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Heavy quarks and strong binding: A field theory of hadron structure*

W. A. Bardeen, t M. S. Chanowitz, t5 S. D. Drell, t M. Weinstein, t and T. -M. yang~~
Stanford 79iz't ersity, Stanford, California 94305

4'Received 26 September 1974)

We investigate in canonical field theory the possibility that quarks may exist in isolation
as very heavy particles, Mq„a,k» 1 GeV, yet form strongly bound hadronic states, Mh, d,„„-1 GeV. In a model with spin=,' quarks coupled to scalar gluons we find that a mechanism
exists for the formation of bound states which are much lighter than the free constituents.
Following Nambu, we introduce a color interaction mediated by gauge vector mesons to
quarantee that all states with nonvanishing triality have masses much larger than 1 GeV.
The possibility of such a. solution to a strongly coupled field theory is exhibited by a calcu-
lation employing the variational principle in tree approximation. This procedure reduces
the field-theoretical problem to a set of coupled differential equations for classical fields
which are just the free parameters of the variational state. A striking property of the solu-
tion is that the quark wave function is confined to a thin shell at the surface of the hadronic
bound state. Though the quantum corrections to this procedure remain to be investigated
systematically, we explore some of the phenomenological implications of the trial wave
functions so obtained. In particular, we exhibit the low-lying meson and baryon multiplets
of SU(6); their magnetic moments, charge radii, and radiative decays, and the axial charge
of the baryons. States of nonvanishing momenta are constructed and the softness of the had-
ron shell to deformations in scattering processes is discussed qualitatively along with the
implications for deep-inelastic electron scattering and dual resonance models.

I. INTRODUCTION

The idea of quark constituents has been of very
great importance in providing a simple, concrete
model for describing and predicting the low-lying
quantum states of hadrons and their observed
properties. ' Despite the successes of the quark
model, one is puzzled as to why we do not see
quarks. Are they nonexistent as isolated observ-
able particles, or, once isolated from the ex-
tremely strong forces that bind them as effectively
light and nonrelativistic constituents within ha-
dronic matter of zero triality, are they very heavy
so that their production thresholds lie beyond
present accelerator energies P

Another puzzling feature of the quark model is
the question of quark statistics. For example,
the successful SU(6) classification of the ground
state and low-lying spectrum for baryons is de-
rived on the assumption that the three quarks bind
in a totall. y symmetric state in space, spin, and

SU(3) coordinates. To account for this apparent
conflict with the requirement of antisymmetry for
a state of three spin--, fermions, an additional
quantum number, labeled "color, " is introduced. '
It is then assumed that physical hadron states are
color singlets —i.e., totally antisymmetric in the
color quantum number for the three quarks (one
red, one white, and one blue) forming the baryon.

The motivation of the present work is to con-
struct a canonical field-theoretic model which
accommodates these ideas and successes of the

quark model in a consistent, systematic. and
calculable way. We introduce quarks as the quanta
of the fields and assume that there are nine
quarks —an SU(3) triplet for each of the three-
color states that form an SU(3)' of color. The
nonappearance of quarks will be interpreted in
terms of a heavy mass for "bare quarks" (» 1

GeV). The large quark "bare mass" results from
the strong coupling of the quark field with a neu-
tral scalar field. This interaction provides the
attraction binding quarks into bound states with
masses corresponding to observed hadronic spec-
tra. Formation of the bound state is traced in our
approach to the "unconventional" dynamics of the
scalar field which is specified so as to produce
"spontaneous breakdown" of an underlying sym-
metry of the Hamiltonian. A strong color inter-
action mediated by gauge vector bosons pushes the
color-nonsinglet states up to very high energies
» 1 GeV while leaving the color-singlet states
alone. Hadrons are formed as low-lying bound
states of quarks in color-singlet, or zero-triality,
states. Our color-singlet selection rule is thus
an approximate one, as is the rule for nonappear-
ance of bare quarks since these unwanted states
have high mass. In contrast with the standard
parton-model' approach which conceives of the
nucleon as built of effectively free and light con-
stituents in order to explain Bjorken scaling but
rationalizes the embarrassment of not observing
partons, we first tackle here, using canonical
field theory, the puzzle of unseen quarks. Whether
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our resolution of this problem can explain why
scaling is observed remains to be studied.

Evidently the problem of constructing bound
states in a canonical fieM theory with strong cou-
plings is a very difficult one. The progress we
are reporting in this paper is based on a vari-
ational approach —i.e., we guess a trial form for
the ground states and minimize the energy by a
variational principle calculation. ' The coupled
classical field equations for the quark-wave func-
tions and the interacting fields so constructed are
solved and the states so constructed have much
lower energies than do the free bare quarks. In
this way, we find unusual bound states in the
strong-coupling case that are inaccessible to a
straightforward order-by-order perturbation ap-
proach. We view this approach as a first approx-
imation to a solution of the strong-coupling prob-
lem. Its justification wit. l ultimately rest on the
systematic analysis of corrections to our varia-
tional "guess" for the form of the nucleon ground
state. Such an analysis is not included in the
present work. In this paper we report on the con-
struction of low-lying bound hadronic states and
the application of our formalism to calculating
physical quantities such as magnetic dipole tran-
sition amplitudes, the axial charge renormaliza-
tion, and the charge radius of the hadron.

What emerges from our analysis is a picture of
composite hadrons whose lowest mass configu-
rations coincide with the L = 0, 35 of mesons and
L = 0, 56 of baryons predicted by the quark model.
We reproduce the usuai SU(6) results for the ratio

3of proton to neutron magnetic moments y~/p. „=-~
and for the ratio of rates for baryonic electro-
magnetic {M1) transitions such as ~' -P +y and
mesonic M1 transitions such as (d -7t'+y.

We are also l.ed to a prediction for the proton
magnetic moment that is in close accord with its
experimental value —i.e., we calculate p. ~= 3(e/2M)
where M is the ground-state mass of the baryon
56, there being no breaking of the basic SU(6) or
SU(3) symmetry in our model. The experimental
proton moment is (p~),„„=2.79(e/2M~). The
"radius" of a meson constructed of a qq pair is
found to be (-, )"' of the radius of a baryon formed
by a qqq color-singlet state. This same factor of
(3)"' corrects the ratio of their magnetic dipole
transition moments relative to the naive quark
model. Although one cannot attach any real sig-
nificance to such a factor while at the same time
ignoring major mass splittings, it is difficult to
avoid commenting on the fact that a correction
factor of (—', )' ' = 0.76 to the naive quark model
brings the calculated rate for ~-m'+y into close
agreement with experiment {I',0, z

= 890 keV).
The mean-squared charge radii for the proton and

the neutron are 0.7 fm and 0, respectively. '
We have also computed the value of the axial

charge to be g„= ~9, which is less than —, the ob-
served value, 1.25. However, we do not know
whether this unsatisfactory result is an argument
against models of this type because the models
being studied do not incorporate partially con-
served axial-vector current {PCAC). This is
evident from the fact that the ~ and p mesons
are degenerate, although the m should be a Gold-
stone boson associated with chiral symmetry.
Whether or not proper inclusion of PCAC wil. l suf-
ficientl. y modify the axial-vector current in this
model is an open question. In Sec. X we discuss
this and other sensitivities of our approach. In
particular, the use of the variational principle and
of the trial bound states for evaluating physical
matrix elements as well as the neglect of quantum
corrections to the tree approximation have led to
considerable simplification of the quantum field
theory. The accuracy of this approach in the
strong-coupling region remains to be systemat-
ically studied.

II. INTUITIVE PICTURE AND SURVEY OF RESULTS

This section of the paper is intended to present
the basic idea of our approach with emphasis on
the intuitive ideas and away from the formal as-
pects. It will also serve as a compendium of our
results and as a guide to the remaining sections.

A. Intuitive picture of a quark bound state

Before introducing the gauge vector mesons and
the "color" interaction along the general lines
first presented by Nambu, ' we want to show how
the strong interaction of an elementary quark
(fermion) field with a self-coupled scalar field can
lead to a low-mass bound state.

The basic idea of our approach is illustrated by
the following simple semic lassical model. This
model was also discussed by Vinciarelli. ' Con-
sider a quark described by wave function (I) inter-
acting with a neutral scalar field v with the Hamil-
tonian

d'xK (x),

3C{x)=$ . + Ggg g+~ &'+-,' Vo '
't

(2.1)

where C, H» 1 are large dimensionless coupling
constants, and f has the dimension of a mass.
The form of the quartic self-interaction term ex-
hibits the invariance of the theory under the dis-
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crete transformation o- —0. In a quantum field-
theory description, Eq. (2.1) describes a spon-
taneously broken theory and cr has a nonvanishing
vacuum expectation value. In the vacuum the field,
o, takes one of two values, +f Sm.all vibrations
about one of these ground states are usually
studied by making the translation o- o''=a +f. One
readily finds that the small. 0 vibrations have the
mass m, ' =8Hf' and the small 4' vibrations have
mass Mz = Gf. By assumption, the bare quark
mass is

—,
'

j
Voj'd'x- 2(f/D)'4''D, (2.4)

example of how these contributions balance, con-
sider a potential as in Fig. 1 with 0- 0 within a
volume of radius A. Denoting by D the thickness
of the shell in which the 0-field amplitude falls
from +f to 0, we have for the energies contribut-
ing to Eq. (2.1)

3' = Gf&& 1 QeV. (2.2) H(o' f') d'-x-Hf'( ~3m
R' +4wleR'D), (2.5)

Our choice of the specific Hamiltonian (2.1}is
arbitrary. We consider it as typical of a class of
renormalizable field theories exhibiting spon-
taneous breakdown. A wider class without spon-
taneous breakdown is described in the Appendix.

Our key question is, "Do these theories also
have quark states with much lower energy than
indicated by the bare quark mass?"

For the purpose of developing an intuitive pic-
ture of nonperturbative solutions to the field
equations, we approach this problem classical. ly,
although this is no longer a purely classical ques-
tion when fermions are present. The point is that
in the one-fermion sector when the charge

Pgdx

has unit eigenvalue we are solving a Dirac equa-
tion for the quark in the presence of a scalar po-
tentiaL 0. We are faced with the usual question of
negative-energy states and must specify that all
the negative-energy states in the presence of this
potential are filled, and then focus our attention
on the lowest positive-energy eigenvalue. Since
we are solving for the quark energy in a scalar
potential, there is no Klein paradox of the familiar
type encountered in the presence of strong, sharp
vector potential. s and therefore no ambiguity in
identifying and interpreting the desired positive-
energy "one -particle" solutions.

We proceed classically therefore with Q =1.
Classically, we expect that the quark-wave function
and the field amplitude 0 will avoid one another
as indicated in Fig. 1, so as to escape the high-
mass energy [Eq. (2.2)J .

The importance of this effect increases with the
magnitude of Mz = Gf. At the same time, working
against the formation of such a hole into which

the quark will trap itself are the energies as-
sociated with the curvature of the localized quark-
wave function, with the curvature of the o field
as it changes its value, and the energy associated
with the potential term B(o'-g'}' extending over
the volume where 0 ~+f. As a simple illustrative

where the estimate jEq. (2.3)] follows from the
uncertainty principle and k-1 is a shape-depen-
dent number, The energy of this configuration is
given by the sum of (2.3), (2.4), and (2.5)

E(R, D) —„—+2''f'/D

(2.6)

Minimizing with respect to D and R, we find a
surface thickness given dimensionally by

=0~ D -1/H"'f,Bg
dD

—=O~R-1/H'"f .
&A

Hence the lowest possible energy is given bg

4
& =—min E(R, D}= —-f0"' .

3A
(2.'t 3

In this case

(2.8}

which is consistent with a thin transition-shell re-
gion in the strong-coupling limit.

FIG. 1. Classical guess for the solution to the Ham-
iltonian (2.1) in the one-fermion sector.

and if H"'f »1/R, i.e., if the volume energy dom-
inates the surface energy, then
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Comparing with (2.2}, we see that a localized
bound state is formed if G»H" B.y Eq. (2.8},
we see that we are in the strong-coupling domain.

According to Fig. 1, the quark moves as a free
massless quantum within the sharp well bound-
aries, suggesting some of the popular quark-
parton model ideas. However, as we shall see in
Sec. IV, the treatment as described above is much
too naive and crude, although it illustrates the
basic idea. %e shall learn from a more system-
atic and careful treatment of Hamiltonian (2.1) in
the following sections that what actually emerges
for the classical theory is a thin-shell model of
the hadron, with the field rapidly changing from
o =+f outside to o = fin a-region of thickness
D-1!H"'f«R, and with the quark confined to a
thin shell within a distance I!Gf of R. The energy
in this case is E-H'"f rather than the H" f found
in Eq. (2.7). This solution is illustrated in Fig. 2.

B. Highlights of subsequent developments

systematic development all the approximations
involved in reducing our problem to a classical
one, pointing out what we feel are the important
unanswered questions. These will involve ques-
tions of normal-ordering and corrections to the
tree approximation.

Secion IV is devoted to actually solving the clas-
sical problem in detail. If we follow the analogy
to the polaron problem that was referred to earl-
ier (2.4), the trial state

I s) for the variational
calculation is formed as a product of a coherent
boson state and of a single-quark state constructed
in a basis whose coefficients are the localized
wave functions in the self-consistent seal.ar po-
tential; i.e., we write

(2.11}

where the quark field expansion in terms of par-
ticle annihilation and antiparticle creation op-
erators B and D, respectively, is

In Section III we show how one can reduce the
quantum fie Ld-theory problem of finding bound
states to just the type of classical problem that we

have considered above. The method we discuss
is to quantize the theory defined by Eq. (2.1) at
time I, = 0 by canonical methods. Ne then construct
a Fock space state, Is), as a trial state with the

property

q(x) =QIR. U„(x)+D„'V„(x)J,

and the orthonormality relations

Ut{x)Uq(x}d'x= 5!!,

U.'(x)V, {x)a'x = 0

(2.12)

(2.1S)

Q Is) = Is)

and show that

(s IZ ls)«Gf .

(2.9)

(2.10)

D-~/H f
I!

l

I I (~) =+f

Our purpose in this discussion is to show (i) how,
for a particular cl.ass of variational. states, our
problem reduces in "tree" approximation to the
classical problem, and (ii) to demonstrate in a

are required if the I3 and D are to satisfy the
usual anticommutation rules: LB„,B~z'I= 5 8, etc. ,

I 0~) is a "no particle" state annihilated by the 8 's
and D 's, though not translationally invariant
since the localized states are not momentum
eigenstates. The classical field g(x) in Eq. (2.11)
is the local expectation value of o(x} in the state
Is); viz. , (sIa(x)Is) =g(x}. The coupled classical
differential equations satisfied by the field g(x}
and the quark ground-state function U, =- g derived
from {2.1) and (2.11) by requiring that (s I@ I s) be
stationary with respect to variations of g and X

are

V'S 4Hz(a' f') = GxX-- (2.14)

0, (2.15)

FIG. 2. The solution to (2.1) in the one-fermion sector
which is obtained in Sec. IV.

8 appears as a Lagrange multiplier since our
trial state is normalized to J!!X d'x = 1 by (2.13).
The solution of these coupled classical equations
gives the lowest ground-state energy consistent
with the form of our trial state Is) in Eq. (2.11).
As usual in dealing with the Dirac equation, there
is no "lowest energy" because of the negative-
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energy spectrum as commented upon in the Intro-
duction. Here, in referring to the lowest energy
state, we make the usual assumption that the
negative-energy states are filled and g is the
lowest positive-energy state. In Sec. IV we im-
plement this restriction and exhibit a solution
[free of Klein paradoxes since the potential g(x)
is scalar].

The solutions of these equations exhibit the
properties described in the Introduction. The so-
lution of Eq. (2.14) leading to a bound state is a
steplike spherical potential

g=f tanh(v 2Hf (r-H)) [1+0(H"'/G)] . (2.16)

A lower bound on

(2.17)

is required to ensure this bound state to be of
lower energy than that of a free quark of mass
Mo = Gf. This solution is illustrated in Fig. 2,
with the quark confined to a thin shell of thickness
D 1/Gf a-bout A. In order to show simply and

explicitly how these features of the solution
emerge, we present the exact solution (discovered
by C. K. I ee) to our coupled field equations in
1 space, 1 time dimension. ' This simple example
contains all essential features of the general
problem.

In this case we have to solve the coupled equa-
tions

then the resulting equation admits the exact solu-
tion

g(x) =f tanh(v2H f (x-x,)) . (2.21)

If we now consider this as the input potential,
we find that Eq. (2.19) then admits the exact so-
lution

)),(x) =N[cosh(v 2Hf (x-x,)) ] ~ '" . , (2.22)-c/~28 1

C X(x)g (x)g(x)dx = 0 . (2.23)

Secondly, since the upper and lower components
of g have the same slope in x, the kinetic energy
term also vanishes:

gt(x)n —x(x) = 0,cf

4x
(2.24}

with 8=0. Now, using Eq. (2.22) to compute gg
=)t PX., we find yy. =0, and so Eqs. (2.21) and (2.22)
provide exact solutions to the coupled equations.
The general form of this solution is shown in Fig.
2 and it is obvious that as G!~2H-~, the quark is
confined to a narrower and narrower region';
nevertheless, one sees that the total energy cor-
responding to the quark part of the Hamiltonian
manages to be 8 =0. To see why this is so, let
us examine the two contributions to the energy of
the quark. Since pp=0, the integral for the mass
term vanishes:

and

cf

~, g(x) 4Hg( g' f') =-GXX(x)- (2.18)
1 dg2 ' 22 tn d

dx — — +H(g'- ' '+g —. —+Gag2 1 Qx

1 d
—.x' —+ G))xt*)) x( ) = Xx .

