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The "uncrossed meson line" approximation for the nucleon propagator is appled to the pion-nucleon

S matrix. The resulting simplification resembles the Born approximation, but with the dressed nucleon

propagator of Brown, PuA; and Wilets (BPW), which contains a pair of conjugate complex poles, The
complex poles appear naturally in the consistent solution of the factorized BPW equations, and are
interpreted according to Lee and Wick as states of indefinite metric. Inclusion of these poles produces
considerably closer agreement with experimental results. The Adler-Weinberg consistency condition on
pion-nucleon scattering is now satisfied to within 20%, and this is reflected in the near-threshold

suppression of the cross sections and amplitudes (nucleon-antinucleon pair suppression). The (3, 3+)
resonance is absent in the model. The model is most appropriate for calculating the two-pion
contribution to the nucleon-nucleon potential, where subthreshold behavior is more important than the
scattering resonances.

I. INTRODUCTION

The simplest model of mN scattering available is
the Born approximation (BA) where just two graphs
(see Fig. 1) contribute to the S matrix. When
treated relativistically with pseudoscalar coupling,
it encounters the difficulties that it produces very
large S-wave 7tÃ amplitudes which lead to unphysi-
cal behavior in the total cross section near thresh-
old, and it does not reproduce the resonances ob-
served in ~N scattering. The approximation dis-
cussed in this paper is an "augmented Born ap-
proximation" (ABA) with which calculations may
be performed quite easily and which partially al-
leviates the discrepancies which are so glaring in
the Born approximation. The present work is
based upon the Green's function formulation of
Brown, Puff, and Wilets (BPW). '

The assumption of a partially conserved axial-
vector current mediating the 7TN interaction leads
to a consistency condition due to Adler' and Wein-
berg. ' ABA and BA are tested against this "soft"
pion limit, and the comparison is used as one
check on the validity of the approximation.

The importance of these soft-pion constraints
has been demonstrated by Brown and Durso. ' Cal-

culations of the two-pion exchange contribution to
the nucleon-nucleon potential via dispersion rela-
tions rely heavily on the subthreshold behavior of
the mN amplitudes. (For a recent example, see
Cottingham et al. ') The subthreshold region con-
tains the physical t channel, which is the most im-
portant channel in the calculation of the two-pion
contribution to the nucleon -nucleon potential. The
two-pion contribution is given by integrating over
the pion four-momenta of two 7TN amplitudes in the
t channel. Because of the emphasis on the low-t
values in the nucleon-nucleon potential, the effect
of the s-channel resonances in the amplitudes is
quite small. Thus the N*(1780) resonance pre
dieted by this model really has little effect on the
nucleon-nucleon potential; nor would the inclusion
of a (3, 3') resonance produce a large change in
the resulting potential.

II. THEORY

The S matrix for mN scattering is given by the
Lehmann-Symanzik-Zimmermann (LSZ) reduction
in terms of the vacuum expectation value of the
time-ordered product of field operators,

Sy~ = 5y + Z2 My p' Jtd'xd'y d'z d'v exp[ i(q' y +p v —p' ~ z —q ~ x)j

&&(-S.'+P')( fwpeg" +iaaf)(0I-T(0(~)4'(y)4(&)7(v))Io)(- y' eP'+)(f~pey" +M)~x,.p, (1)

where Z, is the nucleon renormalization constant
for the nucleon propagators, uz~ is the usual Dirac
positive-energy spinor, Q is the pion field opera-
tor, and g is the nucleon field operator. The tilde
denotes a transpose, and the arrows over the op-

erators indicate the direction in which they oper-
ate. The time-ordered product includes a sign
change for odd permutations of the nucleon opera-
tors.

To reduce the vacuum expectation value to a
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m»e tractable form, a dynamical theory is re-
quired. The Green's function formulation of BPW'
provides the necessary dynamics. The field equa-
tions are

pl

ql

pl pl

ql

(y P+M, )«. g, .(x) =-n'«. g, .(x)y/(x),

(-s'+ u„')0'(x) =--'I7( (x), &'„()) (x)j
(2)

FIG. 1. The Born approximation to the S matrix.

