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Conservation of quantum numbers at each vertex (or local conservation of quantum numbers)
associates the rapidity dependence of inclusive spectra with the approach to the scaling limit in the
central region within the framework of the multiperipheral model (MPM). A model incorporating
various internal quantum numbers is developed by introducing quantum-number-flow states. We restore
the properties (1) strong ordering of particles in rapidity and (2) threshold effect (production of a
heavy pair requires a high threshold) of the MPM. Clustering in final states leads to a stronger energy
dependence of the inclusive spectra as compared to a model where secondaries are produced directly.
In pp collisions, the right order of magnitude of the rates of increase with energy among the =, K,
and P inclusive spectra in the central region is reproduced in the incident-momentum region from 24

to 1000 GeV/c.

I. INTRODUCTION

Accumulating experimental data have stimulated
systematic approaches'~? to inclusive distributions
for various kinds of produced particles. Consider
the inclusive reaction p + p —c¢; + X, where ¢, =p,
c,=m", cy=1", ¢,=K*, ¢,=K~, and c4=p. The
distribution for ¢, in rapidity space is observed
to be broader than that of c¢;,,.® Furthermore,
indeed, scaling® is well satisfied forp+p -7+ X
in the fragmentation region. However, large cor-
rections are required to reproduce the rise of the
7 spectrum with energy in the central region, as
well as the more important energy dependence of
the K and p spectra yields.® Our main problem is
how to combine these two observed features, (1)
the rapidity dependence of the inclusive spectra
and (2) the approach to the scaling limit in the
central region.

In the original version of the multiperipheral
model'°*!! (MPM) it is natural to ascribe these
properties (1) and (2) (see Refs. 12 and 13) to the
difference of various objects exchanged in the MP
chain, where quantum numbers ave conserved at
each vertex. This characteristic will be referred
to as local conservation of quantum numbers. On
the other hand, the MPM as well as the thermo-
dynamical model* is, in some sense, a parent of
independent-cluster -emission models,'® which have
been much discussed in relation to the two-particle
correlations!® and the associated multiplicities.
An early success'” of the multiperipheral cluster
models!® was attained in fitting the multiplicity
distribution with a Poisson distribution incorporat-
ing clusters emitted uniformly along the rapidity
axis.!® Sometimes these clusters are regarded

11

as usual resonances?’: The so-called w and p
models, etc., are adopted to explain neutral -
charged particle correlations. However, indepen-
dent resonance emission would be an overabstrac-
tion of weakly correlated production, because
quantum numbers should be conserved in the strong
interactions between resonances. Moreover, clus-
tering leads to a considerable reduction of the
original multiplicity for resonances as compared
to the final multiplicity. This implies that the
quantum numbers of initial particles affect inclu-
sive spectra strongly even in the central region
through local conservation of quantum numbers.?!
Possible clusters emitted independently should be
completely different?? from resonances and should
correspond to a certain saturation of the strong
interactions. Qur standpoint is against independent
emission of resonancelike clusters, but in favor

of local conservation of quantum numbers.

Thus, the aims of this paper are twofold: first-
ly, to investigate how important a role the local
conservation of quantum numbers plays in explain-
ing the experimental features (1) and (2) in the
MPM, and secondly to examine the conjecture?!
that resonancelike clustering leads to strong ener-
gy dependence of inclusive distributions in the
central region.

The present paper is organized as follows. We
simplify the MPM by introducing quantum-number-
flow?® (QNF) states as an abstraction of exchanged
particles in Sec. II. In this simplification we re-
tain strong ordering of particles according to ra-
pidity.!! A threshold effect (production of a heavy
pair requires a high threshold) is taken into ac-
count. In Sec. IIIl numerical results are compared
with experimental data of pp collisions in the cen-
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tral region [the absolute value of center-of-mass
(c.m.) rapidity is less than (the maximum value)
- 1]. As an example of resonancelike-cluster
models, we take up a vector-meson-dominance
model!®**5:2! (VMDM), where pseudoscalar me-
sons are emitted through the mediation of vector
mesons, as well as a model where secondaries
are directly produced (PSM, the pseudoscalar-
meson scheme). We summarize the results and
give discussions in Sec. IV.