690
(2.19)

= 2H ( g' f')'dx-

= a~2af'. (2.25)
Since there is no spin in 1 space dimension, we
have the two-component form for )t(x)

x)x)= ( ) (2.20)

P=G3) Q =V~.

First observe that if we set Gyp =0 in Eq. {2.18),

and choose a convenient representation in terms
of Pauli matrices

So long as

Gf»&2H f' (2.26)

the lowest energy state in the one-quark sector,
Q= J y gdx= 1, is not a free "bare" quark but a
localized bound state.

Of primary interest to us here are which fea-
tures of this 1-plus, 1-dimensional, solution per-
sist in the four-dimensional case. Near r =8,
Eq. (2.22) becomes (for G& Vg

g(r) =N[cosh(~2Hf (r-8))]
ia''r .

1 O
r-R

(2.27)
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where y,'/2 is the standard two-component angu-
lar solution j= 2 and 1=0, i.e.,

(+) 1
~1/23 1/2 0 g («Ii «) g(Y«il «) (2.33)

where v is the velocity of the bound state. The
potential exhibits a Lorentz contraction along the
direction of motion, viz. ,

and

()~ 1/2 e 1/2

where g„denotes the potential for a moving state
with velocity v, y = 1/(1 —v')' ', and g is the solution
for a state at rest. The transformation for the
quark state is

1XXSd'~'&—
R (2.28)

Hence quark confinement in a thin shell leads only
to an -1/R contribution to the energy. Finally,
we note that the inequality (2.26) becomes

x(r) is dropping with increasing r-R at the same
rate as for x(«) in Eq. (2.22). This behavior does
not persist all the way to r =0 due to the correction
terms indicated above, but it does persist until
x(r) has become negligibly small, as will be shown
in Sec. IV. The solution for g(r), Eq. (2.16), is
similar to Eq. (2.21). This form is nearly exact
at r =0 and r =~ and is modified only slightly near
r =R.

Introducing Eq. (2.27) into Eq. (2.3) to evaluate
the quark kinetic energy, we find readily 1/R.
This difference from the vanishing result in Kq.
(2.24) comes from the correction terms in Eq.
(2.27), which give the upper and lower components
of the wave function slightly different radial de-
pendences. Owing to these terms, it is no longer
true that gg=p for all r and, therefore, we also
find a correction to Eq. (2.23). What is true, how-

ever, is that gg«g g in the four-dimensional case
as is readily deduced from Eq. (2.27) and, there-
fore,

X,(«ii, «, ) =S(A)X(r«ii, «, )e""'"ii, (2.34)

n+ dg 2 2+g 2 2 2 (2.35)

where S(A) is the familiar spinor transformation
matrix and 8 is the quark energy in the rest state
given by Eq. (2.15).

The further problem of constructing actual mo-
mentum eigenstates along with its attendant com-
plexities are discussed in Sec. IX.

Having come this far with a satisfactory single-
quark state, in Sec. VI we extend our scheme to
the construction of multiquark states and study
the spectrum of hadrons seen in nature. The thrust
of the argument presented in this section is to
answer the question, "If a single quark prefers
to dig a hole in the vacuum and trap itself, what

happens if one has two or more quarks or quark-
antiquark pairs'" Our approach is to construct
trial states as in Eq. (2.12) with several quarks
present in the self -consistently produced potential
g(«). Thus, as in the Hartree-Fock approximation
for atoms, the quarks do not interact directly with
one another but via their average binding field
produced self -consistently. Formally this means
that we must do a variational calculation of the
sort just discussed, except that now

Hl/3f (( Gf (2.29)

( s„ i
P'3 is„) =p (2.30)

in performing the variation to minimize the ener-
gy. The states so constructed preserve the re-
quired relation between energy and momentum,

for a tightly bound state.
So far, we have considered localized bound-

quark solutions at rest. In Sec. V we extend our
solution by constructing variational states with
arbitrary nonvanishing average three-momentum.
Formally, we do this by guessing a form for the
trial state in our Fock space that allows the packet
to move in time. Further, we include the con.-
straint that

E(R, D) -=—+ 4vR3D (2f/D)' +Hf '4vkR3D,

(2.36)

where now n denotes the n-quark sector. Mini-
mizing E(R, D) with respect to R and D yields

R =n'/3R
0

n1/3 I /f Hl /8 (2.37)

and therefore

where n stands for the number of (anti) quarks in
the ground state of the potential g. If we make the
same substitutions as in the one-quark case for the

g of Fig. 2, we obtain for the energy

or
E =M/(1-v')' ' and p =Mv/(1-v')' ' (2.31) n2/3g

pp (2.36)

((s, i@is,)3'-&( s„ i
&"

i s.)j' =E'-p'
=M2 (2.32)

where Rp and Ep denote the results of doing the
one-quark calculation. One immediate consequence
of Eq. (2.38) is that the ratio of the mean mass of



1100 CHANOWITZ, DRE LL, WEINSTEIN, AND YAN

the ground-state meson 0 35 to the baryon 0' 56
is predicted to be (—',)'~'. The experimental sig-
nificance of the hadron size being fx n' ' and the
ground-state energy c n' ' is discussed in Sec. VIII
in detail.

In order to proceed beyond this construction of
multiquark states to the classification of physical
hadron states, we need to introduce "color." In
particular, a qqq ground state for baryons will be
totally symmetric in space coordinates with each
quark in an /=0 symmetric s state. It must also
be symmetric in spin if we are to achieve an ap-
proximate SU(6} symmetry with an f =0 56 baryon
ground state. Therefore, antisymmetrization in
a "color" quantum number is required. ' Further-
more, a color interaction must be introduced in
order to raise the energies of all color-nonsinglet
bound states not yet observed among the low-lying
ground states in nature. '

Section VII is devoted to a discussion of the way
in which the introduction of gauge fields coupled
to the "color" of a quark can accomplish this
purpose and reproduce the desired classification.
The basic idea follows the original observation of
Nambu' that if colored quarks interact via colored
gauge fields, then the interaction will be attractive
for color-singlet states and repulsive for color
nonsinglets (in the case of states made of particles
belonging to a color triplet). What we do is adapt
this argument to our self-consistent calculation in

order to show how in this scheme only color-

singlet states remain with hadronic masses while
all nonsinglets are pushed up in energy. Leaving
the discussion of true "color"—which corresponds
to a non-Abelian theory —aside for the moment,
we can here give a good idea of what is going on by
highlighting the main ideas for the simpler Abelian
case. The detailed presentation both for Abelian
and non-Abelian vector gauge interactions is pre-
sented in Sec. VII.

The extension which we make of the theory we
started with is to introduce a gauge field X& and
a complex Higgs field Q so that our theory is de-
scribed by a Lagrangian of the form

g = —,'(B„X„-B„X„}'+[(8„+i&X„)P ][(&"—i &X")P]

—H'(y*y —f&)'+ —,
'

(s „o)' H(&r'——f ')'

+ g(i y" s „+&X~y„—Go)f (2.39)

As before, at the classical level (tree approxi-
mation), this theory is one in which the vacuum
state has (o)=sf and (Q)=sf'. Hence, substi-
tuting o'- o+ f and mod/- mod/+ f ', we obtain a
theory which describes the following roster of
"bare particles": a o meson of m, '=Sf'H, a
fermion of mass Mo = Gf, a Q meson of m &'

=4f"H', and a massive vector of mass ms'
=2&'f". Choosing G, H, H', and t' so that all bare
quanta are very heavy, we can then, for the same
reasons discussed in Sec. III, reduce our problem
to that of finding stationary points of the classical
energy

de ~E2 ~ ~ (g y B)2 + l)2(g& + ~gf &)2(P2 ~H 2)
I

(2.40)

where E is the classical electric-type field asso-
ciated with the vector potential X„, B is the asso-
ciated vector potential, and &, is defined as

1
g c

o g2 (gI ~gf l)2 ( E LX lt). (2.41)

and current density

j(x) =X &X. (2.43)

In particular, quantum fluctuations are ignored in

setting (s'I(gtg —)t "jt)'I s') =0 in writing Eq. (2.40).

We have in this manner reduced the problem to
the classical form of the interaction of massive
vector "electric" and "magnetic" fields of color
in interaction with a color charge density

(2.42)

As in the classical theory, there is a short-range
(Coulomb) repulsion which causes any nonvanishing
local charge density to expand. It is this local
repulsion which raises the energy of the state by
an amount proportional to the coupling constant (.
Only for color-singlet states does the current
density vanish locally so that the energy is not
raised by the color interaction. The strength of
the color coupling fixes the scale of energy by
which states that are not color singlets are raised.
Hence the color singlet, or zero-triality selection
rule, derived in our theory is approximate and not
absolute 'o

In Sec. VIII we compute physical parameters for
the hadronic ground states including Ml transition
moments, the axial charge, and approximate
charge radii using our trial solutions.
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Section IX is devoted to constructing momentum
eigenstates, a problem we have solved only for
charge-& states at rest. Remaining difficulties
and open problems are discussed.

Section X is devoted to a discussion of what we
see to be some of the important questions left
totally unanswered to date. One of the most im-
portant of these questions on which we can only
speculate is whether or not one will ever be able
to successfully incorporate PCAC into a scheme
of this type.

In Sec. XI we speculate on the structure of ex-
cited hadron states. The key observation has to do
with the "softness" of our shell solution to defor-
mations of shape —a point which will be discussed
heuristically in this section. The basic idea can
be illustrated as follows: The potential g(x) is
spherical with a contained quark in an state be-
cause this shape gives a surface of smallest area,
and hence minimum field energy, while maxi-
mizing the volume into which the quark-wave func-
tion is squeezed. However, when one excites the
quark to a state of higher /40, the hole in the field
potential can collapse around the quark-wave func-
tion and thereby reduce its surface area and hence
its energy without further increasing the curvature
of the quark-wave function. Simple models suggest
that this mechanism of a soft shell leads to low-
lying excitations of the hadron state. The possible
connection of this scheme to the dual-string model,
scaling, final hadron spectra, etc. , is discussed.
Our purpose is to show that the potential inherent
in this approach, which requires further develop-
ment, is very broad indeed.

Finally, in Sec. XII we compare our approach to
the MIT "bag model" and recent works by Lee and

Wick; Chin and Walecka"; Creutz and Soh"; and

Dashen, Hasslacher, and Neveu, "who have also
studied quark-containment mechanisms in field-
theoretic models.

An appendix is devoted to a discussion of a modi-
fied version of the simple model discussed in See.
IV whose purpose is to try to explore how sensitive
these results are to the addition of a term which
forces the existence of a volume energy in addition
to the surface energy in the o field. In particular,
we sketch the arguments of Creutz and Soh, "
showing how the NIT bag model emerges for a
specific choice of parameters.

III. THE VARIATIONAL CALCULATION

how such a semiclassical picture may emerge from
a canonical quantum field theory. We have veri-
fied that this phenomenon occurs in a strong-cou-
pling theory, where a nonperturbative approach is
essential. Our analysis makes use of the varia-
tional principle for the expectation value of the
Hamiltonian in a trial state.

In carrying out the variational calculation, in
addition to making a suitable guess for the trial
state, we are forced to make one crucial approxi-
mation involving normal-ordering; this is the
"tree" approximation. It remains to be shown how

good our trial function and use of the tree approxi-
mation are in establishing the qualitative charac-
ter of the strong-coupling solution which we con-
struct. A more complete treatment including
renormalization remains for the future and un-
questionably requires a more systematic approach
whose first step, we would hope, has been es-
tablished by the work we are reporting here. What
we do accomplish in this section is the reduction
of the quantum field-theory problem to the classi-
cal theory described by solutions of the field equa-
tions (2.14}and (2.15).

For simplicity, we will not discuss SU(3) had-
rons. Instead, we imagine a world with only a
single-quark species and demonstrate in See. IV
the existence of bound states of mass much less
than the bare quark mass. We defer to Sec. VII
a discussion of SU(3} hadrons and of the color
mechanism which ensures that states of nonzero
triality have much larger masses than the hadrons
of zero triality.

A. Fock space

We consider the model Lagrangian

2 = ,'(a„cr)' --H(o' —f')'+T()(ty" s„—Go)(c), (3.1)

where o and g are scalar and fermion fields, re-
spectively, f is a constant parmeter with dimen-
sions of mass, and 6, II&0 are dimensionless
coupling constants. For our variational approach,
we need only consider the system at a single time,
which we take to be t =0 (and we usually suppress
the time argument in our notation}. Only the
canonical equal-time commutation relations are
needed and at t =0, we may expand the field opera-
tors in a. normal-mode Fock space basis.

For the scalar field, we choose a plane-wave
expansion

We have seen in the last section that a heuristic,
semiclassical discussion of the Hamiltonian [Eq.
(2.1}]suggests the possible existence of bound
states with masses much less than the bare masses
of the constituents. In this section we wil, l show

where

(o, =(k2+m 2)'t' I ' =8Hf' (3.3)
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and the operators are quantized by imposing the
usual canonical commutation relations. In Eq.
(3.3}we have used the mass, m, =2&'2Hf, for the
small o oscillations after making the translation
o- o+f, as discussed in Sec. II. For the fermion
field, we make an expansion in terms of the eigen-
functions of the Dirac equation in an external po-
tential to be specified later when we discuss the
var iational procedure

C(.) =P l&.U.(x) D.'1.(x)l. (3.4)

The positive- and negative-energy eigenfunctions
U„and V„satisfy the orthonormality relations

(3.5)

The nonvanishing equal-time anticommutators are

&~( ), ~'("k=~ ( -"),
&Il. , flD =I:D. , DD (3.6)

a~~0~& =B„~O~&=D ~0~& =0. (3 'I)

The relation of this expansion to the usual one in
terms of plane waves and a translationally in-
variant trial vacuum will be clarified in terms of
the Bogoliubov transformation. "

B. Normal-ordering and definition of the Hamiltonian

Our field-theory model with 2 given by Eq. (3.1}
is a renormalizable theory. Because of the diver-
gences inherent in any renormalizable quantum
field theory, the meaning of a product of field
operators at the same space-time point is am-
biguous and has to be properly defined. In the case
of the Hainiltonian, these ambiguities are related
to the necessity of a renormalization program de-
signed to remove the ultraviolet divergences in
the theory. It is beyond the scope of the present
paper to tackle the problem of renormalization in
a strong-coupling theory; we define the Hamil-
tonian by a naive normal-ordering prescription.
The prescription depends on the particular expan-
sion chosen for the field operators. Hamiltonians
normal-ordered with respect to two different ex-
pansions such as Eq. (3.4) and a plane-wave ex-

The Hilbert space at t =0 is constructed by applying
the creation operators a~ and B„,D to the trans-
lationally noninvariant no-particle state ~0~& char-
acterized by

pansion differ by a c-number contribution which is
usually a difference of two infinite constants. In
order to give such a difference a precise meaning,
it would be necessary to regulate and properly re-
normalize the quantum field theory. "

In this paper a very fundamental approximation
is to ignore these differences in normal-ordering
prescriptions. In other words, the Hamiltonian we
are working with is correct only in the so-called
"tree" approximation. To the same approxima-
tion, the true vacuum state also coincides with the
free-field vacuum as defined for small oscilla-
tions about o =f Ou.r hope is that when renor-
malization effects are included, the conclusions
will be qualitatively similar although they may be
quantitatively different. Specifically, this means
we are ignoring the difference in energy between
a theory with @ normal-ordered in the basis (3.7)
as constructed for the one-fermion sector and a
theory normal-ordered in a translationally in-
variant trial vacuum. "

I g& = U(g)Io, &,

where U(g) is a unitary transformation

U( ) -»( J=»" »(*-)'(*) .

which displaces the field operator v

(3.S)

(3 9)

U '(g)f(o(x))U(g) = f(o(x)+g(x)),

U '(g)oU(g) =o. (3.10)

Thus, if f (o) is any polynomial function of o which
is normal-ordered term by term, then

&glf (o)lg& = &0~If (o+g)I0, &

(3.11)

Equation (3.11) shows that the tree approximation
rule for taking the expectation value of a function
of o in a coherent state is to replace 0 by the c-
number amplitude g(x). This procedure gives a
concrete realization of the intuitive picture pre-
sented in the Introduction.

D. Fermion states and the Bogoliubov transformation

We shall also want to replace the fermion field
operator by an arbitrary c-number Dirac spinor
wave function when we take the expectation value
of @ in our trial state. For a trial state of fermion

C. Boson coherent states

The construction of the trial state is guided by
our intuitive idea that the boson field develops a
localized expectation value in the neighborhood of
the fermion source. To describe such a situation,
we employ the so-called boson coherent states
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number one, we do this by constructing

(3.12)

where 8„ is the creation operator for a fermion in

an arbitrary state n and ~0~& is the no-particle
state in the basis formed as shown in Eqs. (3.4),
(3.5), and (3.7). With this procedure, the expecta-
tion value of an operator bilinear in the fermion
field and normal-ordered in this basis is

B„=g (o(„b + p„dt),

D„=Q (B„b„+P„d„),
(3.16)

in a large but finite volume so that the momentum
spectrum becomes discrete. This enables us to
treat all expansions on the same footing. The
connection between the two bases is

(s ~: q'(x)r g(x): ~s&=U„'(x)rU„(x), (3.13) where

where the arbitrary wave function is to be deter-
mined self-consistently by the variational calcula-
tion.