The $ implies both the spin ((2) and isospin (p).
The coupling matrix Q&. for pions is g„y~
where 7. is the nuclear isospin. The p,„is the
bare mass of the jth isospin component of the Her-

mitian pion field and g,„ is the unrenormalized pi-
on-nucleon coupling constant.

The generalized Green's function of Schwinger
is defined by

G(. ..)(x '' 'x, , x' ' ' 'x.', 5, &.)-=2"' ' ' &ol&(()'(x, ) ())(x.)7(/(x.') 7()(xl)A((, ) 4(4))lo),
where I (//2] is the largest integer contained in the fraction.

This mixed Qreen's function satisfies two recursion relations, only one of which is useful here:

G(n, U/2)(x1 xnan x1 xnan ~ 1 ~ U)

'-V ~V
~0 (k U xn+ 1)6(xn+1 n+ 1)G(n+ 1, U/2-1) (x1 xnan x1 xn $ xn+ ll k 1 k U-1)

&n+&&n+&

+ Q 9/0U($, —FU)G(„, ,/2, ) (x, ~ ~ ~ x„,x,' ~ ~ ~ x„', omit $, and ( U),
S =1

where B~ov is the bare pion propagator.
Applying this recursion relation twice reduces the mixed Green's function G(y, ) to a nucleon Green's

function of higher order:

& o
I
T (4 (x)4 '(y)((a)V(v)) I o)

(4)

= if'/2, 0",5(x, —x,')5(x, —x,')8/2(y —x,')9,"(x-x,')G, (zx,x„vx'x,') +2G (z, v)8, (x -y), (5)
5252 6343

where G, is the three-body Green's function. The
last term will not contribute due to the y.P+M
factors. The superscript(s) for this last 90 depend
on the superscripts of the pion field operators,
which are not displayed here.

The simplest factorization of the G, is six anti-
symmetrized products of three one-nucleon
Green's functions. This is equivalent to setting
the correlating potential due to meson exchange
to zero. Since the mixed Green's function is
sandwiched between the positive-energy Dirac
spinors, the relationship

(-&y"& „+M)GgL (1 1') = Z25(1 1')5(L (6)

removes two one-nucleon Qreen's functions in each
term. The resulting S matrix is given by Brown'.

would have the usual Born approximation. The
term "augmented Born approximation" is used to
describe the approximation of Eq. (7) with Ga giv-
en by the BPW Green's function. The approxima-
tion represents a summation of a subset of graphs
appearing in the Chew-Low model. " The S ma-
trix is not derived from an integral equation and
this has a larger effect on the isospin-& channel
since some of the graphs which contribute strongly
to this channel are missing. The particular set
summed is determined by the approximation to the
nucleon Green's function and is represented pic-
torially by Fig. 2. Note that no meson crossings
are allowed in the BPW approximation. The re-
sulting approximation to the S matrix is repre-

2S„=()„+(2,).
6'(P'+q'-P —q)a. '~~, &

y'

x I. 7, r/G (f/ —q'.)+) 7;G„(P+q)]y'

(7)

Notice that the matrix element is given in terms
of renormalized quantities only and that if one
makes the substitution Ga(P)- (y P + M) ' one

+ ~ ~ ~

FIG. 2. The BPW Green's function expanded in per-
turbation series.
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FIG. 3. The augmented Born approximation to the S
matrix.

0.20 — f

sented in Fig. 3.
The Green's function is usually represented in

terms of a spectral function via the Lehmann-Kal-
len representation,

~
A„(K)dK

y P+K

where A z(K) has a Dirac 5 function of unit weight
at the physical nucleon mass and a continuum be-
ginning at ~K ~&M+ p, . (See Fig. 4. ) This spectral
representation with K real and A~ positive assures
that Gs has no singularities off the real axis (in
the complex variable P, ). In BPW, however, the
integral in Eq. (8) must be interpreted as an in-
tegral over the real variable K plus the discrete
sum of a pair of conjugate complex poles (A, , K, ;
A *„K*,) as discussed in the next section.