Although our numerical investigations concern
pp collisions throughout this text, our model is
more comprehensive in scope. It should be empha-
sized that it provides us also with many-particle
inclusive distributions with various initial par-
ticles. Once QNF states are introduced as an ab-
straction of the MPM, the distributions of QNF
in additive internal quantum-number space (fur-
thermore, in rapidity space) can be reconstructed
as an observed quantity (see the Appendix). More-
over, the distributions can be calculated in an in-
dependent emission model.?* The title of the pres-
ent paper represents our hope of such a potential.

II. THE MODEL

A. Formulation

Let us consider a multiperipheral chain with »
final particles, whose links correspond to ex-
changed particles and initial particles at the ends
(Fig. 1), and the contribution of the graph to an
inclusive process. We make the strong-ordering
assumption throughout this text that the particles’
ordering in rapidity is their ordering along the
multiperipheral chain. Even if the ¢th outgoing
particle (Fig. 1) is definite, other particles (except
at the ends) are not detected. Therefore, there
are various choices of exchanged particles on each
link. It would be easy to write down a formal equa-
tion of the MPM with multicomponents of internal
quantum numbers. However, it is mathematically
formidable to solve the equation. Some simplifi-
cation is necessary.

Concentrating our attention on quantum numbers,
we consider internal quantum-number states on
each link, which are referred to as quantum-
number-flow (QNF) states. Suppose that a link is
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FIG. 1. Multiperipheral graph with » final particles.

in various QNF states with corresponding certain
probabilities. The probability for a set of quantum
numbers changes with the links from left to right
(Fig. 1), and starts with 1 for the quantum numbers
of the initial particle. Such simplification reminds
us of probability processes, whose discrete time
corresponds to the production steps, and of a sort
of flow of quantum numbers. The concept of QNF
will be reconstructed phenomenologically in the
Appendix.

Let us now formulate the above outline. We
employ Dirac’s “bracket” notation, (a| or |a),
to denote an orthonormalized QNF state with «,
which stands for a set of quantum numbers. We
introduce an operator T, whose matrix element
(B|T| @) represents a (relative) transition proba-
bility from | @) on one link to |3) on another link.
We may either treat production amplitudes or
probability functions (differential cross sections).
We choose the latter for simplicity, although we
are not strictly justified in this choice.?® Then
an inner product (@) and the general state |u)
is a probability, but not a probability amplitude.

In general, (8|T|a) depends on i, n, rapidity y,
and transverse momentum p, corresponding to the
link for which | @) and |8) are defined. Now we
assume the following properties of T:

(i) The operator T relates a link to only the
nearest neighbor ones. Further, the T connecting
the ith link with the (i —1)th one is independent of
i.

(ii) For simplicity, we neglect dependence on
transverse momentum due to the small mean value.
(iii) The rapidity-dependent term is factorized

out of T.

(iv) QNF states on any link are nonexotic. This
condition restricts the dimension of T in its matrix
representation.

(v) The operator T is real and symmetric. This
property reflects the symmetry between a particle
and its antiparticle in the fundamental dynamics.

It may be an oversimplification to make assump-
tion (iii), which would be surely plausible for an
isospin multiplet. In other words, we can see
what effects arise from the local conservation of
quantum numbers without energy dependence of
propagators. Moreover, the formulas presented
below are useful from a practical viewpoint, since
the single operator T gives us various distribu-
tions, even many-particle correlation functions,
with different incident particles.

We use assumption (i) in a multiplicative way.
Then we have (@|T?"!| @) on the ith link through
“successive” production in the chain of { —1 par-
ticles (Fig. 1). Similarly, (5|T™%|B) is the proba-
bility that |3) on the (i +1)th link transits to |5),
which is the antiparticle QNF state of another ini-
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tial particle |b). Then we have the probability
P{") of emission of quantum number y at the ith
final state:

BT BBl Tyl aX | T " a)

(n) _
PiY=2y BTy y @)
where
(BlT| @), if vertex a =B+ y is not zero
<B| Tyla>=

0, otherwise. (2.2)

Note that the multiplication of T' corresponds to
the summation over final particles. The natural
assumption (v) enables us to make an exchange
between a and b in (2.1) together with other corre-
sponding quantities; i.e., the direction of QNF is
reversible.