If we want to study the relation of the localized
no-particle state ~0~& to a translationally invariant
trial vacuum state ~0~& or study the relation of the
state [Eq. (3.12)] to an expansion in a plane-wave
basis, we require a unitary transformation con-
necting the two representations. This change of
basis is called a Bogoliubov transformation. To
appreciate the significance of this transformation,
let us first construct a trial state of fermion num-

ber one of the form

d'x U~(x)u (x), )3„= d'x U„*(x)(/ (x),

d'x V„*(x) .(x), )3„.= d'x V„*(x)v.(x).

(3.19)

+ jan) =1, A+ 0(' 6 =1,

+08 =1& 0 8+8 0=1, (3.20)

These numbers can be regarded as elements of
matrices o.', P, &, and P. It follows from the or-
thonormality of these eigenfunctions that these
matrices satisfy the relations

~il)= fd'j pi ()', )b, (l(4)
S

(3.14)

in terms of a plane-wave basis

0(x) =
d3p

[(2x)32E ]1/2 Q [ ))su(Pi

+d~t, , v(I, s)~ '~'"],

E, =(p~ +M)' ', M=Gf. (3.15)

Then the expectation value of an operator bilinear
in the fermion field and normal-ordered in this
basis is

In this matrix notation

8 =~b+J3d,

D =5 b+Pd,

and the inverse is

(y t g + (y VD T

d =P 8+PD

(3.21)

(3.22)

It is obvious that the transformation (b, dt) —(B,Dt)
is unitary. The connection is completed by giving
the relation between the two no-particle states
(this is a definition of ~0x&):

(b~. q" (x)r y(x): ~b& =s'(x)rs(x), (3.16}
i
0 &

=- ~ IIB„D„i0 &. (3.23)

(3.17)

However, s(x) is not an arbitrary spinor as re-
quired for performing a variational calculation
since the positive-energy solutions u(p, s) do not

alone form a complete basis. Therefore, Eq.
(3.14) is not a suitable trial state. It is apparent
that a Bogoliubov transformation must be applied
to Eq. (3.14) to mix together the particle and anti-
particle plane-wave spinors in order to provide a
complete basis for expanding the trial function.

%e illustrate how this is accomplished and exhib-
it the relation of ~0~& to the state ~0~& in what

follows. For convenience, we quantize the system

It can be verified that ~0~& is not a null state. In

particular, if the transformation conserves mo-
mentum, then & and P are simply numbers

~P

Dp —-/pbbs+ &pd

and the relation reduces to the familiar one,

(3.24)

(3.25)

If the potential is spherically symmetric, the
positive- and negative-energy eigenfunctions do not
mix under a spatial rotation; therefore, the B's
and D's associated with two coordinates connected
by such a rotation are related by
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B' =RB,

O' =RD,

mhere R is a unitary matrix. Since

we have

(3.26)

(3.27)

of course, the original difficulty that led Dirac
to formulate hole theory which we also must apply
here. %e proceed as follows: Assume that for
any choice of g(x), we solve the Dirac equation
exactly

(3.31)

IIH„'D„' = (detR}'II B„D„, (3.28)

i.e. , the no-particle state ~0~& is rotationally in-
variant.

Equations (3.12}, (3.18), (3.19), and (3.23) give
the expansion of a trial state with fermion number
one in a momentum basis.

E. Derivation of classical field equations

from the variational principle

ls&=U(g)H,'10 &

%e now apply the variational principle to the
Hamiltonian derived from Eq. (3.1), guessing as the
trial state

and take the lowest "positive" eigenvalue g(g).
Since Eq. (3.31}describes the motion of a Dirac
particle in a scalar potential, there is no Klein
paradox as occurs for sharp localization of a
Dirac particle in a strong vector (Coulomb) po-
tential. " The solutions for the positive and nega-
tive spectra are clearly separated in this case,
and so one does not lower the energy of the trial
state by including particle-antiparticle pairs flow-
ing into the region of localization as occurs with
the Klein paradox. This is seen clearly in the
solutions below in Sec. IV.

To ensure that E is now always positive, we re-
quire that E be a minimum with respect to arbi-
trary variation of g. Nom

=exp -i d'xgx (ax Bo 0~), (3.29)
d3~ 1 gg)2++ g2 2)2 ~ g g) (3.32}

where B0 is the creation operator associated with
the ground-state wave function in Eq. (3.4) and

U(g) creates the coherent boson state (3.9). This
procedure reduces the quantum field-theory prob-
lem to a classical form to which we can apply the
heuristic discussion of Sec. III; it can also be
solved by mathematical analysis. Specifically,
if we assume the Hamiltonian to be normal-ordered
term-by-term with respect to (01 & as discussed
earlier, it is straightforward to evaluate the ener-
gy of the trial state. The result is

and we have imposed the restriction from Eq,
(3.5) that

(3.33)

Since

d x y —. V+GPg—&x

5g

5y n
+ —. V+ GPg

5g i

& =- &sit Is&

d x X
—~ V+GPSS' X+1(Vg) +H(g —f )

=Gxx+&(g}
66g x)

= GXX

d &XX

(3.34)

(3.30)

Zero-point energies associated with the normal-
ordering prescription are dropped in writing Eq.
(3.30).

Since we have not yet specified what the expan-
sion basis (U„, V„) is, except that it forms a com-
plete basis, p is obviously arbitrary. The idea
behind the variational principle is that the best
choice of the trial state is such that the corre-
sponding g and y will minimize the energy E. How-

ever, this mill be true only if the energy operator
is positive-definite for all g and X. This is not
the case in general, however, since the Dirac
part in Eq. (3.30} is not positive-definite. This is,

the condition 6E/6g =0 leads to the classical field
equation

V'g —4Hz(g' f') = Gxx-
Equations (3.31), (3.33), and (3.35) are the same
as if we had applied the variational principle to
(3.30) with the restriction (3.33). S(g) then ap-
pears as the Lagrangian multiplier enforcing the
normalization condition. "

IV. SOLUTION OF THE COUPLED EQUATIONS

Unlike the one-dimensional case discussed in
the introductory survey, we have not found an
exact solution of the coupled differential equations
in three dimensions. However, in the strong-cou-
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(
1
—.n V+6 g= gg,
Z

dg2dg 2 2+ ——-4ffg(g f}= GXX .-

(4.1)

(4.2)

Our strategy is to make a guess for g, solve the
Dirac equation for g, and then check the Klein-
Gordon equation for consistency. According to
the heuristic arguments originally presented, we
first choose g so that the fermion field has zero
effective mass inside a small region of space.
That is, we take

g(r) =f e(R —r) (4.3)

as illustrated in Fig. 1, where R, the radius of
the potential, is to be determined by minimizing
E, just as in Eq. (2.6). The solution of the Dirac
equation in a spherical square well is well known;
we have

pling limit, we have obtained the leading terms of
a solution and the order of magnitude of the small
corrections. The solution in this case is very sim-
ilar to that of the one-dimensional problem.

Rather than simply displaying this solution, we
show how it comes about by following a more
heuristic procedure. We do this in view of its
surprising nature of confining the fermion field to
a thin shell or bubble surface. First, then, we
attempt to construct a solution of the type dis-
cussed in Sec. IIA, in which the effective mass of
the trapped fermion field is zero. Finding that the
coupled equations do not allow such a solution,
we will be led to a solution in which the effective
mass of the trapped fermion field is large and
negative. We will find that only these bound states
have positive energies that are small compared
to the bare masses in the theory.

Since we are seeking the lowest energy state,
we expect the classical field g and its source
gy to be spherically symmetric. The equations
we wish to solve are then

are two component angular solutions with
j = I+ &, respectively, and 4, , B, are normaliza-
tion constants. " For Gf» g and Gf»1/R, we
have k, (A R) = e /XR and continuity a.t r = R im-
plies the eigenvalue condition

j,(kR}= sj „,(kR) (4. t)

Following Lee and Wick, "we solve Eq. (4.2) first
by neglecting the yx source term and (2/r) dg/dr,
so

d2

„,. -40g(g' f') = o . -

This is identical to Eq. (2.18) and we obtain

(4.8)

Equation (4.7) has solutions with k-O(1/R). For
instance, for L=O we find a ground-state energy
at $ =2/R with higher energy states spaced at
intervals -O(1/R). However, this solution is not
consistent with the Klein-Gordon equation (4.2}.
For r) R and far enough from the surface, both
sides of Eq. (4.2) are -0, but for r(R and far
enough from the surface, the left-hand side is
-0 but the right-hand side of Eq. (4.2) is -G/R'.
Thus we are not able to construct such a "heuris-
tic" solution.

The one-dimensional example suggests that we
look for a solution with the fermion field confined
to the surface r-R so that the source term on the
right-hand side of Eq. (4.2) will also vanish for
r & R. This means making the inside potential
very deep so that the fermion will have an effective
mass iGgi » 8 and thereby be restricted to a thin
shell near r-R. In particular, we choose g= -f
for r(R and far enough from the surface so that
each term in Eq. (4.2) vanishes. Near the surface
we expect also as guided by the one-space, one-
time dimensional result that yy «g~y and also in
the strong-coupling limit

2 dg f dg f f
dr RD Qr 2

ij, (kr)y '.„ g(x) =f tarn(~f(r R)), — (4.9)
r&R

+j„,(kr)a rP'.„
(4 4)

ik, (2. r)y,'.
k, »(Xr)v I'P,'

8, +Gf

r) R . (4.5)

—(G2f 2 g 2)1/2
(4.6)

1 ~Here the + sign corresponds toj = L+ —„the j, and

0, are spherical Bessel functions of half-integral
order,

where one of the two integration constants is
chosen so that g approaches its vacuum value g
=f at large distances. The other constant, the
radius R, is adjusted later to minimize the total
energy. It is shown that the two neglected terms
then cancel on the "average. "

The details of the Dirac wave function y in the
transition region depend on the relative magnitudes
of G and H. However, the total energy of the state
and the optimum choice of R are determined by
H alone. To illustrate these points, we consider
two extreme cases: (i) ~H»G»1, and (ii) G

» ~»1.
(i) ~H» G» 1. In this case, it is a good approxi-
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mation to replace g(x} by a square-well potential.
We are therefore invited to solve the Dirac equa-
tion in the potential

g(x) =+f, r& R

= —f, r&R. (4.10}

Following the standard procedure for solving the
Dirac equation in a central potential, we make the
decomposition

which are appreciably different from zero only in
the transition region &-R. These features of the
solution are illustrated in Fig. 3.

We can now take into account the effec ts of the
source term. A condition for R is supplied by re-
quiring the two neglected terms to compensate
ea.ch other on the average. This condition for R
is obtained by multiplying Eq. (4.2}by dg/dr and
integrating over r across the transition region.
We obtain

l
F, (&) (x r.

y y J%

(4.11)

where we have adopted the notations of Ref. 19. It
is immediately clear that for a spherically sym-
metric potential g(x), the only solutions of Eq.
(4.1) which are consistent with Eq. (4.2) are those
with j =-,' (or I =0). Otherwise, the right-hand
side of Eq. (4.2) has an angular variation while
its left-hand side does not. From now on we will
restrict ourselves to the case I, =0.

The radia. l wave functions satisfy the equations

dGp 1' = —Gp+(g+ Gg}gp,dr
(4.12)dy', 1„;= ——F, —(8 —Gg)G, .

In the limit Gf » 8, the solutions are [A = (G'f '
g2 )1/2 ]

G, =Asinh(Ar), r«R

f 2 dg
-'

dgd v — — = dr —GX.Xdx dy. (4.17}

These integrals are insensitive to the precise up-
per and lower limits since the integrands de-
crease rapidly away from &=R. According to Eqs.
(4.9) and (4.16), Gyp is a much more slowly vary-
ing function near r-R than dg/dr Thu. s we can
replace Ggg by its value at & =R in Eq. (4.17).
Making use of (4.9) and (4.16}, we find that (4.1'I)
gives

—,= —, vv'2Hf
1 32 3 (4.18)

E = d x[-,'2(ig) +H2(g f2) ]2+ 28

which is independent of G. The value of R as given
by Eq. (4.18) also minimizes the total energy.
This can be verified explicitly or by the following
formal argument.

The total energy E is given by

F,= cosh(X &)—
Az sinh(X&)

(4.13)

=4~R' d& — + 8,dg
dr (4.19}

G =Be, r)R
BA. 1 '

FP= —
@ G

1+

where the eigenvalue 8,

1g=—
R (4.14)

which follows from the fact that the two terms in
the field energy are equal (4.16) and dg /dr is non-
vanishing only when &-R. If we make the explicit

g=f

is determined by the continuity of G, /F2 at r= R.
The normalization condition determines

Be "
sird& R 2m

(4.15) XX

The wave function X is concentrated in the region
& —R. We now compute and compare g X and yg:

X X=4 R2&
(4.16)

1 1 ~ 1 -2x jr-z)
4g R' R &R

1 r 1

ZR R SR
FIG. 3. The solutions to Eqs. {4.1) and {4.2) for the

ease ~H»G»1.
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substitution g(r) =f tanh(v'2H (r —R)), we find

E = ~3 vs' 2H R2f ' +
1

(4.20)

which is a minimum at the value of R given in Eq.
(4.18). We notice that —', of the total energy is due
to the fermion:

du

dr
= —Ggu

dp 1—= 2Ggp+ ——gdr r

We find immediately that

u = C(cosh(~Hf(r —R))] '~~u .

(4.25)

(4.26)

&E dg ' bg—= 8mR dr —+-
G)R dr aR (4.21)

3 1E=-
R

= 3(~v)'~'(2H)'~'f

A more general way to see that the value of R
determined from the integrated meson equation
(4.17) minimizes the total energy is to take the
derivative of Eq. (4.19) with respect to R. We
obtain

The stability of the p equation implies that (1/r)
—g =0 when g(x} changes sign; hence the eigen-
value for the quark energy 8 is

1g=
R (4.27)

We notice that u, varies more rapidly than the
potential g(s). The half-width of u, is given by
I/O'~'H' 'f in contrast with the half-width of
1/Gf in Eq. (4.13) of the previous case. Thus we
can make the approximation

But using Eq. (4.1) we find Gg(x) —= Gv&E f'(r —R), r R. - (4.28)eg, dg
dR

—= G d'x—

=-4«G « —
XX

2 dg
dr (4.22)

Then Eq. (4.25) gives

1
+ 2G~f 2R2 (4.29)

The normalization condition (3.33) for x implies

Consequently BE/BR = 0 implies

dr — = G dr— (4.23)
Now

dru 1
(4.30}

which coincides with Eq. (4.17). From the in-
equality (2.29), H'~'«G, we see that XX«X~X,
since it follows from Eq. (4.16) that

xx- (H'"/G}'x" x«x'x .

1
XX R2 P

u
1

2GyTZf 2R' (4.31)

(ii) G»vZ» l. In this case the Dirac wave func-
tion x is still given by Eq. (4.13) when ~r —R~

» I/&TED f . However, in the transition region
r-R, a better representation for X can be found
as follows: Introduce the notation

u~= G+F,
'u+= pu

Then Eq. (4.12) becomes

dred 1= —Ggu + g+ — pudr r
(4.24)

1 1—=2Ggp+ ——g -p' —+ gdr r r

For a solution where g is +f outside the well
(r&R) and falls to finside the well («R), -
p =+ 1 at r = 0 and rapidly decreases away from
the origin r=0. At the same time u (r) is ex-
ponentially increasing toward the surface (r-R).
Hence we only have to solve the equations away
from the origin where they reduce to

The solutions are illustrated in Fig. 4.
The condition (4.17) must also be satisfied in the

present case. But now it is dg/dr which is slowly

g=f

XX

g= —f

FIG. 4. The solutions to Eqs. (4.1) and E'4. 2) for the
case 6» ~H»1.
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varying in the transition region, and so it can be
replaced by its value at &=R. The result gives
the same value of It as in Eq. (4.18).

Hence we have shown as claimed that the size
and energy of the bound states are determined by
H alone, independent of whether 1«G&&~ or
1 «~H «G. This conclusion is also valid in the
intermediate range of parameters G-W»1, al-
though the detailed shape of the wave function is
sensitive to G in the transition region as g changes
from f to f. —

V. STATES VfITH NONVANISHING

AVERAGE MOMENTUM

l
& =ma ( ) &*~.t*lr(*))

xexp -i dxg, (x)0 x) 0 (5.5)

where go(x) and g, (x) are arbitrary real functions
to be determined by the variational principle.
Now

exp -i dxgo x)cr x) o exp i dxgo x)cr x)

=f (o +g, ) . (5.6)

Again using the same normal-ordering prescrip-
tion, we find

In the calculation of the expectation value of the
Hamiltonian, we have neglected terms associated
with normal-ordering. Since these terms depend
on the scalar field g(x) and the wave function )(„
of the fermion, they are different for different
states. The question arises whether this is a
consistent prescription. In this section we will
show that at least this is a Lorentz-covariant ap-
proximation. For this purpose we will extend our
variational principle to states with nonzero average
momentum. As can be verified, the states we
constructed above have zero average momentum.