III. COMPLEX POLES IN FIELD THEORIES IN GENERAL
AND BPW IN PARTICULAR

It has long been realized that relativistic, local
field theories are plagued with apparent inconsis-
tencies which can be identified with discrete, non-
normalizable states of indefinite metric. ' This
was evidenced in the celebrated soluble model of
Lee" as well as in various approximate solutions
of more physical field theories. In QED, for ex-
ample, the regularization procedure effected by
subtracting the contribution of a massive lepton
corresponds t:o introducing states of negative
norm.

Lee and Wick" have discussed the role of com-
plex poles extensively, and provided an interpre-
tation of such states in terms of an indefinite met-
ric. The BPW nucleon Green's function can be af-
forded the Lee-Wick interpretation. Details are
given in Appendix A, the results of which are sum-
marized here.

Following Lee and Wick, a Hermitian metric
matrix, q, is introduced which has eigenvalues +1
and satisfies, therefore, g' = 1, The Hamiltonian
is not Hermitian but pseudo-Hermitian:

The superscript h is used for Hermitian conjugate.
The Hamiltonian and field equations are construct-
ed as in BPW, with equal-time anticommutation

O. I 2--

8 FUNCT ION
OF WEIGHT ~l

0.04--

-10 -8 -6 -4 -2 l 0 i 2 4 6 8 I 0
(

-(M+ p. ) ~
" ~(M+p)

FIG. 4. The BPW spectral function.

Gs(P) = A„(K)dK A, A *,

y ~ /+K y P+K y P+K+

The first term on the right-hand side is the usual
Lehmann-Kallen representation, which is based
on the assumption that the complete set of eigen-
states of the system consists only of states which
have real eigenvalues and are normalizable with a
real metric. The appearance of remaining terms
shows that the states with real eigenvalues are not
complete, but must be supplemented by (at least)
a pair of conjugate states of indefinite metric; a
linear combination of the pair can be constructed
to give one state of positive and one of negative
metric. Although such states are not physically
realizable, they must be included for completeness
in the representation. (There rygay exist another
representation in which negative-metric states can
be "diagonalized away. ") The location and residues
of the complex poles are displayed in Fig. 5.

The points which should be emphasized here are
that complex poles were not in' oduced by BPW,
but emerged from the consistent solution of their
factorized equations, and that there exists an in-
terpretation of the corresponding states based on
the work of Lee and Wick.

relations given by

(ICIT(r, t), y(r', t)) = 6'(r —r') .

Ijt —= gy„which appears in the anticommutation re-
lations and in H, is not equal to ( . To obtain the
BPW results, however, the q matrix and Hermi-
tian conjugate operators need not be constructed;
only the anticommutation relations are required.
(Similar statements may be made for the meson
field operators. )

The Green's function which results from the con-
sistent solution of the BPW factorization is of the
form



ROLE OF COMPLEX POLES IN A FIELD- THEORETICAL. . .

IV. THE ADLER-VfEINBERG CONSISTENCY CONDITION

The Adler-Weinberg (AW) condition is a virtual
or "soft" pion limit on the charge-symmetric in-
variant amplitude. The invariant amplitudes are
defined from the T matrix,

1
T88~(p, q;pq) =,upi' [-Ass~(s, t) u)

+y ~ qBs, i(s, t, u)] u„~,
I.O6

where the Mandelstam variables are used:

s=--(p+q)',

t -=-(q' - q)',
u=—-(p' —q)

with

«0.& 55»
0, l75

jk

s+t+u =2M'+2p. '.
The invariant amplitudes are decomposed into
charge-symmetric and -antisymmetric terms:

Asst —
bing A +zL 78p rg j& p

(+) ~r ] ( )

Bsei=58piB +~~78, Tbi~B(+) ir 1 ( -) (10)

AHA produces expressions for the invariant am-
plitudes defined in Eq. (10):

A'"(s, t, u)

=g„' K —M A KdK
1 I

(11)

FIG. 5. The location of the complex poles. The arrow
represents the residue of the pole.

of the mN S-wave amplitudes and the total mN cross
section at threshold, as well as alteration of the
S-wave mm helicity amplitudes over the whole
range. These effects are described in the next
two sections.