We introduce the abbreviated notation of operator
fraction A//B:

(o|A//B|pr=(alA|B)Ka|B|B). (2.3)

In this notation, (2.1) is reduced to

J

P{"y = (bl Fy(i;n)la), 2.4)
with
Fy(i;n) =T T, T/ (2.5)

Here we used completeness of the QNF states
{| e},

It is of interest to give the double-particle dis-
tribution for a+b~f; , + f; s + X. Arguments simi-
lar to the ones above lead us to a formula for the
quantum-number part of the double-particle spec-
trum with » final particles:

P55 =BIT™ TsT 8D T Y/ T a) . (2.6)

This formula would be helpful in an investigation

determining what role local conservation of quan-

tum numbers plays in two-particle correlations.
In order to obtain a formula for the inclusive

single-particle spectrum, we sum (2.1) over n

and ¢, multiplying by the rapidity-dependent factor

[see assumption (iii)]:

Sy =220 [ TT 0iBLE G X Ty, K 3,y Bieas 3 Yemss o0, (2.7)

n=2 {=1

where the prime means the omission of dy; (=dy);
T Y Y Yooy Y40,9,Yieny - -+, Y,) iS the differ-
ential cross section for n particles to be produced
at y,,¥,,...,¥,; and Y’ and Y are the rapidities
of the initial particles. The condition y, = +++ 2y,
is imposed due to the assumption of strong-order-
ing in rapidity. We propose two models for the
rapidity -dependent factor 7, in (A) and (B) of Sec.
IB.

B. Two simple models for 7,

(A) Omitting the integration over H',":ldy,, we
calculate (2.7) at n discrete points and interpolate
the spectra. The points {yi} are equally spaced
and are selected so as to satisfy the energy-mo-
mentum conservation constraints. The number »
may be taken to be nearly the mean multiplicity.
In carrying out (A), in practice, we impose the
conditions

Yirny = Yi=Yi=Vioys (2.8)
n n _

E m sinhy; =0, Zm coshy, =Vs , (2.9)
=1 =

with total c.m. energy \/3_; these conditions deter -
mine {,} completely. It is assumed that all out-
going particles have the same longitudinal mass
m; otherwise it is difficult to solve (2.9). There-
fore, this prescription is appropriate only for the

r
VMDM, where the differences of masses are
small.

(B) We connect 7, with the partial cross section
o, as follows:

n
’
fII dyiTn(Yb$ Y;; yn’“-’yiﬂ:yyyl-l"--’yl)
=1

(2.10)

where §, () is the relativistic longitudinal phase-
space volume. In the calculation of &, ;(y) we fix
the rapidity y of the ¢th particle in ordering of
final particles according to rapidity and integrate
over rapidities of other particles. Then ,;(¥)

is a function of ¥. The normalization is given by

=0n§n.l(y);

[, mar=1. (2.11)

We now assume the following expression for
Qr..i(y):

n! (ymax __y)n—{(y "ymin)i
[CTNEET L R I

Qni(¥)= (2.12)
where ¥,.. and Y, are the upper and lower kine-
matical boundaries, respectively. Analytical ex-
pressions for s’z,,,,(y) derived from its definition
are represented?® in the improved Chew-Pignotti-
De Tar!''?” approximation. Unfortunately, these
expressions yield good accuracy only for values of
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n less than 10. The form (2.12) was compared
with the more exact expressions in the region of
their good accuracy and was found to give qualita-
tive agreement.?® Therefore, we shall employ
(2.12) for convenience in practical calculations.

The partial cross section 0, is parametrized as
follows:

5. = 16(8) In[(Vs - m(@,mXVs —m(1,n —1))/mm,]}">
" (n -2)1[Vs -m(2,n)][Vs -m(,n-1}]
XA, (2.13)

where S is the c.m. energy squared,

m(i,j)=gm,,

and m, is the longitudinal mass of the kth particle
in order of rapidity. The above formula is sug-
gested by the total phase-space volume at high
energy. The parameter G(s) corresponds to the
coupling constant squared and is assumed to vary
with s. The total mean multiplicity will be em-
ployed to determine G(s) (Sec. III). Strictly speak-
ing, G(s) should not depend on energy in the MPM.
However, we are interested in the role of local
conservation of quantum numbers without possible
bias coming from the defects of the MPM. There-
fore, we adopt such a semiempirical g,. The
over-all normalization factor A is given so as to
have

Z 0, =0y, =const.
n=3

In order to see the effect of local conservation of
quantum numbers clearly, we do not take account
of the rising total cross section®® observed re-
cently. It is immediately clear that inclusive
spectra are proportional to o, within our frame-
work.