We will be able to establish that the average mo-
mentum and energy of such a state are related to
the energy of the corresponding state with zero
average momentum by the mass shell condition:

E„wP„=(vl@-—gu P„„iv)

lg2~ 1+kg 2 f221 dg, '

(5.7)

dgg+w —g =0
dx

(5.8)

d d2
-u —go —

2 g, +4Hg, (g2 -f 2) = 0,

where ~ is a Lagrange multiplier to take care of
the momentum constraint (5.4). The variational
principle leads to"

E„=half/(1 —v')",

p„=Mv/(1 —v')"',
(5.1)

and

E„-zoP „= dx ——u —g,

1 kx
dx v'+ —— +H (x' -f ')'

2 dx

I~p= dx —g
(5.2)

where v =P„/E„ is the average velocity of the state
and M is E„at v=0.

Again let us first illustrate our procedure in the
one-dimensional example without fermions. Then

+ ——g, +H(g, f)-
(5.9)

Without solving Eq. (5.8) we would intuitively ex-
pect that g, (x) is obtained from g(x) for Lorentz
contraction. This is borne out by explicit con-
struction. Let g(x) be the solution for the problem
with P„=O, so that g(x) satisfies Eq. (2.18) without
the source term. We will show that the choice

We are interested in minimizing the energy in a
state ~v)

Ã ='V,

(5.10)
E„=(v~@

~
v)

with the constraint

P„=(vilP.p i
v)

(5.3)

(5.4)

1
g, ( )=g(r ),

satisfies the differential equation (5.8). To see
this we define

The coherent states (3.8) automatically give (P„„)
=0. To construct a state with nonvanishing aver-
age momentum, let us consider

x'=rx

Then

(5.11)
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, d'g, (x) d'g, (x},dx' ' d'g(x')
dx' dx' dx dx"

(1 -w2) , d'g(x')
dx

l% =e u('J &'*r.(*) I*))

&exp -i d'xg, (x)b {x) B~~ 0~ . 5.18)

d'g(x')
dx (5.12)

With our usual normal -ordering prescription for

@ and P„, , we find

The energy also simplifies. Using the definition
(5.10) in Eq. (5.7), we have

E-„=-(vip iv)

d'z ~go'+ -,
'

Vg, )'+H(g, ' — ')'

E„—vP„= — dx' —, 1-m' —g, x

+a[g„(x)' -f ']'

+H[g(x')'-f'J'

Z V
+ Xj. . + ~Ggy Xy

P-„=-(viv„, iv)

d s -gVg +X —. VX

(5.19)

where

1= —M,
y

dx — +8 g x2

(5.13)

(5.14)

The fact that
~
v) is a single-fermion state gives

the constraint

d'xX, X,

dx (5.15}

is the energy in the rest frame.
Another relation between E and I' is supplied by

the field equation (5.8):

(5.20)

(5.21)

Introduce the Lagrange multipliers w and 8, to
take care of the constraints (5.19) and (5.20).
From the variational principle

5(E„-w ~ P-„S,Q) =0

Also we find the equations

dI' = — dxg —g5 o dx

=v dx

go+w' Vg&=0

-(w V}g, V' ,g+4?fg( ,g' f') +XGX, = -,0(5.22)

(
n ~ V 1--

~ +PGg~ X~ = $1+ . W

dgrx

1, dg x')

dg x

Again we expect that both g, (x) and X,(x) are re-
lated to g(x) and X(x} for P-, =0 states by a Lo-
rentz transformation. Let g{x,y, ~), X(x, y, ~), and

8 be the solutions to these equations in the rest
frame. Then if we assume the average momentum
is along the x axis, we can verify that the boosted
func tions

=MVy . (5.16)

Thus E„and P„satisfy the mass shell conditions
(5.1) and (5.2).

We now proceed to discuss the three-dimen-
sional case. The momentum operator is given by

g, (x) =gh x, y, ~)

=g(x y z) x =yx h = 8/y (5.23)

X,(x)=S(A)X(», S, &)e""'*, w=v, y=li(I —U')'"

satisfy the field equations. The matrix S(A) trans-
forms the Dirac spinor properly under a Lorentz
boost. The matrices r" transform according to

P„~ = d x -oVcr+g —. Vg

The trial state in this case is

(5.17)
s 'r'~ =y(r'+vr"),

3 "y"S =y(y" +vy }.
Since

(5.24)
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and

x,x,(x) = xx(x') (5.25) (tr"s„-Gg, )X, =0,

&'g, +4ffg, (g,' f'-) = -Gx,x, .
(5.34)

(+ —l)&+ =(~'- l)r'd „
d2

dx
(5.26)

Furthermore,

E„= d3xT~,

(5.35)

g, obviously satisfies the Klein-Gordon equation
(5.22). To verify the Dirac equation, let us re-
write Eq. (5.22) as

(r'(~, +v p) —r" p-Gg, ]X,=o, p-=—.V (5.27)

and use

g '(~)[r'(~, +1/P. ) —r.P.]~(A)

=rh"g, r, P.-(i ") -r:g,],
(5.28)

& lX(rx, y, z)e""&*]

= (P.x(x', y, z)]e"""*+r~~xe""'*.

T"'= '1x,-(r" 's+"r "s)x, +&"g,&'g,

g"-"h(8 ig, )' If(-g,' f'-)'l (5.36)

It follows from the covariant field equation (5.34)
that T"' is conserved:

B T"'=B T"'=Q.
}t V (5.37)

But from the explicit construction for g, and Xy

we have

where T' and T are components of a symmetric
stress-energy tensor

We find finally

(r'~-r. P. r, P„r.-P. -Gg-, ]x(»', y, z) =o. = -v —T".B

Bx (5.38}

(5.29)
By the same scaling as in Eq. (5.23), we get

Then, in terms of T"', we find the momentum
components to be

E„—u P„= —M,
1

(5.30) P~ = d'xT"

where

M = d'X 2 &g)'+8 g' — ')' +

is the energy in the rest frame.
In the one-dimensional case, a second relation

is supplied by the field equation. To find another
relation between E„and P„ in this case, we will
make use of general properties of the stress-
energy tensor. To fully utilize the covariance of
a classical field theory, we introduce a set of
time-dependent functions from Eq. (5.23):

x —T

= J(d x x T+ T—+ T——3 02 03 00

By Bz Bk

x xv —T
Bx

=v d xT

g, (x, y, z, t) -=g(r(» —~t), y, z),

g2(x, y, z, t) = -v ~ vg, (x, y, z, t)

2=E v P =~=0
V P V V

Finally we obtain

(5.39)

B

x, (x, y, z, t) = ~(A)X(r (x - ~t), y, z}

X -i b' y( t-vx)e

We verify that

1
& —X = —. v V+8 XBt ' i 1 1'

(5.32}

(5.33)

y(E —v P )=M,

Equation (5.40) gives

M

(l P2)1/2 &

Mv
v (l 2/2)1/2r

P- =E-v .
V V

(5.40)

(5.41)

Thus we can cast the equations for g, and Xy ln the
covariant form

Ev = (p' +m2)'/2. (5.42)

This is a nonlinear relation between the energies
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at rest and with average momentum P. Establish-
ment of Eq. (5.42) lends some credence to our
seemingly noncovariant normal-ordering prescrip-
tion.

VI. THE MULTIQUARK STATES

Multiquark bound states may be constructed using
the variational method discussed in Sec. III. The
variational state consists of a coherent scalar
field plus quarks and antiquarks. As in the Har-
tree-Fock approximation, the quarks and anti-
quarks are assumed to move in the self-consistent
scalar field, the source of which contains contri-
butions from all of the quarks and antiquarks in

the state. " As for the single quark, the multiquark

states are those which minimize the expectation
value of the energy. The potential g(x) is similar
to the Hartree-Fock field in atomic physics and
the (anti) quarks move in the ground states of this
self-consistent potential.

To be more explicit, we consider multiquark
states of the type

Is„)=U(g)c,' "c„'I0,&, (6.I)

where C creates quarks (B ) or antiquarks (D )
in states corresponding to the potential g(x), which
defines the coherent state for the scalar field.
The energy functional becomes

E-=(S.IC I&.)
N

= Q 8, + d'x[-,'(Tg)'+H(g' f')'], (6.2)

where the quark energies are given by the solution
to the Dirac equation

A. qq system

Both q and q are in the l=0 states. These states
have odd parity since qq has an odd intrinsic par-
ity. They consist of the 0 pseudoscalar and 1

vector mesons. These are the 35 in SU(6) clas-
sification, and are degenerate with the energy

E„=——(2)"'.N (6.5)

B. qqq system

All the three quarks are in l =0 states. These
are the positive-parity (by definition) states with
J =

& and ~, namely the 56 in SU(6) classification.
Their common energy is

based on this result. First of all, one must bear
in mind that any variational calculation can at best
give a reasonable approximation to the first few
low-lying excited states. The above formula should
not be taken seriously for- highly excited states.
In particular, we have solved the coupled equations
(6.3) only for the quarks in I =0 states in a spher-
ical potential g(x) as in Sec. IV.

So far, the binding mechanism produces not only
the physical hadrons but also nonzero-triality
particles of low masses. In Sec. VII we propose
a scheme utilizing Nambu's idea of color to pro-
mote the physically unobserved states (color non-

singlets) to very high masses. Our scheme, how-
ever, leaves the physical hadrons (color singlets)
unchanged with a spectrum still given by Eq. (6.3).

We will now discuss the consequence of applying
Eq. (6.3) to the color singlets.

1—& ' ~+~Pg Xt = ~tX. )

and g(x) is determined by

(6.3)
Es = ——(3)

3 1

2A0

Thus Es/E„ is fixed at (-,')'".
(6.6}

3 NE

3 N2/3

2

where the radius of the system, RN, is given in

terms of the radius for a single quark, A„by

(6.4)

N

V'g —4ffg(g' f') =C g X;X;-.
&= 1

The solution we obtain from this system is identi-
cal in structure to the solutions found for the sin-
gle-quark system.

Following our discussion of the single-quark
system, we find the energy of a state with N quarks
or antiquarks in the ground state to be

E,~ =2EB

2(3)2/3
2R0

(6.7}

while a color-singlet 6-quark state has a mass
given by

C. Exotic states

Among color-singlet states there are states
with more than one quark-antiquark pair or three
quarks. These are the exotic states. So far, there
is no experimental evidence for the existence of
the exotic states. According to Eqs. (6.5) and

(6.6), exotic states appear in our spectrum. For
example, a noninteracting two-nucleon system
has a mass given by

= (Kv~2H ) &&3f

We would like to discuss the hadron spectrum
E = ——6

3 1
60

0
(6,8}
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The tmo masses are related by

(6 9)

That is, a 6q system has a lower mass than twice
the nucleon mass. However, the 6q states are
highly excited and, as we have emphasized, our
variational treatment is more prone to fail for
highly excited states. As long as me consider only
l =0 quark states, we may not form bound states
with baryon numbers greater than 2.

From the basis (6.1) we can construct color-
singlet states of definite spin and unitary spin.
For later applications, we gave a few examples
here. Let (u, d) be the nonstrange quarks which
form an isospin doublet. We will use arrows to
indicate j,=+ & or j,=-&. For baryon states, the
first quarks are red, the second blue, and the
third white. For meson states, the quark and
antiquark are of the same color and a summation
over color is understood. All the following are
states with zero average momentum:

