 1.307 -0.283 1.43 0.878 0.627 0.421 0.837 -1.299 —0.184
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and

Sooo(0, 0, 0) = Sooo(0~ 0, 0)

So»(0, 0, 0) = So,o(0, 0, 0) .

(28)

they are satisfied independently of its value. Thus,
no information about this meson mass can be ob-
tained from this vertex.

These equations involve D,",(0), D,",(0), and D,",(0),
which we now know, and, in addition, D»(0),
D",,(0), and D~(0). Equation (26) provides iwo con-
straints on these quantities. If we parameterize
them in a way similar to the D"'s (i.e., assuming
two mixed isoscalar scalar mesons), then we
would write

(0( uo(S}=&X, cos4, (0( uo( S') = —v'Xo sin@,
(27)

(0( uo( S) =v'Xo sin6, (0( uo( S'}=@X,cos6,

so that

(cos'o ~in'o)

ln addition, from the extension of Eq. (5) we
can express X„X„e,and 4 in terms of pre-
viously determined quantities:

Xp Zg +ZK Zp y

X =Z~+Z„-Z,
(X+o)"'sin(6-4) = -(Zgo)'" sin(8 —y) .

(28)

Therefore, we have a total of five equations in the
six unknowns X„X„m,m', 0, C. Using the other
parameters found in Sec. V, if we choose m = 600
MeV, then we predict m'= 1080 MeV. Too little
is known experimentally about the masses m and
m' to test this result quantitatively. Further, it
should be noted that the scalar meson which ex-
ists in the p region is similar to the I(, meson in

that they are both very wide. Our technique of
using single-particle saturation may not yield very
reliable mass or coupling estimates in such cases.
Nevertheless, qualitatively the results are not
unreasonable.

We have also constructed the (u,v, (avo+Pvo)}
vertex to see whether it yields a value for D»(0)
and thus, through X, found from our extension of
Eq. (5), a value for the mass of the isovector
scalar meson. We find that the equations evaluated
at (0, 0, 0) do involve D»(0) but in such a way that

VII. DISCUSSION

The results of the previous sections are en-
couraging. We have developed a simple yet elegant
procedure for constructing three-point functions
by combining the short-distance expansion and
low-energy type expressions. The self-consis-
tency requirements of the procedure are stringent,
yet remarkably they lead to physically reasonable
results. The extension of these results to other
three-point functions should be straightforward.
There remain, however, one technical and one
theoretical problem to be solved before this can
be done.

The technical problem involves how to treat the
double-pole contributions in vertices such as
(v,v@o}or even (vovouo} (when mixing is included).
We have tried several schemes which lead to
consistent parameterizations. However, we have
not found a mathematical or physical argument
which wouM single out one as preferable to the
others.

The theoretical problem stems from the fact
that we have not been able to justify neglecting the

P, (x)I term in Eq. (10) in the asymptotic behavior
of the two-point functions. If it is included, we
find an inconsistency in the asymptotic behavior
of the three-point functions as found, first di-
rectly and second via a low-energy theorem with
a subsequent limit taken on the two-point func-
tions. We must conclude that either the P, (x)I
terms vanish or that we have inadvertently dropped
the compensating term from our direct expansion.
In either case, the otherwise precise meshing of
our consistency conditions leads us to conclude
that our basic equations are probably correct.

It is unfortunate that even though our solution is
so tightly constrained, very few of our results
have direct application to measurable effects.
Evidently, if one could complete the program for
three-point functions, it would be attractive to
pursue these ideas further and investigate the pos-
sibility of producing approximations to the four-
point functions in the low-energy region.
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