III. RESULTS
A. High-energy limit

First we show consequences which are imme-
diately clear in the high-energy limit. We made
the assumption (i) in Sec. II A that transitions occur
only between nearest neighbor links. Correlations
of quantum numbers between distant links are,
however, not vanishing. Once T is fixed, they
depend on the number of links between the particles
considered. In the high-energy limit, QNF states
in the central region are controlled by 7" (z>1).
Here we set forth analytical results in the region
in this limit.

(1) It is plausible to assign squared Clebsch-
Gordan coefficient to elements of {{8|T| @)} in the
same isomultiplet. Then charge independence
holds for particle-production ratios.

(2) A particle-production ratio between different
isomultiplets approaches a constant irrespective
of initial particles. In general, this constant is
not equal to 1 and is related to the eigenvector
for the maximum eigenvalue of T.

(3) The production ratio of a particle to its anti-
particle is 1. This feature is clear from the sym-
metry of T (assumption v) in Sec. IIA.

B. Applications to pp collisions

The single-particle spectra in pp collisions are
well investigated experimentally. The formula
(2.7) will be applied to this actual reaction.

1. Simple models

As mentioned in Sec. I, we shall deal with the
two models, the PSM where pseudoscalar mesons
are produced directly and the VMDM where out-
going pseudoscalar mesons are mediated by vector
mesons. The VMDM embodies a model where
resonances are emitted almost uniformly along
the rapidity axis.

Our numerical calculations are in the preliminary
stage and may be considered a model calculation.
We now consider a simple 3-quantum number sys-
tem with isospin, baryon number, and strangeness.
The QNF states do not necessarily correspond to
particles. It is, however, convenient to use for
these states the conventional notation of particles.
We take account of the following sets of QNF
states:

(n*,n®, 77): isotriplet, nonstrange “mesons”;
(K*,K°) and (I_{°,K'): isodoublet, strange “mesons”;
(p,n) and (%, p): “nucleons” and “antinucleons”;
Y,Y: isosinglet “hyperon” and “antihyperon.”

Note that, in the PSM, we regard the (", n°, 77)
of QNF states as the summed contribution of the
exchanged particles 7 and p and also do not dis-
tinguish K* from K. In the VMDM we assume that
(0,m), @,P)Y,Y, (p*,p%), K*",K*), and (K*°,K*7)
are produced as particles, neglecting ¢, w, and
other resonances. These models, the PSM and
the VMDM, are the simplest models to reproduce
inclusive spectra for all stable charged hadrons.
Even these minimum models require 13 compo-
nents of QNF states.

Let us recall that the operator T determines
transition probabilities. It is reasonable to assign
the Clebsch-Gordan coefficients squared of SU,
to the elements of the matrix {{8|T| @)} in the same
isomultiplet. Since T reflects, in some sense,
underlying dynamics, it is inappropriate to use a
higher symmetry (for example, SU,) because of
its observed breakdown. Thus we have the follow-
ing explicit form of the matrix representation for
T, with some elements undetermined:



where eight parameters, c, d, h, q, s, t, u, and
v are to be fitted, aside from the over-all normal-
ization. Therefore, we have essentially seven
parameters.

We adopt model (B) in Sec. II B for the differ-
ential cross section 7, in (2.7). We now give brief-
ly the numerical values of the parameter G(S) in
(2.13) and a detailed prescription for calculations
of Q,,m(¥).

Table I shows the coupling constant squared
G(s), which is determined so as to reproduce the
experimental total mean multiplicity. In both
cases, the PSM and the VMDM, the total multi-
plicity {(n) is evaluated with isospin invariance
from the observed charged multiplicity.

The assumption of strong-ordering in rapidity
appears in calculations of fln'm(y) (Sec. NI B 2).

It is known empirically that, in many cases, the
so-called leading particles carry away a large
fraction of the available energy. To take account
of this effect we assume that the particles emitted
at the rapidities ¥, and ¥, have the same mass as
a proton. Furthermore, on account of a threshold
effect, it is assumed that K (or K*) or p is pro-
duced in a neighboring pair and that other outgoing
particles except the leading particles are pions.