W3
I
&',j = ')=

I dtutut&+ lutdtut&+ lutu&dt&,
(6.10)

~~~ l»j = a&=2lu&u&dI & lulu—&de& —
I uiuidi&

+2luidiu~& —luid~ui& —luidiu~&

+2ld»i»& Id&u&u)& ld)u)uI&.

The neutron states are obtained from the proton
states by interchange of u and d quarks. For the
~ meson and the m we have

I (u, j,=0&= ~[lu»t&+ luiu&&+ I dtd&&+ I d~d~& ],
(6.11)

I
v &

=-.[-Iu~«&+ I d~d~&+ IuIu~ &-I did'&].

An over-all exponential factor fj(g)
=ex [p-i fd'xg(x)o(x)], as in Eq. (6.1), is implicit
in the states constructed in Eqs. (6.10}and (6.11).

V(n} = g Q V()

=-,'V Q t; tq

= ~V[I (I+ 1) —nt(t+ 1)], (7.2)

where I is the total isospin of the system and t is
the nucleon isospin. This force is seen to be at-
tractive for the deuteron (I =0) and repulsive for
the dineutron system (I = 1).

To extend these ideas to quark bound states,
the quarks are endowed with the additional internal
quantum numbers of color so that there are three
triplets of quarks: red, blue, and mhite. The
color interaction is mediated by an octet of non-
Abelian gauge bosons coupled to the SU(3) vector
currents of the color symmetry.

In analogy with the isospin interaction, the ef-
fective potential energy for an n-quark system is

8

V(n) =-,'V P P ~;. ~;. ,
i&j

where (A j are octet coupling matrices to the
quarks. The potential energy may be reduced to
the form

(7.3)

by Nambu' which utilizes a vector interaction
coupled to the color degrees of freedom.

As an example, consider the effect of coupling
of nucleons via an interaction coupled to the vector
isospin current. This interaction leads to a non-
relativistic description of the isospin coupling in
terms of two-body potentials in the form

V)j =Vt; tj, V&0

where t; is the isospin of the ith particle and V

contains the dependence on the other degrees of
freedom. The potential energy of an n-nucleon
system may be estimated as

VII. COLOR SYMMETRY
V(n) = 2V(C —nc), V &0 (7.4)

A. General ideas

As discussed in the previous section, the usual
quark-model picture of the ground-state mesons
and baryons is obtained so long as the color degree
of freedom is added to the quarks. ' The observed
hadronic spectrum is consistent with the existence
of only color-singlet bound states of qqq (baryons)
and qq (mesons). However, the binding mechanism
provided by a singlet scalar field does not distin-
guish between color-singlet and nonsinglet states
givirig equivalent binding to all such states includ-
ing diquark states. It is clear that an additional
mechanism must be introduced to unbind the un-
desired states. Such a mechanism was suggested

where C is the eigenvalue of the Casimir operator
for SU(3) of color for the n-particle system

c= g(g ~! *,

and c=,'— is the equivalent eigenvalue for the quark.
Since C is positive-definite and has zero eigen-
value only for color-singlet states, the strongest
attractive interaction occurs for those states which
are color singlets.

In this section we will estimate the effects of
the color interaction on the quark binding mech-
anism. We mill demonstrate that the color inter-
action has the effect of increasing the energies of
all color nonsinglet states to an arbitrarily high
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level so as to be consistent with the observed had-
ron spectrum. ' However, we should also empha-
size that there is an important difference between
the original Nambu suggestion and our use of the
color interaction. According to Nambu, the color
acts as the binding force for color singlets and an
unbinding force for color nonsinglets. In our ap-
proach, the binding of color singlets is provided
by an effective scalar interaction with the quarks.
The color interaction couples to the full color
current which has zero expectation value for sin-
glet states. Hence, the color interaction serves
only to push the nonsinglet states to higher mass,
leaving the color-singlet states unaffected.

In the following we will first use an Abelian gauge
model to set up the formalism and demonstrate the
unbinding mechanism. Then we w ill discuss the
non-Abelian case. For clarity of presentation
only the SU(2) case will be discussed in detail.
Aside from mathematical complications, the treat-
ment of color SU(3) is analogous to the SU(2)
model.

B. The Abelian example

Consider a "quark" field P coupled to a scalar
a and a U(1) vector gauge field X„. The latter is
also coupled to a complex scalar )p (Higgs field)
which breaks the U(1) gauge symmetry so that the
vector field X„attains a large mass. ~ The La-
grangian of such a system is

@(x)= (
—')) 2[&2fi+ p(x)]eie&*)/ ~2f'

X„(x)= X„(x) ~ B „e(x),1

0'( )=e '"*"")t( )

Then Eq. (7.6) becomes

Z = '(B—„X„—B„X„)'+ ,f '—(p + W2f ' }'X„X"

+-,'(B„p)' —pH'p'( p+ 2W2f '}'

+ -,'(B „a)' H(a' —-f '}'

+)T)(iP+gg'- Ga)$, (7.10)

i))g,„=-i5~(0) ln 1+ p(x)
2f' (7.11)

It will be further assumed that (me =&2 t f ' is the

mass of gauge boson)

(m pep, m„ma)»H'"f, (7.12)

so the field quanta in the theory are all very heavy
and not presently observable. This choice bounds

the size of the color charge and, as will be shown

below, is responsible for the large upward shift
of the energy for a "charged" state —i.e., the

analog of a color nonsinglet in this example. The
energy density of the theory is given by

K = -,'(G )'+ 2 (i xX)'+ gg'( p+ v 2f ')'(X'+ Xo')

+ —,
' p'+ —,'(Vp)'+ —,'H' p'(p + 2 W2 f ')'

plus the additional term for Feynman rule calcula-
tions in the unitary gauge

(7.6)

g = —,'(B„X„' B,X„')'+ [(B„+itX„')@*][(B"i(X'")i)i]

+-,'(B a)'-H(a'- f')' H'()p" it) -f-")'

+ T))'(iB'+ gg'))))' —G)t)')))'a,

+ -,'a'+ —,'()p'a)' +H (a' —f')'

—. 3 ~ V+GPa+gn X $, (7.13)

which is invariant under the local gauge transfor-
mation

X„'(x)-X'„(x)+-B„X(x),

where the dependent variable X, is given by

1
Xi) =

(2( ~2f, P(B),G" —P1"0)

and

(7.14)

(x) pik(ex)y ( )px

)))(x)- e' '*')))(x}.

(7.7}

(4}.=f', (a).=f. (7.8)

To make explicit the nature of the spontaneous
symmetry breaking, let us introduce the Kibble
transformation

However, the vacuum is unstable and both 0 and P
acquire a nonvanishing expectation value

@Ok g oXk g kXo (7.15)

[X"(x), G"(x')] = i5"6'(x —x') . (7.16)

According to the general idea of reducing the
quantum problem to a classical field theory, we

may consider the following trial state of quark
number one:

The canonical variables are X' and 6 ' which sat-
isfy the commutation relation

~p')=e p -i p' ip'(*)p"t))e p(imp'*p(p) x{ ))( ifd'*i)i*)'i*))exp(- f p'*p') )p) ))p lp ).
(7.17)
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The classical expression for the energy is

E =(S'I@IS'&

2E + 2 ~)(W)2+ 2( (g +~Pf )2 W2+W 2) + 2 ~g )2+~+ gs2 g +~Qf s)2

+ q(vg') +H(g —f ) +X o'' V+Qpg+(n 'W X

where W, is defined by

. .(v .E —rx'x) .&'(g'+~ 2f')'
To arrive at this expression for E', aside from the normal-ordering problem discussed before, one more
approximation has to be introduced. This is associated with how to evaluate the (fX X)' term in @. Strictly
speaking, (S'I (fg ()'IS'&=~. This term appears as

(S'Ir'(p+W&f')'X, 'IS'&= S', ~ „(s,G"-gq'P)' St' p+~2f"

, ~2f, .&o. la, (v z-gq"g)'a, 'lo,
r.'(g'+ ~~f"

[(v E —cx'x)'+&0.
I &.(ry'~ tx'x-)'IIO

I o.& Ie'(g'+ ~~f ' ' (7,20)

&( j')'& —= & j'&' =-(&)' (7.22)

In making the approximation (7.22), we hope that
the quantum fluctuation effects are small when the
theory is properly regulated.

As before, the requirement that the energy E'
be a minimum leads to the classical field equations

E = V'8'o,

—v' w, + g'(g'+ W2 f ')' w, + gx x = 0,
—v 'W + v( v W) + &'(g' + W2 f ')' W + tX aX = 0,

(7.23)

—v'g'+H'(g' -:—&2f ') [(g'+ v 2f ')' —2f "]
+g'(g'+/Kf )(w'- w, ') =o,

The approximation in deriving (7.18) is to ignore
the fluctuation term

(7.21)

that is, we set

in the qualitati~= differences between an electric-
ally charged system and an electrically neutral
one, we simplify the problem by first setting

W=O (7,24)
in the state IS' &. Corrections for nonvanishing
W will be treated perturbatively. The variational
principle now gives Eq. (7.23) with W =0.

To simplify further the Dirac equation, we re-
quire that W, be spherically symmetric. This is
the case for l =0 states, since the source for W„
p p is then spherically symmetric.

As a first step in finding a self-consistent solu-
tion to Eq. (7.23) with W = 0, we consider the Dirac
equation with the magnitude of the color potential
—gW, much smaller than the confining scalar po-
tential GPg and with its range corresponding to a
length D'-I/2rf' by Eqs. (7.12) and (7.23) of the
order of or slightly larger than D=1/Gf. On this
scale we can approximately represent GPg- gW,
as illustrated in Fig, 5 and solve the simplified
Dirac equation.

—V'g+4Hg(g' f') + GXX =0—
1

—. e V'+GPg- gW +gn W0 with

~ V'
+PGg+~ X=X,

2
(7.25)

It is difficult to solve these coupled differential
equations self-consistently. In particular, be-
cause the vector potential W appears, the Dirac
equation is not a central field problem so that the
total angular momentum j is not a good quantum
number and the no-particle state Io~& is not ro-
tationally invariant. Since we are only interested

g(r) =-f, r&&

r&R;

V(r) =0, r&R, =Z--,'0'
= V&0, R, &r&R2=R+-,'D

r &R2

(7.26)
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Our assumption is that V«Gf and the thickness
D' in which V(r} +0 is of order D' & 1/ms. Since g
rises to its asymptotic value within this width, we
can approximate it as a step function of zero width

on this scale. The solution for a j =-,' state is given

by

(7.27}

x = [(Gf)2 g2] ~ ~2

x' =[(Gf)2 ($ V)2] & ~2
(7.30)

We are lookingfor solutions with
~
S(«Gf. It will

be verified later that it is consistent to keep only
the leading terms in the asymptotic expansion
of i, and@, :

G, =AXri, (Xr), k, (z) (-1)"'—e ' .
g ~00 2z

(7.31)

F, =-A
G g &ri, (&r),

G~& = X'r [C,i,(X'r} +D,k,(X'r)],
I

F» = —
g

(X'r) [C,i,(X'r) +D,k,(X'r)],

G»& = X'r [C,i,(A. 'r) +D,k,(X'r)], (7.28)

Then the continuity conditions on the boundaries
determine the coefficients

C e" ~~=Ae~~ 1+ V
2 2G

pD e ""i=Ae~~ V
2G

F„,=
&

X'r [C,i,(X'r) +D,k, (X'r)]],

2
G,~ = ——BXrk,(Xr),

2 A.
F)y= ——B

g ark, (xr),
w G+8

sinhz
2

V
2G

mD e ~2 = -Ae~ V
2G

ae ~2=-2'Ae~

and the eigenvalue

(7.32)

(7.33)
coshz sinhzi z1 g2

(7.29}

The constant A is determined by the normaliza-
tion condition of y

k (z) =- —e -g
0 A2 & -2W2r' (7.34)

1k(z)= —1+- e '=2. Now to be consistent with Eq. (7.32), we must im-
pose

where —«g«Gf .1
(7.35)

Gg=+ Gf

We will now check the consistency of other equa-
tions in (7.23) for the case H'»G. To maintain
the character of the solution for g as used in solv-
ing the Dirac equation for y, we must require that
the source term GXX as well as (2/R) dg/dr is
small, i.e.,

I Gxx I z = 4„R.«&Hf '1 G (7.36)

and

—MHf'«Hf'1
(7.37)

Gg=-Gf

FIG. 5. The scalar potential g and the vector potential
+'& vrhich appear in Eq. (7.23).

The equation for g' can be approximately satisfied
everywhere by

g'+ &2f '= &2f '+ small corrections
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Q If I 2 )) g2 W 2 (7.38)

3 G 1

256 ' V2H f f"
We will choose the parameters so that Eq. (7.38)
is satisfied.

We can now estimate the electrostatic field en-
ergy, E~, the scalar field energies, E~ and E...
and the "fermion energy, "E~, and minimize the
total energy to determine 8 for a hadron in a
color-nonsinglet state. Finally we can verify the
above inequal itic s.

The results by straightforward calculation are

d x WD(- V' + ms') W,

d xWOJo, (7.39}

E, = 1 lf(1 —e-cfD') (7.40)

The energy associated with the g' field is very
small so that

E +E I ~E 16 +/2Z+2f 3

Finally for the fermion energy

Ez= 8+/ d'gy y Wo

(7.41)

= $-2E,

The total energy is the sum

Ez =E~+E~+Eg +E~

=-,'(gW, (R)~(1 —e-"')+~v ~2HR2f

(7.42)

(7.43)

The quantity W, (R) can be computed with the aid of
Eq. (7.23), which gives

where ms = I 2 If' Evaluat. ing this in the approxi-
mation used in solving the Dirac equation, i.e.,
setting —gWD = V as defined in Eq. (7.26}, we find

and

2
( G~2H)1 /2 (1 e 111D l2Gf)1/2

&-CfD')1/2 f
f I

(7.46)

(7.47)

which automatically ensures Eq. (7.37). Now Eq.
(7.35) is satisfied if

G 1/2 f ~2H '1/3 1
' 1/3

v2H f' G Gv2H

(7.48)

Equation (7.36) follows simply from the choice
G«H2. Finally Eq. (7.38} requires

III 1/4

(Gv 2H)'" (7.49)

Both (7.48) and (7.49) can be satisfied without dif-
ficulty with proper choice of H' and f'. Now it
follows from Eq. (7.48) that

Gf ))E ))B 'i6f (7.50)

Ew=2 d xW (- V'+ms')W+g d3xXtaX W

d'~X ~X W, (7.51)

which when added to Eq. (7.43) lower the electro-
static energy by

E12o~ g = 2g d x(-X XW11+X AX W)

as desired, i.e., the state of nonzero charge, anal-
ogous to color nonsinglets in the non-Abelian case
of SU(3) of color, is promoted to an energy much
higher than in the absence of color interactions,
its magnitude depending on the specific choices of
parameters g, f', and H'. This estimate can be
further improved by adding the magnetic interac-
tion energy in a perturbation treatment. The added
terms in Eq. (7.18) are

e-mg I x - R )

Wo(R} = -
~

'x
~

„- g~
X'(x) X(x)

4,'a'D

where D= 1/Gf. Hence we find

(7.44)

2

(1 -ms l2Gf) (1 -GfD')
8~m '8'D

+ -'1t v v' 2H R 'f ' . (7.45)

It s minimum, determined by 8Er/8 R = 0, gives

f2

x[J,(x) J,(x') —J(x) J(x')], (7.52)

where 8 "= gy" y. In the local limit, m~ —~, this
energy is still positive, although reduced by a fac-
tor of 2, and Eq. (7.50) remains valid. To com-
plete this discussion, we next show that the elec-
trically neutral system, the analog of the color
singlet, is not shifted in energy by the strong
color interaction. As an example of an electrically
neutral system, consider two types of fermion
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with opposite charge called p,
' and e, which have

identical coupling to the scalar fields. Then it is
clear that if p,

' and e occupy the same state,
then

The Lagrangian of the system is

2= —E (sqX„—s„Xq+gX~xX„)

+[(s))+ 1 f T'X„) (t)*][(8 — i f T X ") y]
z "(x) = o (7.53) H'(-e*a f"-)'

and, therefore, the energy of such a state is not
affected by the electromagnetic coupling and is
given by the calculation of the last section without
the vector gauge field. Furthermore, if the p,

'
and e occupy different states, then one can form
the eigenstates of C conjugation by symmetrization
or antisymmetrization. For both symmetrized
and antisymmetrized states, it can be readily
verified that

z "(x) =o,
and their energies are again not affected by the
coupling to the gauge field.

C. The non-Abelian case-SU(2)

We now turn to the non-Abelian case to show
that the gauge coupling has no effect on the color-
singlet states. Our only purpose is to give an
order-of-magnitude estimate of the change in en-
ergy of the color-nonsinglet states. We will,
therefore, simplify the problem as much as pos-
sible. For simplicity and clarity of presentation,
we consider the group SU(2). The case of SU(3)
will be mentioned briefly below. A quark doublet

+ —'(s„o)' -H(ff' —f ')'

+ Tt (i i( —,i g r g- G—cr)g, (7.56)

y-(1+-,'i T 62) g,
y-(1+-', i7'6(~u y .

(7.57)

Following the standard procedure of eliminating
)hewould-be Goldstone bosons in the unitary gauge,
we get

Z = -—,
' (s„X,—s„X„+gX~xX,)'

+ g (s„p)'+ k P(p+ ~&f ')'X„'

H'[(p+ ~2f f)2 2f"
+ —,

' (S„o)' —H(o' —f ')'

+ g (i g —
g i f 7' g —Go) g 2

(7.58)

plus the additional term needed for the Feynman
rule calculations

where && denotes the cross product in isotopic
spin space. 2 is invariant under the infinitesimal
gauge transformation

1
X -X +—8 &co- &(d XX

(7.54) hZ, « = —3i 6 '(0) in 1 + p(x) (7.59)

is coupled to an isotopic triplet of vector gauge
fields. To completely break the gauge symmetry,
we introduce another isotopic spin doublet of com-
plex scalar fields

(7.55)

The field p in the unitary gauge does not respond
to an isotopic rotation. The canonical variables
are X, and G, ' which satisfy

[X,(x), GD'(x')] =i6 '6,D6'(x —x') .

Following the same procedure and approxima-
tions as in the Abelian case, we form the trial
state

]2')=exp —i d'*w (2) G' ( ))exp(' d'xx'(x) E'( ))exp ( i d'xg(x) '( ))exp( i d' g'( )i)( ))Ee]pg,

(7.60)

and calculate the energy

z' =-(s'~ g (s'&

d'& ATE&'+-' ~&WE-~iWa+4 a "~'+ &'g'+ 2 '' Wo'+We'

~ —', (ag')' ~ 'g'[(g'+ f2f')' —2f "]'~ —,'(ag)'+g(g' f—')' xi(—a P ~ —,'2 a —w' ~ Ggg)2 [,
(7.61)
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where

Wo = ~,o [(aq+ /Wax)Eo —CX a 'Q]

The variational principle for E' then gives the classical field equations

E, =(a, +gW, x)W, ,

(7.62)

—(a, + l w, x) (a, + l.w, x)w, +-,' l' (g'+ &2 f ' }'w + —' gx Tx = 0,

—(a + fw x) (9 w, —8, w +1'w xw, )+—' g'(g'+&2f')'w, +fx o TQsx =0,

—~'g'+&'(g'+~&f') [(g'+f')' —2f "]+-,' l'(g'+&2f') (W, '-W ') =0

—~'g+4Bg(g' f') + -GXX = o,

(7.63)

—. n ~-2 )T Wo+2 gT e W +GPg y= gg~ ~

1

We have not been able to find a self-consistent
solution to these nonlinear coupled differential
equations. Among other things, the Dirac dif-
ferential operator does not commute with the angu-
lar momentum operator or with the total isospin
operator because of the occurrence of the C-num-
ber fields 8"„S'".Therefore, the eigenfunctions
g are not eigenfunctions of total angular momen-
tum and total isotopic spin. However, the results
of the Abelian example suggest that the inclusion
of the coherent clouds of the vector gauge fields
only lowers the energy of a trial state somewhat
but does not alter its value by an order of mag-
nitude. The situation is more complicated in the
present non-Abelian case since the vector gauge
field is also a source for itself. Nevertheless,
we are content to discuss a much simplified trial
state of the form

Is, s, Ar=sss(- fs sS

X -g d3xg'p FNN~B', O' OL

(7.64)

which is a state of N sf's and Ã gs. The function F
is a sum of several terms each of which contains
N B 's and Ã D~'s. It is chosen so that the trial
state is a state of definite isospin I and third com-
ponent I, . We are furthermore seeking solutions
in which the isotopic wave function and spatial
wave function factorize.

For a single-quark state we have

I=O 1
F,o, =~(By Bt +By B ),

le 1F2'0 = B~ B~

1
Fa'. o

=
~2 (By Bo —By By ),

F1, -1
2oo

(7.66}

For a qf system we have

I=O: O. O ( „,4,—,,),

F1, 1 ~1'
1~1

1 0 1
2 (D& Q +By Dy),

(7.67}

1, 1 (pl ~
To compute the expectation value of the Hamilton-
ian, we have to evaluate (Sljo'lS). To replace
this divergent quantity by a finite expression, we
will apply the approximation (7.22) extended to the
non-Abelian case. It means that we approximate

&slj.'Is&=- g &sll. ls, }&s,, l).ls}, (7.66)
I3

where the sum is extended over all states in the
same multiplet as S. With this approximation,
we can evaluate the matrix element rather easily.
From the transformation property of ] p under
isospin rotation we obtain

(i=oil, (x) lr=o) =o

E =B~

Ey =D~, etc.

For a qq system we have

(7.65}
for isospin singlet states by the Wigner-Eckart