V. PION-NUCLEON SCATTERING

The total cross section for nN scattering may be
decomposed into the isospin —,

' and —,
' channels. The

isospin —,
' and —', amplitudes are related to the sym-

metric and antisymmetric amplitudes as follows:

The AW conditions are given by

A~' (M' t M') =-g, '/M,

A (M, t, M')=0, (13)

B ' (s, tj=g„' i W,(X)dÃ(, +, }. (12) y (3/2) p(+) p( -)
7

~(ii2) ~(+) + 2p( -)

The cross sections are given by

1

o "(W)=
J dx[r "(x)q'x+H"(x)],

16mE q W

(14)

in the approximation that the effect of the form
factor on the first condition, which is of order
p.'/M, is ignored. The second condition is a. re-
sult of crossing symmetry and is trivially satis-
fied. The Born approximation cannot satisfy the
first condition since A ' vanishes identically for
that approximation. ABA produces

A ' (M, t, M')= -0.8g~ /M

due almost exclusively to the complex poles. [The
continuum part of A(k) gives about 0.16 g„'/M and
these poles give approximately -0.96g, '/M. ]

Inclusion of complex poles in the nucleon Green's
function provides an approximate fulfillment of the
Adler-Weinberg consistency condition. Attendant
with this approximate fulfillment is the suppression

where W is the total energy, Z(q) =(M'+q')'", x
is the angle between p and p' (the incoming and
outgoing nucleons) in the center-of-momentum
frame of the pion-nucleon system, and

1 "(.) = IB"(x)I'(W'- M') —
I
A"(x) I'

—2M Re[A"(x)B"(x)*],

H "( )=~B"(x)~'(Z(q)~(q)(W —M )+ p.'[M'-Z(q)W]]

+
~
A."(x)~'(2M'+ q') —2M Re[A"(x)B"(x)*]

x(W'- M' —p,
' —q'),

with q being the momentum of the incoming pion
and w(q) =(p'+j')'".
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Figures 6 and 7 display the Born approximation,
the "augmented Born approximation, " and the ex-
perimental results. " The threshold behavior is
significantly improved in both channels and, with
the exception of the (3, 3') resonance, most of the
features of the cross sections are reproduced in a
qualitative way.

The peak in the —,
' channel could be adjusted to

produce a cross section much closer to the exper-
imental value by varying the (d coupling constant
when calculating the Qreen's function. The effect
on the 7t'2V' cross section in the threshold region is
quite small for even a 50% increase in the cou-
pling constant. The magnitude of the peak would
be about right for a 10% increase in the coupling
constant. The peak would remain shifted too far
to the right because the peaks in the experimental
cross section are due mostly to 1.ower-mass, high-
er-angular momentum resonances which are not
included in ABA.

The T matrix can be decomposed into good iso-
spin and total angular momentum channels to re-

250—
I

Z) 200~

150

l—AHA
———BA—.—E X PER IMF NTAt

g Ioo—

sop

0—
0 2

TLAs (Gev)

FIG. 6. Pion-nucleon elastic cross sections in isospin-
channel.

veal the existence of any resonances. An angular
momentum decomposition of T results in the fol-
lowing expression

2

f I'~ = — " — dKA(K) (K+M) — '—+(K+W —2M)J, —(F. —M) ' +(K —W —2M)Z] 6+gr K+W K-W

1

I, = dxP, (x) =25.
-1

The (-,'-, —,'') channel displays a very distinct reso-
nance at the correct mass to represent the
X*(1780). Figure 9 shows this resonant behavior
and in addition shows the close agreement of the
real parts of BA and ABA for low energy.

VI. ver HELICITY AMPLITLJDjES

H= (K'+W' —2M—' —2p. ')/2q —1.
The subscripts l and j are orbital and total angu-
lar momentum, respectively. The superscript (+)
indicates that the amplitude is charge-symmetric
or -antisymmetric.