It is clear that we can apply the formula (2.12)
to the cases m+#1. In Figs. 2(a) and 2(b) we depict
inclusive spectra of the mth particle (m =1, 2, 3)
in order of rapidity, which are derived only from
energy-momentum conservation constraints with
the leading-particle effect. They are calculated
under almost the same, but a somewhat simpli-
fied, prescription as compared with that in Ref. 26.
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K-|0 0t 0 O O d2d2u u 0 0 s
Y 0 00 ¢ ¢t 00 O O O O g g¢g
n 0 00 O O 20 v 0 s 0 g h 2hr
P 0 00 O O O v 20 0 s q 2h h_l

r

The figures tell us that , ,(¥) (m >2) is applicable
to the laboratory rapidity ¥, = 1. This restriction
is not inconsistent with current approaches: The
two-component picture for multiparticle production
is being widely used to describe various aspects

of multiparticle production data. In such a picture,
high-multiplicity events are imagined to occur
through muiltiperipheral processes and to be ob-
served in the central region.?®

2. Numerical results

Our numerical calculations of (2.7) proceed
through two steps: First, the matrix T is deter-
mined in a fit of inclusive spectra at incident
laboratory energy 300 GeV in the PSM and at
1000 GeV in the VMDM. Then, the over-all nor-
malization of oy, is given. Next, we have the
energy dependence of the spectra without any ad-
justable parameters.

Figure 3(a) shows inclusive distributions for

TABLE I. Coupling constant G(s) shown versus center-
of-mass energies. The accompanying mean multiplicity
is also indicated.

Vs (GeV) G inPSM (n)psy G in VMDM  (m) yypy
4.93 1.26 4.3 0.70 3.2
6.85 1.38 5.6 0.70 3.9
8.77 1.41 6.6 0.75 4.5

13.78 1.44 8.4 0.80 5.6
23.78 1.50 10.7 0.86 7.0
43.37 0.90 8.4
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charged particles in the PSM. When we set ¢ =1
in (3.1), the remaining parameters are set as fol-
lows:

d=0.15, h=0.25 ¢=0.096,
$=0.096, {=0.074, u=0.15, v=0.13, (3.2)

which have been obtained after some trial and
error.

In Fig. 3(b) are displayed inclusive spectra in
the framework of VMDM. We have the following
parameters;

d=0.205, h=0.34, q=0.13,

§=0.13, t=0.10, u=0.20, v=0.18, (3.3)

The “experimental” values in Fig. 3(b) should
be commented on. We determine the total contri-
bution 2M* of p* and p° to the 7" spectrum and
2M~ of p~ and p° to the 7~ one in the following
way: The p distribution in x space is assumed to
be (1 - prl)s. Here we denote by x;, Feynman’s
scaling variable® for a particle f. We set the
effective values B=1.6 and 2.2 for 2M* and 2M ~
to reproduce the observed m* and 7~ spectra fairly
well, as partially shown in preceding works.?* 23
In order to facilitate comparison with theoretical
curves we plot M* and M~, For simplicity, we

s
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neglect the contribution of K* to M £, Isospin
invariance imposes the following relations between
the K* and K spectra:

K* =5(2K%* +K**), K~ =3(2K°* +K™¥),
(3.4)
KO =1(@2K** +K°*), K°=%(2K~*+K°¥),

where the spectra are indicated by the corre-
sponding italic letters. Modification due to the
decay process (K*~K) would not be necessary be-
cause of the large mass of K.

It is immediately seen that the VMDM yields a
better fit than the PSM. However, if we examine
Fig. 3(b) in detail, even in the VMDM the calculated
p spectrum is much less than that observed at
Y. =1-1.5. We expect that the diffraction com-
ponent should fill up the discrepancy. It is diffi-
cult to come to a definite conclusion before re-
finement of 7, [Eq. (2.7)]. The prescription (A)
in Sec. II B provides us with the better fit [the
dashed line in Fig. 3(b)] with the same parameters
(3.3).