theorem. For these states the gauge coupling has
no effect on the energies. For a nonsinglet state
we have
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so
5=1

(7.69)
so we arrive at

l 1 N, 2

&sli.(x)'Is&=I(I+1) —gx,'(x)x;(x), (7.»)
5=1

&I, I, I).(x) ),(x')II, I, &=C +Xi(x)X;(x)
5=1

= II' C, C = [I(I+ 1)]jijI' (7.71)

x pX,'(x')X;(x') . (7.7o)
5=1

The constant +C can be easily determined by in-
tegrating over x and x'.

(I, I, li'l I, I & =I(I+1)

where X(x) is the normalized wave function for a
quark or antiquark. This result neglects some
possible exchange terms which will be commented
upon later.

Let us now compute the expectation value of O.
For simplicity we will assume that each of the
quarks and antiquarks occupies a different state.
But our final result is applicable even if some of
the quarks (antiquarks) occupy the same states.
We have

E= d'x —,'('Pg) +H(g' —f ')'+g X,. pGg X,.
5=1

y (2 g
—g V; . +GpG V&+, I(I+1) gX,"X;+p Vt V,

5=1 5=1 5=1
(7.73)

—V'g+4Hg(g' f'+) G+g X;X;—GP V;V; =0,

(
n ~ V +~tg+V X;=&;X;,

z

(
6 ~ Q

+Egg+ V V, = —S,. V, ,

V=, —r(I+1) q, Z, + + V-„V-„&O.
1

(7.74)

These equations are now exactly of the same
structure as in the Abelian case. Thus we con-
clude as in the Abelian case that

t"~ » F~»~"6f
which is much higher than the color-singlet states.

We would like to comment on several possible
corrections:

(1) Exchange force. Since the quarks are iden-
ti cal fe rmions, there exist exchange potentials in
addition to the direct-interaction energies we have
calculated here. These neglected exchange poten-
tials are off-diagonal terms so they ca,nnot be as
big as the direct terms. These exchange terms
do not arise in the "color-singlet" states. Since
color-singlet states have to be totally antisymmet-
rical in color, the quarks in such a state are all
distinguishable.

(2) Bhabha forces. For a qp system there are

which makes it clear that if the state is an iso-
singlet, I=O, then F. reduces to the case discussed
in the previous section.

The energy F- is minimized by the following
equations:

t

also additional quantum effects be sides the dire ct
potentials computed above. These are annihilation
terms. Again, for color-singlet states, these
terms do not contribute, since

&I=o,qqlT, lo, &=o

because the T; are traceless.
(3) Self couPling -of the gauge fields. If we ac-

cept that the energy of a color-nonsinglet state is
of order Gf »F~»H'"f, then the gauge field 8'
has a magnitude

Gf ))
l
gmol-Fr»H'"f

It seems to be self-consistent to assume that this
is also true for the spatia. l components g W, . In
that case, the self-coupling is smaller by a frac-
tional power of t" as compared with the leading
terms in Eq. {7.61). If this turns out to be the
lowest energy configuration, then our neglect of
the coherent states of the vector gauge field will
not change our qualitative conclusions.

These discussions for SU(2) also apply to SU{3)
color. The only difference is that to completely
break the SU(3) gauge symmetry, we need more
Higgs scalar fields. One possibility is to intro-
duce two complex triplets. In particular, the
quantum annihilation force still vanishes for
color singlets of qg systems since

&c=ol &'„(x)l o, &
=o

because the A, are traceless.
In our scheme, we have no expla, na. tion for the

absence of color-singlet exotic states.
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A. Magnetic moment of the proton and neutron

Since we are working with a local Lagrangian
field theory, the electromagnetic interaction is
introduced via the usual minimal coupling. The
magnetic moment of the nucleon is then computed
from the energy shift in a weak, constant external
magnetic field:

5E = —p~ ~ B.

In terms of a spin-up trial state for the proton as
constructed in (6.10), the magnetic moment is
given by

(8 1)

where p, , is the z component of the magnetic mo-
ment operator

d xrx 3(~). (8.2)

The electromagnetic current operator j in a three-
triplet quark model is given by

VIII. STATIC PROPERTIES OF THE GROUND-STATE
BARYONS AND MESONS

We turn next to the task of calculating the static
properties of the color-singlet ground states con-
structed in Sec. VI. In addition to their masses,
as already known from (6.5) and (6.6), these in-
clude the magnetic moments of the baryons, the
M1 transition moments of both baryons and me-
sons, the axial-vector coupling constant of the
nucleon, and the I" to D ratio. We also compute
the mean-squared charge radii of the baryons and
mesons, although these are not strictly static
properties since they are probed by finite-momen-
tum-transfer interactions which lead to recoil
corrections. The calculations in this section are
performed using the states of zero average mo-
mentum constructed in Sec. VI. The correct
physical amplitudes are defined, however, in
terms of zero-momentum eigenstates rather than
in terms of localized packets with (P)=0. We
shall construct momentum eigenstates in the fol-
lowing section and find that the corrections to the
results obtained here are numerically small.
Among the physical parameters being calculated,
the M1 transition moments for the baryon are re-
lated to the magnetic moment by Clebsch-Qordan
coefficients for the SU(6) states. However, their
numerical relation to the hadron radii and to the
meson M1 transition moments is determined by
the underlying dynamics and wave functions of our
theory.

(8.4)

0 0)
0 —, 0

0 0

(8.5)

Using the proton state (6.10), we find directly that

e d x rx(X ~X)
-'Z

(8.6)

where y is the ground-state wave function of a
single quark with j,= —,'. Now it follows from Eq.
(4.13) that

(8.7)

So we get

p,~=-, e d'x 2I"OG ) —,x-,' ~', (8.8)

where an angular average has been performed.
Since to leading order F,(r) and G,(r) are equal
and are peaked at r = R, we have

1
p&= 3eR, (8.9)

where we have made use of the normalization con-
dition

d'x —,2EoGo =— d'x —
~ (Fo'+ Go')

56
(8.11)

The magnetic moment of other baryons in the
ground state 56 can be calculated similarly, where
their ratios are given by the Clebsch-Gordan co-
efficients appropriate to SU(6). For example, for
a neutron we find

2
Wn= & Pp (8.12)

B. N1 transition moments

The M1 transition moments for baryon radiative
decay are calculated similarly and their magni-
tudes are determined in terms of the appropriate
SU(6) coefficients. " For example, for the radia-
tive decay

(8.10)

In terms of the mass of 56, M„=2(3/A), we ob-
tain finally

j =e(I' (yQg (8.3) we have computed
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(8.13) axial-vector coupling constant g„ is then given by

obtaining

p, ~= 3 W2 pp (8.14)

As another example, we calculate the M1 transition
moment for the radiative decay of a meson, viz. ,

(8.21)

where both the proton and the neutron are in the

j,=+ & state. Using the explicit representation
(6.10) for the proton and neutron states, we have

7r +y.0

The result is

(8.15)
d &(X 03X (8.22)

C. Charge radii

For computing the mean-squared charge radii of
baryons and mesons, we make the approximation
using the static definition of the radius. For the
proton and neutron, respectively, we find

= eR', (8.17)

or

and

&y 2&[P
P (8.18)

(8.18)

The same results apply to the charged and neutral
meson radii, respectively, with the same factor
(—',)'" appearing as the ratio of radii for the [T[f

meson system and the qqq baryon system. Cor-
rections due to mass splittings among the meson
35 and the hadron 56 are not known and may be
appreciable, particularly for the relatively light
pion.

D. Axial-vector coupling constant gA

(8.16)

The factor (—,)'" in Eq. (8.16) is the ratio of the
radius of a meson state to that of a baryon state
and represents a correction to the prediction of
the nonrelativistic quark model as discussed in
Sec. I which seems to improve the experimental
agreement considerably. "

In the static SU(6), II is an eigenstate of o, so the
integral is unity. However, in our theory, X is an
eigenstate of the total angular momentum but not
of the spin. Making the approximation Fp + Gp,
we find

2
2 Z

X 0'3X=2GO (8.23)

Therefore,

5x2 dS~G2

5
9 (8.24)

where we have used the normalization condition
(8.10) again. This value of g„ is less than one-
half the observed value, 1.25.

We have also computed the ratios for the ampli-
tudes of the weak decay processes, Z -Z' and
Z -A. For the vector part, the ratio is

V(Z -Z'): V(Z -A) = 1:0,
and that for the axial-vector part it is

A(Z -Z'):A(Z -A) = 1 -'W3

(8.25)

(8.26)

These results agree with the SU(6) prediction and
correspond to a so-called F!D ratio of —,'.

Comparison of these results with experiment has
already been presented in Sec. I. Here we would
like to make two additional remarks. These re-
sults are not sensitive to the value of the coupling
constant G. The corrections to the results given
above are smaller by a factor of G '". The small-
ness of our result for g& is the result of the large
ratio of the lower to the upper components of the
quark-wave function. Note that with a fixed ratio
Go —aF„ the result is

Although our theory as written does not have a
conserved (or almost conserved) axial-vector
current, we attempt to identify the axial coupling
for neutron JI3 decay, g&, through the matrix ele-
ments of the quark current

(8.27)

which doubles in value to - —", for a- 0.6. In con-
trast, the magnetic moment which is given by

(8.20) 1+a' (8.28)

This is a natural choice for the axial-vector cur-
rent of the weak interactions since it satisfies the
usual commutation rules of current algebra. The

is maximized in value at a = 1 and decreases only

by 11/& when a decreases to -0.6.
Another factor to be studied is the sensitivity of
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these results to the use of localized states versus
momentum eigenstates for the hadron. As we show
in the following section, the corrections to the M1
ma. trix elements are negligible, - O{1/G), where-
as for the axial charge, they are - O{1!lnC)and
perhaps more significant if the color thresholds
are found to be not much higher than —10 GeV.

IX. MOMENTUM EIGENSTATES

The states we have constructed so far are de-
scribed relative to a fixed origin, and the corre-
sponding wave functions are localized in space and
concentrated in a rather small region. Especially,
the fermion wave function is different from zero
only in a very thin spherical shell. This picture
of a hadron is surprisingly different from the in-
tuitive one deduced from the empirica, l informa-
tion on electromagnetic and purely hadronic reac-
tions. They suggest the view of a hadron as an
extended object with almost free pointlike con-
stituents confined inside.

Should we take our "unusual" variational states
and wave functions seriously? Variational ca,lcu-
lations in nonrelativistic quantum mechanics are
known to yield excellent results for energies of
ground states even though the trial wave functions
are crude. We can test the detailed properties of
our trial states by calculating observable matrix
elements in terms of them and comparing with
experiment. However, in order to go beyond the
static properties calculated thus far and confront
the theory with experimental data probing the de-
tailed internal structure of the hadron, we must
first construct eigenstates of momentum or wave-
packet states with a momentum spread comparable
to a.n actual experimental setup. Our average ( P)
states do not satisfy this condition, since by the
uncertainty principle the wave function contains
high momentum components =Gf and v28 f. Thus
we need a definite procedure to construct momen-
tum eigenstates. We must also determine whether
the ground-state energies and static hadron prop-
erties computed in Sec. VIII remain unchanged, to
a good approximation, or are greatly altered if
we construct actual eigenstates of momentum for
use as our trial functions.

This section is devoted to an attempt to con-
struct momentum eigenstates both for hadrons at
rest and with arbitrary momentum. Although this
attempt has not been completely successful, we
sketch our efforts briefly in order to bring out
some of the difficulties we have encountered and
to illustrate the corrections introduced by our
procedure into calculations of the mass and the
other static properties of the ground states calcu-
lated in Sec. VIII. In partj, cular, we find that with

a particular choice of the scalar meson mass m

we are able to construct a single-quark state
which is an eigenstate of zero three-momentum
and with a mass within 1(F/~ of the mass of the
local state constructed in Sec. IV. However,
when we attempt to generalize this result, we
encounter two serious problems:

(1) We are not able to use this method to con-
struct covariant eigenstates of nonvanishing three-
momentum. In the P-~ limit, the results sim-
plify and covariance along the P= ~ direction is
restored —namely, we have

However, in this case, we have not been able to
show by explicit calculation that M' is of the order
of the rest mass.

{2) Even for zero three-momentum eigenstates,
we cannot generalize the method used in the one-
quark sector to multiquark states. The problem
is that the explicit Bogoliubov transformation
which we use to construct the single-quark state
with a translationally invariant ~0~ ) requires all
quarks of the same color to have the same spin,
so that, for example, we cannot construct the
zero-helicity vector mesons from ~0~). Because
of these problems, it is evident that we will
eventually need a better prescription for con-
structing momentum eigenstates than the one we
offer in this se ction.

If the calculations of hadron static properties
presented in Sec. VIII are approximately valid,
then we should obtain results for three-momentum
eigenstates similar to the results obtained for the
localized states in Sec. VIII. However, in view of
the second problem cited above, we cannot con-
struct multiquark momentum eigenstates for prac-
tical calculations. In order to proceed, we intro-
duce an additional assumption: that all the three—
momentum of a hadron is carried by its constituent
valence qua. rks and scalar field or, in other words„
that the no-particle state

~ Oz ), defined in Sec. III,
is an approximate zero eigenstate of the three-
momentum operator, P~Oz ) =0. With this assump-
tion, we are able to verify the results of Sec. VIII.
These results and our efforts to solve the prob-
lems discussed above are presented in some de-

tail1

below.
The method which we use for constructing an

eigenstate of momentum does not require a knowl-
edge of dynamics, but is simply based on the re-
quirement of translational invariance. The natural
procedure in the context of our variational calcu-
lation would be to compute the expectation value
of @ with the trial states that are eigenstates of
momentum and apply a variational procedure as
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(9.1)

P is the momentum operator.
~
v) denotes a state

of average momentum

(v i Piv) =M yv =p (9 2)

and energy

(vip)iv) =E„=( M+p')' ),2 (9.3)

as in Eqs. (5.41) and (5.42); and the normalization
N is given in terms of the overlap integral

in Sec. III to minimize the energy and to determine
the wave functions. However, such a calculation
is extremely difficult in practice. The reason is
that the expectation value of the energy is no

longer a simple spatial integral of a local energy
density. Instead, it becomes a double integral in-
volving overlapping functions due to the super-
position of localized states that must be con-
structed in forming momentum eigenstates.
Hence, in this case the variational principle
gives rise to integral equations and not to local
dif ferential equations.

As a practical attempt, we have tried with

partial success an alternative procedure that is
both simpler and approximate. Namely, we first
construct a state with a specified value of average
momentum by a variational calculation which
minimizes its energy as carried out in Sec. V.
We then form an eigenstate of momentum equal in

value to the average momentum by applying a mo-
mentum projection operator, viz. ,

Up=exp dPe P, s bp, d p, -d p, bp,
S

(9.5)

=b~, cos8(p, s)+ dt~, sin8(p, s),
D p, =UF d p, U~

= —b~, sin8(p, s)+d ~, cos8(p, s),
or equivalently

(9 6)

where

+ d,', l' (P, s) e ""],
{9.7)

U(p, s) = u(p, s) cos8(p, s)

—v(-P, —s) sin8(P, s),

V(p, s) = v(p, s) sin8(- p, —s)

+ u(- p, —s) sin8{-p, —s) .

The state

Ih) =t', exp( — d' tlt ) t"))

This is a formally unitary operator with the prop-
erties

Bps
= U+ 'bt s UF

(pip') =(2v)'6(p-p')N, f d'P)t))t„IloI)
S

(9.8)

N= d'A v e'" P' v . 94

A. Construction of a one-quark state with p=0

The no-particle state
~ 0~) is not translationally

invariant since the 8 's and Dt 's create fermions
and antifermions localized in space. Thus ~0~)
also carries momentum as discussed in Sec. III.
To construct a momentum eigenstate in this basis
is formally possible, but it is very hard to carry
out the explicit calculation. To expose the basic
difficulty, we will limit ourselves to the simplest
bound state of one quark with zero-momentum
eigenvalue. In this case, we can construct the
bound state out of a translationally invariant trial
vacuum state by a Bogoliubov transformation as
described in Sec. III.

We begin with the formal construction of a one-
bound-quark state from a translationally invariant
vacuum by introducing an operator producing
"Cooper pairs":

Here the ground-state wave function is

(9 9)

d'P""'=i t)2.) 2z, )
~

~ g h(p, s)[u{p, s) cos8(p, s)

—v(- p, s) sin8(-p, —s)] e')' ",

(9.10)

which is an arbitrary spinor since h and (9 are
arbitrary. Equation (9.8) gives the desired one-
quark state and is an explicit construction of the

leads to the expectation value of O as before in
Etl. (3.30):

E=(hi@i»
I

d'~ '(&g)'+H(g' f'-)'+ x' —. ~ -~+ ~Pg x
E
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Bogoliubov transformation described in Sec. III
for building our bound states from translationally
invariant trial vacuum states.

To obtain Eq. (9.9), we have normal-ordered the
boson part as before and we also normal-ordered
the transformed fermion part: UF '3C U~: in keep-
ing with the tree approximation neglect of vacuum
bubbles. Notice that U~ commutes with P

[V„p]=0

since all the pairs in Uz carry zero momentum by
construction.

The procedure of (9.1) and (9.4) projects momen-
tum eigenstates from lb) in (9.8). We now con-
sider l h) to be a state with zero average momen-
tum, so p=0.

It follows from

e-""4 (x)e"' = @(x+X)

that

a'~ ~'(~) ~(~+~)

0 exp i d'g gy-a -gy a Y

with

(x&:—(k'+m ')' '

Q3) -i% (z z ')
(2&()'

(9.15)

This gives for the normalization (9.9)

The proper choice of c and of the mass of the nor-
mal modes will be made so that the expectation
value of the energy in the one-quark state will be
close to the value already computed in Sec. IV
for the localized state at rest with average ( P)