The (—,', —,")amplitude is given by f ', ',I, +2f ~, »~„

nary part may arise only in the I=-,'- channel due to
the form of f I&

l. CSee Eq. (14).j Thus this approx-
imation cannot represent any of the I= 2 reso-
nances.

Figure 8 displays the a.mplitudes for the (—,', —,
'-

)
and the (

—„—,'
) channels. The magnitudes of both

of these S-wave ABA amplitudes are somewhat
smaller than the corresponding BA amplitudes,
This is one manifestation of "pair suppression"
and produces better agreement with experimental
amplitudes. No resonances are present in the iso-
spin- —,

' channel since the imaginary part does not
peak strongly and the real part has no ripples.

A program for calculating the two-nucleon po-
tential via dispersion relations has been created
independently by Amati, Leader, and Vitale" and

by Cottingham and Vinh Mau. " The inputs for the
calculation are the S- and P-wave helicity ampli-
tudes for the reaction EN - mm. The t channel of

200 T
h

.=- I50-i

c)
I

IOOI—

bJ

g 5ol /
CJ J~0»-

0 I

LAB

———BA——E X PE RIME NTA L

FK.". 7. Pion-nucleon elastic cross sections in isospin-
2 channel.
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FIG. 8. 8-wave xN amplitudes.

FIG. 9. Pion-nucleon (2, 2 ) channel amplitudes.

dKA(K) 1 —h arctan—g7I
+ 16'' q h

K —M i 3fh
(22)

Figs. 1 and 3 gives precisely this reaction. Be-
cause the same diagrams are employed, the 7t~

helicity amplitudes are readily derived from the
~R amplitude. " The helicity amplitudes are

(17)

where 0—= i(K'+2t- M' —p, ')/2Pq.
All of the amplitudes are real and cannot produce

any resonances. The I' waves are not plotted, as
the difference between the two approximations is
negligible. Figure 10 displays the resulting S-wave
amplitudes along with the S wave calculated by
Nielsen, Petersen, and Pietarinen (NPP)" by ana-

——z' -' + —( aa' '+a" ] }p M
+

8m q
' 3 ' 0

[ II( -) II( -)
]0 2

where

(A", , a", )
-=dxp, (x)(A'", a'"),

-1

(18) 80

60—

4Q—

ABA

BA

Re $+(NPP)
Im $+ (NPP)

and x is the mR scattering angle. In the t channel,

P =~t —I 0—
Q~+

Substituting E(ls. (11) and (12) into (17), (18), and

(19) gives the expression for the helicity ampli-
tudes:

dK A. (K) —(K —M)arctan—0 g'7( ip
16m'

1
+ M 1 -h arctan-

h

(20)

—20—

-40—
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—80

I

I

I

I

I

I

I

I

IO 20
I

30
t(p, )

50

2

dKA (K)(h'-h+ 1)arctan —, (21)18)(' 2 q

FIG. 10. S-wave helicity amplitude for NN- ~~ re-
action.
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lytic continuation from mN scattering. ABA is sig-
nificantly closer than BA to the real part of NPP.

Consider a system of nucleons and, for example,
7t mesons described by the Hamiltonian

VII. SUMMARY
H =H~+H „+H', (A1)

The inclusion of the complex poles in the aug-
mented Born approximation results in a near sat-
isfaction of the Adler-Weinberg consistency con-
dition for mN scattering. The real parts of the S-
wave wN and w~ amplitudes, as well as the mN total
cross section, are significantly improved with re-
spect to experimental results. The mN scattering
also reflects the N*(1780) resonance of the BPW
Green's function.

The very large values of the S-wave amplitudes
in the Born approximation for mN scattering have
been attributed to the intermediate nucleon-anti-
nucleon pair which arises from a different time
ordering of the graphs in Fig. 1." Thus the very
small S waves in ~N scattering produced by the
augmented Born approximation are interpreted
here as pair suppression.