We are now in a position to examine the approach
to the scaling limit in the pionization region. The
central values of the spectra are less dependent on
the choice between (A) and (B) than the shape. The

(b) VAN ]
\. —
i /" S w3 P
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FIG. 2. (a) Inclusive distributions for the mth particle in ordering of rapidity at incident laboratory energy 300 GeV
in the PSM, which are suggested only by phase-space volume. (b) Inclusive distributions for the mth particle in order-
ing of rapidity at 1000 GeV in the VMDM, which are derived from energy-momentum conservation constraints.
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K~ and p distributions are compared with
MO%=3(p*+p~) and 7° in Figs. 4(a) and 4(b), re-
spectively. The VMDM gives the stronger depen-
dence on energy. To see the central values
(Yem.=0) more clearly, we illustrate those for
M°(w°), K-, and p versus energy in Fig. 5(a) and
the particle-production ratios of K~ and p to all
the emitted particles in Fig. 5(b). The difference
between the PSM and VMDM is not so large as
expected in a preceding work.?! The stronger
energy dependence can be attributed to two rea-
sons: First, the parameter ¢ is more dominant in
the PSM than in the VMDM. Second, the mean
multiplicity for resonances is reduced to about
half of that for final particles.

It is seen from Table II that the VMDM can
reproduce the observed increase of the m spectrum
with energy, if the increase due to the resonance
decay?! is taken into account in addition to the
rise from local conservation of quantum numbers.
The calculated rise for K~ is about half of the
empirical one and that for p about one-third. This
implies that K~ and p production is suppressed
at the lower energy more than required by local
conservation of quantum numbers in the VMDM.

+ (a)
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IV. CONCLUSIONS AND DISCUSSIONS

We have investigated effects of local conserva-
tion of quantum numbers along the rapidity axis
by simplifying the MPM. In this simplification,
we keep the following properties of the MPM:

(a) conservation of quantum numbers at each
vertex,

(b) strong-ordering of particles in rapidity, and

(c) energy-momentum conservation and threshold
effects.

We take up a vector-meson-dominance model
(VMDM), as an example of cluster-emission mod-
els, as well as a model with final particles directly
produced (PSM).

In conclusion, the right order of the rises among
7, K, and p has been reproduced, although the
increases with energy in the central region are
quantitatively insufficient. The VMDM yields a
stronger energy dependence than the PSM. If we
demand that local conservation of quantum numbers
should give the full increases observed, our sim-
plest model should be improved in the following
manner: (1) the average mass of clusters is larger

10 .., E

AN
A .',‘::.u.la sensens

H Pep-ceX
: 1000 GeV

ylcb

FIG. 3. (a) Inclusive spectra for the charged particles at 300 GeV in the PSM. The contribution of the first particle
in order of rapidity is not included. The black circles represent experimental curves drawn schematically at p, = 0.4

GeV/c (see Ref. 8) which are near the average transverse momentum.

(b) Inclusive spectra for the charged particles

at 1000 GeV in the VMDM. The contribution of the first particle in order of rapidity is not taken into account. “Ex-
perimental” black dots are drawn in the approximate center of the data at vV's = 23 ~ 53 GeV (see Ref. 8). The typical
deviations of the data from the dots are 10% for M, 309% for K*, and 40% for p. The dashed lines show spectra calcu-

lated by method (A) in Sec. II B.
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F(a)

0.1

01

0.01

[ (b)

FIG. 4. (a) Inclusive distributiclns for n°, K~, and p, which vary with energy in the PSM. (b) Inclusive distributions
for M° (M°= L(p*+p"], K=, and p, which vary with energy in the VMDM.

than those of the vector mesons. (2) The baryon
resonances should be taken into account. In this
article we have avoided the confusion of introducing
more parameters in understanding the role of

local conservation laws.

Our results imply that the quantum numbers of
p affect the spectra in the central region even at
CERN-ISR energies through conservation laws.
They require a careful discrimination between
“independent” emission models of clusters and
multiperipheral cluster models with non-Pomeron
objects exchanged.

In this framework it is not easy to find an exact
analytical form? of the s dependence of the devia-
tion Af [Eq. (2.7)] from the scaling limit. Intui-
tively, A f would be related to the mean multi-
plicity (#) in the manner A f ~gx‘"’ in the central
region, where A(<1) and g are constants with re-
spect to s.