=0. It should be made clear that this choice of
c and of m, in Eq. (9.14) in no way affects the val-
ue of E obtained in Sec. III. Different choices of
m, correspond to neglecting different terms in the
normal-ordering of the Hamiltonian, and it will
be important and necessary in future work to un-
derstand how the different choices feed back into
the higher-order corrections to our present ap-
proximations.

From the canonical commutation rules and the
definition (9.12) and (9.13) we can calculate the
equal-time commutator

(9.11)
In order to further reduce X, we must decom-

pose o(J) into its creation and annihilation parts,
i.e., its negative- and positive-frequency parts,
respectively, at t =0:

where

3g d3z t( z —g} ( z) tr(0&-Y(5&i

(9.16)

o -=o ( y, 0) —= o t ' + o ('&, o l'&
l 0 ) = 0

p =o(-~+8&'l, 5&'&l 0,)=0.
(9.12) 1'(n) -=~ —,(e, Ig(k)l'e'

(2 &()'
(9.17)

The trial vacuum l0~) for the scalar field is de-
fined in terms of the free Hamiltonian

d'x[c('+(Vo)'+8Hf'(1 —c)o'l, (9.13)

and where

&'& ~'" ' "r( y)

with

: @0:lOq)=0

and the mass of the o-field normal modes given
by

To compute the expectation value of the energy,
we also need the equal-time commutation rela-
tions

[o '( z},G( z')]= [(y' '( z), o(z')]
= ——,

'
i f'(z —z') '.

m, ' —= 8Hf'(1 —c) . (9.14) Then a straightforward calculation gives

d'z d'~ g-~~('~- (~&1

}t'(z —&) —, a ~+G(8 a [g(z —Z)+g(z}]
g

X(z)

x'(z —x&x( ~ &Jz'x(-,'(zzx(y&l', H(z(x&* f'&'-
+H[g(y-r') -g(y)]'(cf'+-'I g(y)' f']+ f[g(y-Z) -g-(y)]

+ ~[g( y - &) -g( y}] + -. [g( y - &}-g( y}Kg( y} -f ] ) ) (9.18)
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Observe that the Dirac part ean be evaluated directly since X satisfied the Dirac equation according to the
procedure described at the beginning of this section. An integration by parts yields

E =g+ — d'z d'&X~(z —4) X(z) e
1
N

x Id y( —[Vg(y)] +H[g(y)' f']'+-H[g(y —Z) -g(y)]

&&(cf '+ -'[g(v)' f']+-~ [g( y - &) -g( y)]g(Y)+ ~ [g(y —&) -g( v)]') ) (9.19)

(9.20)

The difference between this result and the
ground-state energy for a localized (P) =0 trial
state as in Eq. (4.19) arises from three factors
in Eq. (9.19):

(1) a correlation or shielding factor
-(1'(p} F(Q }].

an amount of order H' »H' 6f to the energy for
general values of c, viz. ,

'«'« ""' "'"'X'(z —~)X(z)Hf'

Ig(y-~) -g(y)]'d'Y
(2) a fermion overlap factor

x'(z -~) x(z); {9.21)
=Hf R =H' 'f =H' (H' f )=H' M'

and
(3) terms in the o-field energy proportional to

the difference

[g( v —&)-g(y)] . (9.22)

Neither of the first two factors differs very
much from their value for zero separation &=0.
It is readily found that 1 (0) &1 for any ratio of
values G/WH in our strong-coupling regime of
interest. Furthermore, no sensitive cancella-
tions appear in the fermion density, and the fac-
tor (9.21) largely cancels the normalization in-
tegral (9.14). However, since the difference
(9.22) is nonvanishing and is O(f) for a separation
~SR, it can be shown by a straightforward esti-
mate that the last term in Eq. (9.19) contributes

C=g3

corresponding to the mass in Eq. (9.14),

ns 2=2Hf 2.

(9.23)

(9.24)

With this choice, the energy of the zero-momen-
tum eigenstate stays practically unchanged from
the state with average zero momentum. We have
checked this explicitly, introducing (9.23) into
(9.19) which becomes

We now show that there is a unique choice of c
which will eliminate this large contribution. For
this purpose we can replace g' (for G,H» 1) by

g(Y)' =g(v —&)' =f '.
In this approximation, the last term of Eq. (9.19)
vanishes only if

E =e+ — d'zd'&X'(z —Z) X(z) e
N

g 2 Vg(y) 2+H g(y)2 f 2 2

+-'H(l[g(y-&)'-g(v)']'+[g(v)' f'][g(v —~) -g-(Y)]')}. (9.25)

The energy computed from Eq. (9.25) is less
than 10% lower than the value 3/2R obtained in

Sec. IV, and the fact that the energy is seduced

by this small amount indicates that the p=0 eigen-
state is a better approximation to the true state.

We do not understand physically why there is
one particular choice of ni, given by Eq. (9.24)
which makes the energy practically unchanged
in going from zero average momentum state to
the corresponding zero-momentum eigenstate.
Undoubtedly, its meaning can be understood only
after the true vacuum state is treated properly.

B. Static properties of hadrons with p=5

We would like to generalize the above proce-
dure to construct a hadron trial state which is a
three-momentum eigenstate ~ As is evident from
Eq. (9.10), we would need a different Bogoliubov
transformation for each quark with different
space-spin quantum numbers. This can be
achieved for baryons by introducing a separate
U„ for each color, but off-diagonal contributions
[i.e., U~ '(8, ) U~(8, ) for 8, w 8, ], then make cal-
culation of transition matrix elements with states
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(9.26)

after the momentum operator is commuted to the
right or left in the matrix element. To proceed
further, we now make the further approximation
of ignoring the momentum carried by the Cooper
pairs in the Bogoliubov transformation, i.e., we

set

e" ' xiO )=-iO ) (9.27)

We can then repeat the calculations of the M1 mo-

such as (6.10) prohibitively difficult. For the me-
sons the problem is even more serious, since
we cannot bind quarks and antiquarks of the same
color with different spins and, therefore, cannot
construct complete SU(6) multiplets.

An approximation which sidesteps these prob-
lems is to return to Eq. (9.1), but leave the
Bogoliubov transformation implicit by writing
the state in terms of the localized no-particle
state ) Oz) as in Eq. (6.1) instead of making the
transformation explicit as in Eq. (9.8). In this
way we avoid having to evaluate off-diagonal
matrix elements discussed above. In place of
that difficulty, there now appear factors

iP ~ x~O

ments and of the axial charge g„using Eq. (9.27).
The results are found by straightforward calcula-
tion which we summarize briefly:

1. The baryon magnet moments and M. transi-
tion amplitudes are unaltered up to corrections
-O(I/G).

2. The axial charge is increased by corrections
-1/lnG and the numerical value of this increase
is determined by the magnitude of the bare quark
mass Mq= Gf and of the ratio G'/H. For a typical
calculation with G'-8, this increase is numer-
ically small,

However, this correction to g„ increases with a
decreasing ratio ofH/G'«1. Whether this sensi-
tivity of the numerical result in the solution is
real or significant remains to be studied and un-
derstood.

C. Construction of eilenstates with p40

We now give a brief discussion of our attempt
to construct an eigenstate of momentum with

pro. From the state with average momentum

e('fd *d(x)v( '))exd(-
'
fd d(x) '(*x*)) I) Q fd de(e;)'1 'Ie )

dl 1
(9.28)

we construct the corresponding eigenstate
N =d'&-e 'P ' ~( ~ev' '~P~v) .

V
(9.29)

)p)= d'xe'~P '' x(v),

where

p=(P)= Mvy

and M is the rest mass of the state. The functions

g, and g, are given by (5.22) and (5.23).
The normalization integral N„ in

(p I p') = (2&)' 5'(p -p')N.

is given by

[('z( z), o '( z ')]= [6'( z), o & '( z ') ]

= —z i5'(z -z') .

The result we find is

(v I

e" ' *
I v) = fd'* 1;(z -Z) 1 ( z)k ( Z)

where y, given by (5.23) and K, ( Z) is

(9.30)

To evaluate N-, in addition to (9.15) and (9.10),
we need the equal-time commutation relations

Ie, (Z}=exp ——,
' 1, , )d, (k)l' 1+ (1 —e' ' )] .

2v)' 40y
(9.31)

Incidentally, Eq. (9.30) is a generating functional which yields the expectation values of all moments of P
in an average momentum state with (P)=Mvy. The calculation of the energy in the state ~p) is similar to
the calculation of N- except it is more complicated and lengthy. We only quote the result
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N-(E, -v p) =N-—
V V

+ d'&d'z e-'~ '
IC, (&) X, (z —Z) Gp 2 i v ~ V[g, (z —Z) -A(z)] Xx(~)

+ d'hd'ye '~' K, (&)Xt(y —&)X,(y)

x d'zH[( ,'[g, (-z-Z) -g, (z)+i v %(g,(z —&) -g, (z))]'

+f [g,(z -Z) -g, (z}+i v ~ V(g, (z —~) -g&(z))l)

——,'(1+c)f'[g, (z —Z) -g, (z)+i v &(g, (z —&) -g, (z))]'

+ —,'[g,~( z) -f2][g,(z —Z) -g, (z)+ i v' ' ~(gy(z —&) -g, (z))]

+ —,'[g, (z) -f][g(z-Z) -g, (z)+i v &(g,(z -~) -g, (z))] }, (9.32)

where the function g, ( z) is defined to be

d'k 1
P, (z)=,—g, (k) e '~ ' *

and

(9.33)

going to the infinite-momentum frame these bad
features may disappear. Although the result does
greatly simplify for p-, there remain big
terms in the nonleading term of the energy, i.e.,
we find E~=P+M'/y withM' Gf as-

g, (z) =
d'k
(2 )

(9.34)

We make two observations on this complicated ex-
pression:

1. There are terms in Eq. (9.32) which are
comparable with Gf and H'~'f. One of them is
the second term associated with the fermion.
Hence the energy of the momentum eigenstate
is changed by a large amount unless these indivi-
dually large terms cancel by appropriate choice
of 6, 0, and c or n&, .

2. The energy is a complicated function of vel-
ocity. It does not obviously have the simple vel-
ocity dependence required by relative covariance.

Thus our procedure appears neither to be con-
sistent with relativity nor to preserve the energy
of the state. However, it may be hoped that by

1

(1 g2)l/2

Nevertheless, the covariance along the longitud-
inal direction is restored.

Notice first from the definition for g, (9.33) and
as y- ~, we get

g, (z)+ i v Vg, (z) =

x exp(- i k„yz —i k~ z~),

(9.35)

where g(k) is the Fourier transform of g.(z). By
a change of variable

1
z —z

II

we find

d z [g,(z —Z) -g, (z)+ i v ~ V(g, (z —Z) -g, (z))]"

„„y,. (2v)'
', (2 )'5'(k, +k, +" +k„) II[2'(u„)g(i;)( '~''-1))

=0 (9.36)

This is so since it is impossible to satisfy simultaneously the two conditions

{1) kll;=-0,

(2) Q k, t;=0, i=1, 2, . . . , n

unless all k II; =0. But the integrand does not have singular support at this point, so the integral vanishes.
With the scaling substitution

1
~II ~ll

y
1

II II

(9.38)
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and if we use the relations (9.36) and (9.38}, the energy simplifies to

1
E~ —v'p = —M

y

where

(9.39)

M =M+ — dAe P' K/ 1 3 -i
Ny ll~

~'z X,*(z —&)~P-'[g(z —&) -g(z)]X, (z)

+ — d Ae ~' K, —6~] A~ d yX, y-h)y, )
Ny 'y

x d'zH ~ gz -f' gz —4)-gz +gz —& -gz) '

+-,'[g(z) -f ][g(z —n) -g(z ) +g(z —Z) -g(z)]') . (9.40)

Here

p = p„——gv = p„M —~)v

and

1, , g 1

(9.41)

g(z) f= -2-8(R —

ized)

then the function

g(yz „, z, )~ „iv =—Vg, (z)

gives

(R2 2})./z
g(z) —= —.In (, ,)v,

(9.43)

(9.44)

(9.45)

Z —4) 1+Q' V)g Z) (9.42)

We have evaluated the function K, and found it to
be very insensitive to its arguments, so Eq. (9.39)
is a statement of relativistic covariance along the

longitudinal axis.
If we approximate g(z) fby-

The singularity at z'=8' is only superficial. It is
a result of the approximation Eq. (9.43). The
argument of the logarithm at ~' =R' is of order
H &ljs

The second term in Eq. (9.40}which is associ-
ated with the fermion has been computed. The re-
sult is, to a good approximation, given by

d'he ' '
K, —+]i &i d'z y,* z —&)Gp&g z —~) -g z)gy z)= ——Gf dx xj,'x)

0
(9.46)

One of the two extra boson terms is small, since g'-f' is nonzero only near the surface of the thin shell.
The other term, however, is big and we have only been able to bound its magnitude by

d'& x,' iy Zix(y) f d'*-Hl(,g(~ 1 f)(r( —Zl--(;t*l *et* —Z) -gt*))'

4 2
& n) wR'H(4f')' InH"'-W&flnH —.3

7r

(9.47)

We have not succeeded in establishing the sign
and magnitude of Eq. (9.47) and thereby deter-
mining whether there exists a specific condition
for remaining on the mass shell M by canceling
the contributions of Eqs. (9.46) and (9.47) to lead-
ing order as v/c-l.

X. SOME IMPORTANT PROBLEMS

In previous sections we have seen that a varia-
tional approach to a relativistic quantum field the-
ory with spontaneous symmetry breaking and

strong coupling reveals several interesting and

novel features. In this section we wish to remark
briefly on some of the most important problems
which remain to be understood.

A. Limitations of the variational principle

We have achieved considerable simplification by

using the variational principle. The advantage of
this approach is that with it, we can apply our
intuition about the classical problem in order to
illustrate certain qualitative properties of the the-
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ory. On the other hand, this approach has a lia-
bility inherent in all variational calculations, that
is, to evaluate the validity of our variational
guess. Eventually it will be necessary to proceed
more systematically in order to verify the exist-
ence of the bound states which are suggested by
the variational calculation. One possibility is to
embark on a systematic study of the quantum
fluctuation effects in the field theory beginning
with our solution to the classical field equations
as the first approximation.

B. Higher- order quantum effects

Our variational calculation has been performed
in the tree approximation; therefore, it remains
to be seen whether the trial state and the energy
and physical matrix elements will be significantly
affected by including the quantum fluctuations.
This latter point is particularly important in
quantum field theory since the Hamiltonian density
is an intrinsically singular operator and it requires
a careful definition to make it both finite and
positive -definite. In conventional perturbation
expansion in powers of coupling constants, this
definition is provided by the renormalization pro-
gram. However, the conventional per turbation
techniques are inapplicable here since we are
interested in the strong-coupling behavior of the
quantum field theory. While it may be prohibitive-
ly difficult in the strong-coupling quantum theory
to derive and verify the validity of our results in
quantitative detail, we are hopeful that qualitative
answers may be found to such questions as the

following:
(a) Does the binding mechanism discussed in the

present paper persist when the quantum and re-
normalization effects are included?

(b) If the binding still occurs, does the char-
acter of the solution change qualitatively or quan-
titatively?

(c) Does there exist a range of parameters such
that the solution to the field theory gives a rea-
sonable description of the hadrons?

C. PCAC

PCAC and the role of the pion present a funda-
mental challenge to all quark models of hadrons.
It is very attractive to suppose that the successes
of SU(2) x SU(2) are explained by viewing the pion
as a Goldstone boson. On the other hand, in a
quark model with SU(9) mass spectra the pion is
simply a qq bound-state partner of the p meson
in the 35 and is accorded no special role. How to
make these two different viewpoints mutually com-
patible is at present an unsolved problem.

In our theory we do not have PCAC because the

divergence of the axial-vector current B„4'
=Qxyy, ~„g is nonvanishing, and, in the strong-
coupling limit with G»1, is in no sense a "small
operator. " These difficulties with PCAC may be
related to the unsatisfactory result for g„which
we have obtained since Eq. (8.20) may very well
define the wrong operator in contrast with the
magnetic moment operator which is constructed
from the known and conserved electromagnetic
current.

If we attempt to restore PCAC by enlarging the
o' to a full chiral multiplet, we introduce too many
pseudoscalar mesons: the Goldstone bosons them-
selves as candidates for the m, K, g, as well as
the qq bound states presumably formed by our
mechanism. Alternatively, we may view our mod-
el as a semiphenomenological description of the
underlying strong dynamics which involves only
massless quarks and color vector gluons. By this
conjecture, the 0 is a bound state as well as the
hadrons it binds.

XI. SPECULATIONS

In this section we speculate on possible future
applications of our theory. These speculations
are based upon crude and naive calculations
combined with liberal doses of intuition and wish-
ful thinking. Our main reason for including them
is to illustrate the enormously rich structure of
a theory of the sort we are studying. The topics
we shall touch on include (i) the excited-state
spectrum and a possible connection of our model
with the dual-string model, (ii) Bjorken scaling
in deep-inelastic electron scattering, and (iii) the
production mechanism and distribution of final-
state hadrons in deep-inelastic electroproduction.
As before, our discussion will be based on semi-
classical arguments.

A. The excited-state spectrum and the dual-string model

The key question in the treatment of excited
states is how rigidly the "classical" potential g(x)
(the o expectation value) resists changing when a
quark is excited. If g(x) remains very nearly
spherically symmetric, then a quark with nonzero
orbital angular momentum / will have an energy
M, = (l+1)' 'M, which is the spectrum for the
Dirac equation in the potential
Gg(x)=Gf tanh{v2Hf (r —R)). However, it is evi-
dent from Eq. (4.2) that g(x) will not remain ex-
actly spherical when the quark is in an 1 &0 state.

In fact, if angular momentum is imparted to a
quark along, say, the z direction, its wave func-
tion will develop nodes along this direction and ex-
tend primarily in orthogonal directions. We,
therefore, expect the scalar potential to collapse
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If we minimize the energy (11.1) plus (11.2) with
respect to a and b, we find a=b =- —,'R, and if we set
k=1,

3 2&2
Iof Us

=2&2f (2v 2x'H'")"'

In terms of the energy F-', of a quark with angular
momentum j =1+ in a spherical shell, this energy
can be written

Z, (2v)'~'
Ey ( +~1)2/ 3 (11.4)

which is -1.2&1 for j =& and -0.9&1 for j =-,'-.

Equation (11.4) shows that the energy of the toroid
is not very different from the second and third ex-
cited states of the sphere even though g(x) is very
different in structure. It should also be emphasized
that such a, nonspherical solution for g(x) must
describe a superposition of many eigenstates of

FIG. 6. Potential with torus shape.

in shape around the quark since it can thereby re-
duce the surface area of the confining bubble and

thereby the field energy carried by the scalar field
g(x). At the same time, this deformation will not
fur ther squeeze the quark-wave func tion which,
when l&0, is not using all the space available to
it and so it will not increase its energy. Thus, we

intuitively expect that the shape of the self-con-
sistent scalar field will be distorted when the con-
fined quarks carry angular momentum.

For a very crude estimate of the excitation ener-
gy associated with a deformed potential or confin-
ing field bubble, we consider a torus as illustrated
in Fig. 6 with inner radius a and major radius b.
The same heuristic argument used in the intuitive
discussion of Sec. II gives the field energy asso-
ciated with g(x) as

E =k(4x'ab)4f H' '

after minimizing with respect to the thickness
D-1/0'~'f of the transition region for g(x) to
change from +f to -f; k-1 as in the spherical