The improvement over the Born approximation
comes about with little cost in computation, and,
although the (3, 3") resonance is not included in
this approximation, the results are qualitatively
reasonable elsewhere. The S matrices resulting
from ABA, as in the usual BA, do not possess
unitarity. The two-pion contribution to the nucle-
on-nucleon potential is dominated by the t-channel
S- and P-wave amplitudes, which enter as the
square of their absolute values. " Thus the exis-
tence of a small imaginary part in the low-t chan-
nel is not very important. In calculating the two-
pion contribution to the nucleon-nucleon potential,
the "augmented Born approximation" is more real-
istic than the Born approximation.
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APPENDIX: SUMMARY OF BPW AND COMPLEX POLES

A recapitulation of BPW and a discussion of the
complex poles which result from their approxima-
tion of the two-body Qreen's function are presented
here.

where

HN —
z d Y gx p p+Mogg g~ x

—(y p+ M, )qq gq (x)gq(x)], (A2)

H~=2 d F7' 7r +V V +iU, o (A3)

H =2go7f d t g X 7 P5 gg g X X

0g (x-)(~g y )gg &g(x)A'(x))

The field equations follow from these commutation
relations and the operator relation iO =[O, ii].
They may be written for the general case of non-
derivative coupling as

(y p+M, )„~g, ~ (x) = 0', ~ g,-(x)p'(x), (A7)

(P '+ g,')P'(x) =--," [ tj', ~ (x), n', ~ tt, ~ (x)], (A8)

where the coupling matrix for 7t mesons is

The n-particle Green's function is

G(1 n 1' n')

(A9)

=i "(T(y(1) ~ g(n)g(n') ~ ~ ~ 7t(1'))), (A10)

where T is the Wick time-ordering operator,
which contains a, factor of (-1), where p is the
number of permutations of nucleon field operators.
The meson field is defined in a similar fashion,
but the factor (-l)~ is not included since bosons
commute.

Formally eliminating the meson degrees of free-
dom yields

The indices & and g' on the nucleon field operators,
g, denote both spin (y) and isospin (r). The j index
on the pion field operators, P~, refers to the Her-
mitian components of the pion field. 7t is the ca-
nonica, l conjugate to P' .

The fields satisfy the usual equal-time commu-
tation relations

(A5)

(A6)

G, (1 1")G„(1"2 ~ ~ ~ n; 1' ~ ~ ~ n') = g (-1)"'6(ll')G„, (2 ~ ~ ~ n; 1' ~ ~ ~ omit l' ~ ~ ~ n')
E =1

+i(1, n+1 iv an+2, n+3) G„, ,[23 ~ ~ n, n+2, n+3; (n+1)'1' n '], .(A11)
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where

(A12)(1212)I34)=-Q&', ~ n'~, , ~(x, —x, )9',(x, -x, )5(x, -x,),
f

with G', denoting the noninteracting nucleon Green' s function and Bf denoting the noninteracting meson
Green' s function.

The BPW approximation to this equation for G, is written as

G, (1 2; 1' 2') = G, (1 1')G, (2 2') —G, (1 2')G, (2 1') . (A13)

The equation for G, is given by substituting (A13) into (A11) for the case n = 1 and employing the subsidiary
condition, Go = 1. In momentum space

G, '( p), , ~ = G', '( p) « ~ + 2g 0'«0'« ~

Jt
9', ( p —q) G, ( p) «cos (q,0'), (A14)

where ten as

Gl(P) =&,(P)G, (~p)+P (P)G (~p), (A16)

P, ( d ) = --', (+ —1),
fp

(A15)

where ~p=(-P')'". The Green's function is writ-

Closing of the contour in q, is governed by the fac-
tor cos(qG0+), which requires equal contributions
from upper and lower closings (this is of no conse-
quence below). The Dirac algebra is eliminated by
the introduction of the projection operators

where the fact that G, and G must be Lorentz in-
variant requires that they depend only on ~~. The
inverse Qreen's function may then be written as

G '(P) =P, (P)G, '((d, )+P (P)G (~ ) (A17)

Equation (A14) is written as two coupled equations
for G, and G which after a very simple manipula-
tion reduce to one integral equation and a subsid-
iary condition. These are

cos ' ' 0'

4 P fp -q P fp -q

and

G, ((up) =G (-~p).