case. The fermion energy in analogy with our pre-
vious result might be expected to take the form"

—+-g' 6' (11.2)

different total angular momenta, as in the case of
a rigid rotor. Therefore, the true energy of the
lowest state in this sum is smaller than what we

have calculated.
Because of the softness of y, (x) discussed above,

it is evident that we will not know anything about
the details of the excited states of our theory until
we learn to solve the general problem for de-
formed, excited states. Nevertheless, the above
discussion of the low excitation energies of the
toroidal type of configuration suggests a possible
connection between these ideas and the general
scheme envisioned in the dual-string model.

According to the preceding discussion, there will
be a large number of nearby states corresponding
to rotational and vibrational excitations of the
toroid ("string"). Since the energy of the toroid is
proportional to its surface area, and for a b «1
the quark energy will be like 1, a, clearly the near-
by excitations will be those which do not change the
length or cross-sectional area of the "string. "
Presumably, the energy associated with these
time-dependent motions will be approximately de-
scribed by ascribing an effective mass density per
unit length to the torus. This leads to a corre-
spo ndenc e be tween the spec trum of the excited
states in our model and the picture in a Virasoro-
type dual-string model. From this point of view,
the dual-string picture may emerge as a phenom-
enological description of the large density of states
(collective stringlike excitations) available in a,

canonical relativistic field theory of the type being
considered.

B. Scaling in deep-inelastic electron scattering

The fact that the quark mass is effectively small
only in a thin shell makes any simple explanation
of scaling in electroproduction hard to come by.
One possibility, however, is that the softness of the
shell to quark excitation and the small quark effec-
tive mass in the shell itself where ~g(x) ~

«f pro-
vides the dense set of excited states required so
that scaling can occur.

Accepting for the moment the conjecture that the
softness of the bag can provide an explanation fo-r

observed scaling, one sees what may be an im-
portant difference between ee annihilation and deep-
inelastic lepton scattering processes. For the
deep-inelastic processes, the virtual photon scat-
ters from the proton bound state, and the onset of
scaling is controlled, as suggested by the preced-
ing discussion, by an energy scale of ~ 1 GeV as-
sociated with the excitations of the deformable
shell. But in electron-positron annihilation into
hadrons, there is no pre-prepared bound state and
the important scale may be the bare quark and
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scalar 0-gluon production thresholds which are
much larger than 1 GeV. The point is that in order
to have scaling behavior, the time scale for pro-
duction of the quark r,~ -I/v s should be brief
relative to the interaction time as controlled by
the bare quark mass, 1/G f, and the range of the
scalar interaction, - I/H' 'f. As discussed in
Sec. VII, these, as well as the color thresholds,
are energies»1 GeV. This speculation suggests
striking changes in the energy dependence of the
total cross section as we first cross color thresh-
olds and then the bare quark and scalar-gluon pro-
duction thresholds. Thus scaling might appear at
present machine energies for deep-inelastic scat-
tering, but might require much larger energies to
appear in electron-positron annihilation to hadrons.
We emphasize, however, that this is all specula-
tion and it remains an open question whether a
simple scaling mechanism exists in our model.

We also comment that the observed rapid falloff
of the nucleon elastic form factors may arise from
the fact that in the presence of many low-lying de-
formed "bubble" states the probability for a nucle-
on which is excited by a highly virtual photon to
remain in the ground state is rather small. An.-
other question related to elastic form factors is
whether they have nodes because of the thin-shell
nature of the wave functions of the quark consti-
tuents. To answer this question, we have to under-
stand. the Lorentz contraction effect and the over-
lap factor for the "Cooper pairs" of a nucleon at
rest and a moving nucleon.

C. Production of hadronic final states

A simple heuristic picture which seems to pos-
sess most of the general features of the inside-
outside cascade postulated by Bjorken" and dis-
cussed by Casher, Kogut, and Susskind, "and
others can be easily imagined.

Basically, the idea is that a photon comes in and
hits one of the three quarks in a proton. This
quark recoils from the other two quarks destroying
local color charge neutrality and unshielding large
color current densities. In analogy to a supercon-
ductor, an effect like the Meissner effect will prob-
ably take place to confine the resulting large "mag-
netic" fields to a finite region. This is accom-
plished by having a region surrounding the quarks
become normal (i.e. , (P*p) =0) with large color
supercurrents flowing on the boundary. As quarks
separate the "normal region" grows into a long
tube [since the term (P*P —f' ')' tends to keep the
volume of the normal region as small as possible],
and one obtains a restoring force between the
quarks that does not fall off like 1/r' (where r is
the distance between the quarks).

As the surface of the shell increases in area,
the threshold for producing quark-antiquark pairs
decreases since they have more space in which to
move, and so there will be a critical distance at
which the energy stored in the confined color field
will exceed the qq production threshold. At this
moment, a qq pair will be produced and the color
field will break and join separating sets of quarks.
The shell will then break in two, corresponding to
two states having the quantum numbers of a baryon
and a meson. The process will repeat itself until
the resulting fragments no longer have enough en-
ergy to separate. These regions would then oscil-
late and decay into hadrons via a different mechan-
ism. As a consequence of the existence of these
two different mechanisms, one would expect to
have a set of excited clusters formed possibly
spaced by a fixed distance in rapidity, which would
decay into ordinary hadrons. Hence the general
picture of an inside-outside cascade producing a
plateau with short-range correlations in rapidity
would seem natural from this point of view.

XH. COMPARISON WITH RELATED WORKS

In this section we compare our approach to the
MIT bag model and recent works by Lee and
Wick, "Chin and Walecka, "Creutz, "and Dashen,
Hasslacher, and Neveu. "

A. MIT bag model and Creutx's work

In the NIT model a hadron is a finite region of
space to which almost free quanta of the hadronic
fields (quarks or partons) are confined. It is ob-
tained from free-field theory with two modifica-
tions:

(1) adding to the stress tensor T"" a term g" 'B,
called the volume tension, which acts to compress
the bag against the outward pressure of the quark
gas;

(2) imposing boundary conditions such that the
hadronic fields be confined in a finite region of
space: the interior of a hadron or the bag.

Because of the boundary conditions, the MIT bag
model is not a local field theory. Our model, on
the other hand, is based on a conventional local
field theory. A possible connection between the
two models is discussed by Creutz and by Creutz
and Soh." At the classical level, Creutz has
demonstrated that the NIT bag model of a scalar
field with Dirichlet boundary conditions can be ob-
tained from a local field theory with two scalar
fields in a strong-coupling limit. One of the scalar
fields produces the bag to confine the other scalar
field. Recently, Creutz and Soh have also shown
that the MIT bag model for fermions can be ob-
tained from a local field theory. In both cases,
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the scalar field which produces the bag has a
quartic self-coupling of the general type discussed
in the Appendix where a brief account of the argu-
ments of Creutz and Soh is presented.

Instead of a volume tension as in the MIT model,
the scalar field energy in our model provides a
surface tension. Furthermore, the quarks inside
the potential do not appear to be free nor are they
massless. One consequence is that radial excita-
tions are absent in our model, but are present in
the MIT bag model. " Presumably, this qualitative
difference will also have important consequences
in the behavior of form factors and structure func-
tions when momentum transfers are large.

Finally the mechanism for quark confinement in
the two models is different. Ours is only an ap-
proximate scheme in which the isolated quarks,
as well as color nonsinglets, have high but finite
threshold. On the other hand, in the NIT model,
if the quarks are coupled to a non-Abelian gauge
field associated with color, then only color-singlet
states can exist. This is an exact selection rule
which follows from the boundary conditions for the
color gauge fields and Gauss's law. Since this
selection rule exists for any nonvanishing color
gauge couplings, it is interesting to study what
happens as the color gauge coupling is turned off
smoothly.

8. Abnormal nuclear states and normal nuclear
matter at high density

In a very interesting paper Lee and Wick" have
discussed ideas very similar to these presented in
our work, namely, they have also investigated the
theoretical possibility that in a limited domain in
space, the expectation value of a neutral spin-0
field may be quite different from its normal vacu-
um expectation value. Lee and Wick are mainly
concerned with the formation of very heavy nuclei,
while our primary interest is the possibility of con-
structing low-mass hadrons from heavy quarks.
In the former case, since the atomic number is
large, Lee and Wick assume that nucleons are ap-
proximately described by a degenerate Fermi dis-
tribution, characterized by a maximum Fermi mo-
mentum. In the tree approximation, Lee and Wick
then find that when the coupling is sufficiently
strong and density is high, the classical field g (x)
(in our notation) is favored to take the value 0 in-
side the nucleus. Thus the nucleons are effective-
ly massless inside a heavy nucleus. In our case,
however, the number of quarks in a hadron is so
few that statistical mechanics does not apply. In-
stead, we have to actually solve the Dirac equation
as well as the coupled equation for the scalar field.
The quarks are found to have a large and negative

mass inside a hadron instead of being massless.
Similar techniques have been used by Walecka"

and Chin and Walecka" to study nuclear matter at
high density. However, in their model, the scalar
field does not have cr-model self-interactions, so
that there is no spontaneous symmetry breakdown.

C. The work of Dashen, Hasslacher, and Neveu
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APPENDIX

In this appendix we consider a more general
class of models, in which the meson-meson inter-
actions are not restricted to the 0-model form
considered in Sec. II. We again find that the
"quark" is confined to a thin spherical shell but,
unlike the 0-model solution, we find that the meson
field energy from the enclosed spherical volume
may be much larger than the meson field energy
from the shell. As a result, we recover the re-
sult suggested by the heuristic argument of Sec.
II, that E~fH'" (assuming that G»H"'). More
precisely, for a many-quark system, in place of
Eq. (6.4), we have

4 +3/4

3A„ (AI)

Recently, Dashen, Hasslacher, and Neveu" have
developed a technique for finding approximately
the spectrum of bound states in a field theory with-
out knowing the bound-state wave functions. Their
starting point is a Feynman path-integral repre-
sentation for the resolvent operator. It is the
analog of WKB approximation in nonrelativistic
quantum mechanics. This method of finding the
bound-state spectrum reduces the problem to
solving the same classical field equations as in our
work. In our case, these classical field equations
arise from the minimization of the energy in a par-
ticular class of trial states. Assuming that the
trial states resemble the true states, we may corn-
pute, in addition to the bound-state energy, other
(static) properties of the state as illustrated in
Sec. VIII. Dashen, Hasslacher, and Neveu have
applied their technique to the (I + I)-dimensional
version of our model and find the exact classical
solutions. They have also calculated the first
quantum correction to these classical solutions in
the weak-coupling case.
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where now

1
RO 0 1/4 (A2)

The local Hamiltonian density we consider is

3C(z) = —,'[p(z)l'+ —,'tv'(z)~'+ U{P(z))

/'~x)(, ~Gh (~) ~ /1)/(~), (A3)

in which the meson-meson interactions are given
by

c, 6, a
U(4) = 4—, 0'+

3,
4'+

2 4 . (A4)

A convenient parameterization is

U(y)=HIP'+-', (f,. + f )P'+ 2f,f 0'j. (A5)

+ &~(g+ f) x = &x, (A7)

dg 2dg BU

dr r dr Bg
2+ ————= GXX (A8)

In first approximation, we let g be a square well

We require H & 0 so that U(P) has an absolute min-
imum and f,f &0 so that Q = 0 is a minimum. We
also make the choice

f .-f, - 'f &0, -

so that U can be depicted as in Fig. 7, with a local
minimum at @ = —f and a local maximum at
P= -f, . With the choice f, = ~f = f, we recover
the (displaced) c-model Hamiltonian considered
above.

We now proceed with the variational calculation.
Forming a trial state as in Eq. (2.11) and varying
the energy, we recover coupled differential equa-
tions

the Dirac equation (A7) has the familiar "shell"
solution encountered in Sec. IV. Since

8U bU =0
~g

the meson equation (A8) is also satisfied every-
where except near the shell.

For the energy of an n-quark state with all
quarks in / = 0 angular momentum states, we have

(A11)

E -=-,' vR'U(- f ) + 4''D U( f)-
+ 4wkg =+—,,f' n

D R ' (A12)

where, as in Eq. (2.6), we have introduced a
surface region of width D and a shape-dependent
number k of order 1. Requiring sE/sD = 0, we

have

and provided that R»D, we may neglect the sur-
face terms in Eq. (A12) so that sE/eR = 0 implies

4v U( f)'- (A14)

Bg 92g 2 Bg BUd'z —,+ ————-GXX = 0
Br Or r Or Bg

(A15)

with E given by Eq. (Al). Using Eqs. (A13) and

(A14) together with Eq. (A6), we see that the as-
sumption R»D is justified provided that H»1.

Although we have not been able to give an explicit
solution for g which specified g more completely
near r = R, we will show, as in Sec. IV, that the
Klein-Gordon equation (A8) "averaged" across the
surface is automatically satisfied provided sE/BR
= 0 and the Dirac equation (A7) is satisfied. That
is, we shall verify

g(r) = fe(R - r), -
and provided that

1
G(f -f)»

R

(A9)

(A10)

where r, (r, ) is sufficiently greater (less) than R
so that sg/Br is negligible. Writing

d3z = dQdrr2

Bg8g 1 8 sg
Br Or 2 Br

we use an integration by parts to rewrite the first
term in Eq. (A15) so that Eq. (A15) becomes

FIG. 7. The potential of Eq. (A5).

l ()g 1 ~g &Ud'z ——————GyX = 0.
Br r &r Bg

1

Now write

1 Bg'
Z = d'z —— + U{q + g,

2. Bl'

where {' is the fermion energy

(A16)

(A17)
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e ~ Vd'ay~ . + PGg X.
2

From the Dirac equation, precisely as in Eq.
(4.21), we find

gg ggd'& —GXX.BR O'Y
(A18)

(A24)

E, —const xv'2MR2f ', (A25)

The surface energy associated with the transition
region of g(x) has been estimated by Creutz,

Differentiating the meson contribution to the
energy and using the fact that g is a function of
r -R, so that Bg/Br = —Bg/BR, we find after an
integration by parts

and is stored in a thickness of I/v'2Mf . In order
for the volume energy to dominate as in the MIT
model, we require

HR'» 82MR f (A26)
d'g —— + U ) =

(A19)

Combining Eqs. (A18) and (A19), we see that
BE/BR = 0 implies the averaged Klein-Gordon
equation (A16).

For completeness, we now sketch briefly the
arguments of Creutz and Soh that with a proper
choice of parameters, it is possible to have a
solution to (AV) and (A8) with all the character-
istics of the MIT bag model with fermions.

We are looking for a solution with the following

pr oper ties:
1. The classical field g(x) is approximately a

constant inside a sphere of radius R, and quickly
reaches its vacuum value 0 outside.

2. Inside the sphere, the fermion mass is
effectively zero.

According to (A8), we have for g(x) inside the
potential well, i.e. , for Ix I&R and for small devia-
tions from the minimum of U(g) = f-

Under these conditions, the total energy of the
system is

E = —+-mR Ban 4
n (A27)

(A28)

with the value

4 anE „(min) = ——.
3 R

For strong binding to occur, we must have

1—« Gf
R

(A29)

The requirement that the fermion is effectively
massless inside is the statement

where a= 2.04 and n is the number of fermions
and antifermions in the bag. Equation (A2V) has
a minimum at

I
nt (x

a(x) = -f + —d'y Gxx(y)4v Ix —yI

1= -f -;GXX(x), - (A20)

where m" = 4Hf '(1 —f, /f ). For a massless fer-
mion moving in a square well, we specify f= f
in (AV), and so x is given by (4.4) and (4.5). Thus

1
G(g y f)« —,

which can be satisfied if

f=f,
1—» + 2'

Equation (A29) implies

(A30)

(A31)

1
XX R3, r &R. {A21)

G' f, 1

H f 2' (A32)

We require that the spatially varying part of g(x)
be small, that is, by (A20)

lg(x)+f I=,.Gxx«f
1

82
(A22)

or

1—«fm" R' (A23)

The volume tension constant B of the MIT bag is
identified as the energy at the secondary minimum

Now Eqs. (A23) and (A25) require

H && ——»H-1/3 f + -1/3
G' f (A33)

All these conditions can be fulfilled, for example,
by the choice

H-G
(A34)

1» —+ &og -&&3.

f 2

Finally, (A8) implies a condition similar to (4.17).
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It is

XX
6g
dr

Since XX is slowly varying compared with dg/dr,
we obtain

&= Gf xx(II), (A35)

which can be verified in the limit Gf -~ to re-
duce to the boundary condition in the MIT model
for a spherically symmetric solution:

8» = —,—(xx),

It can be readily shown:&at conditions (A33) and
(A34) ensure that the bag solution has a lower en-
ergy than a, shell solution with the field g(r) rising
back to the value 0 as r -0.

The bag solution is not realized when B = 0 for
a potential with a symmetry leading to a spontan-
eous breakdown which was the model used in the
discussion in this paper since then the field will
remain at the value g= f-for all space, there
being in that case no volume energy. However,
for B&0 but so small that

0(—f, I
f 2

instead of (A34), we also find baglike fermion
wave functions but with energies given by ff "'f as
in the shell solution.

Thus we see that by making different choices of
the parameters in the Hamiltonian, we obtain
solutions with very different phenomenological
implications.
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