The requirement that G, have a pole at the physical
mass of the nucleon gives one subtraction. The
subtraction results in

2

T(K)=1( " dK'K, (K, K')A(K'), (A19)

where the kernel is

If the imaginary part of G, '(x) is written as
-wT(x) and the imaginary part of G, (x) as wA(x),
then a relationship between these two functions
may be written as

G, '(z)=(M —z)((+ I )
. (A22)

The effects of the behavior of the kernel in (A20)
can be summarized by

(A23)

(y yi)
I

I4 y2(I r2+~2)+(I t2 ~2)2]1/21

G, '( )=M, — K-z (A21)

x e(l" I

—
I
&'+)u

I )I. (& —&')' —p') (A20)

The behavior of this kernel at large K determines
the number of subtractions necessary to write G, '

in the form of a dispersion relation. The self-en-
ergy is written as a Hilbert transform of -wT:

which means the integral in (A22) is logarithmi-
cally divergent. At this point a regularization is
performed. In form it appears to be a typical re-
normalization, but a closer examination reveals
that it does not correspond to a renormalization;
however, it does remove the divergent behavior
of the representation for G, ' by introducing a pair
of complex zeros off the real axis. These act to
remove the divergence for large K and lead to a
finite, well-behaved solution.
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Define a "renormalization constant, " Z„which
will produce a unit strength pole at the nucleon
mass. This constant is

Z 1+ (A24)

T„(K)dK
(K-~)' ' (A26)

Since T~(K) —C ~K ~, this integral is logarithmical-
ly divergent. The operation called, in this case,
renormalization is a form of regularizing subtrac-
tion. An examination of the large-z behavior of
(A25) indicates that

G (z) = Czlnlzl-«T (z) (A27)

The function S, which is G~'(x)/(M- z), thus has
two zeros for its real part. The lines of constant
value of the real and imaginary parts of S are or-
thogonal. For both large imaginary argument and
large real argument, the real part of S approaches
Z, . This indicates that the contours of constant

When G, ' is multiplied by this constant, the re-
sulting integral is finite and allows the following
integral representation of G~':

T„(K)dKG„'(z)=(iv — ) 1 —(M-z), ~),
(A25)

where the subscript, R, stands for "renormalized"
(i.e. , Tz = T xZ, ). The Green's function is renor-
malized by dividing by Z„which means (A19) is
invariant if g«Z, =g, . Thus Z, vanishes from the
equations. Equation (A24) can be rewritten as

value for the real part form closed loops. For
large x (z =x+iy) with y nonzero, the imaginary
part is even and of the same sign as for large y.
Since the imaginary part changes sign between
M+ p, and -M- p. , there has to be at least one pair
of complex poles at some point K, and K*, with
residues which are complex conjugates of one an-
other. The complex poles represent states of in-
definite metric which act as the regularizing
agents.

The Green's function may now be written in
terms of the imaginary part of G and the complex
poles as in Sec. III.

The existence of these indefinite-metric states
implies that the Hamiltonian defined by Eqs. (A1)-
(A4) is not Hermitian, but pseudo-Hermitian.

Although the form of the Hamiltonian appears to
be manifestly Hermitian, the assumption that g
=g" has notbeenmade. Whilethis isusuallythe case,
no constraint has been placed on P which forces
this relationship. Thus, there is really no argu-
ment to support the Hermiticity of the Hamiltonian.
This admits complex poles in conjugate pairs. It
also requires that the indefinite-metric states be
included in any complete sum over states. For
this reason, the usual Lehmann-Kallen represen-
tation is not complete and it is necessary to in-
clude the contribution of complex poles. This al-
teration does not affect the formal solution posed
by BPW but requires that the complex poles be ex-
plicitly included.

The inclusion of these indefinite-metric states
is necessary for the agreement of Gz' and 1/G~.

The location and residues of the BPW complex
poles are shown in Fig. 5.
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