We now consider the problem in which the cen-
tral plateau is approached from below or from
above. The answer depends on differences of quan-
tum numbers between initial particles and the
emitted particle. It is clear that the calculated
distribution approaches the central plateau from
above for the same kind of particle as the initial
particles (for example, p +p—p + X), or from
below, if (aC) and (bC) are exotic in the inclusive

process a+b—-c +X. These facts are also sug-
gested by experiments. If (ac) or (bC) is non-
exotic, we must make numerical calculations to
obtain a definite answer, especially in the case
where the initial particles are different from one
another. It is necessary to examine which set of
quantum number of initial particles penetrates
dominantly from the fragmentation region to the
central region through multiplication of the matrix
T. Our experience is that the threshold effects
(c) have a strong influence on the shape of the
spectra in rapidity space; however, only local
conservation of quantum numbers determines
whether the scaling limit is reached from below

TABLE II. Ratios of invariant distributions for 7,
K-, and p at incident laboratory energy 24 GeV to those
at 1000 GeV, which are givenaty.m.=0 and p  =0.4
GeV/c. The empirical values are taken from small
figures of Ref. 8. Their errors are about 30% for K~
and 40% for p. The values of the K~ spectrum at 24
GeV are estimated by extrapolation.

0 K~ P
VMDM 1.43 2.54 4.94
Experiment 1.612 5.4 16

2 Average for m* and 7~ and integrated over p,.
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FIG. 5. (a) Inclusive spectra for K~ and p at the cen-
tral point (ycm= 0), which are indicated with solid
curves for the VMDM and with dashed curves for the
PSM. The values in the PSM are adjusted to those in
the VMDM at 40 GeV to facilitate comparison. (b) Par-
ticle-production ratios of K~ and p to all produced
particles, which are plotted versus energy with solid
curves for the VDMD and with dashed curves for the
PSM.

or from above.

If duality between resonances and exchanged
particles holds in multiple production processes,
we should consider infinitely many resonances and
the VMDM should coincide with the PSM. How-
ever, current experimental data still cannot afford
conclusive evidence of the duality in multiparticle
production. At present, it is worthwhile to discuss
the distinction between the PSM and the VMDM.

The usual Mueller-Regge analysis® gives the
s™1/4 behavior® for the deviation A f in the central
region if the Pomeron and meson trajectory are
included. Blutner® has derived a s™'/2 behavior,?
using the version of the MPM of Caneschi and
Pignotti, and Silverman and Tan.3?'!® In almost the
same framework, Caneschi’! has argued that the
exponential cutoff in momentum transfer leads to
an increase of the structure function f [Eq. (2.7)]
due to the fmin effect. Various multiperipheral
models differ with regard to the number of dif-
ferent exchanged objects. Many studies incorporate
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only isospin®'? or a few kinds of exchanged tra-
jectories!?'1%+31733 jngside the Regge chain with the
dependence of propagators on subenergies (a few-
channel model). By contrast, we have been con-
cerned with an extreme model—a many-channel
model without energy-dependent propagators.

Systematic approaches incorporating various
quantum numbers have been made in the scheme
of sequential decay of a fireball? and the thermo-
dynamical model.®> From the viewpoint of local
conservation laws, the former scheme would be
similar to the MPM considered in this text. How-
ever, there is an essential difference between
them from the viewpoint of the structure of proba-
bility. In the MPM, as seen in (2.1), the proba-
bility that a set of quantum numbers is emitted
includes a product of the left probability (¢|T%"!|a)
and the right probability (5| T""¢|8); that is, it
depends on the quantum numbers of the two initial
particles, especially at relatively low energies.
On the other hand, in the fireball decay, the quan-
tum numbers of a produced particle are affected
by its parent fireball first produced through a
single decay chain.
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APPENDIX

It may be interesting to reconstruct the concept
of QNF as an experimental quantity. We start
with the definition of charge flow to make the con-
cept of QNF clear. Let us consider the following
exclusive reaction:

a+b—~fi+fy+o+fo, ViSVin (A1)

where the final particle f; is emitted with c.m.
rapidity ¥;. For simplicity, we neglect the depen-
dence on transverse momentum due to the small
mean value. We designate by &; the charge of the
particle f;. Then, one can define exclusive QNF
from f; to f;,, for an exclusive event as follows

(see Fig. 1):
i
/J-lg") = 50 - Z gj
=

(- 5o

i=it1

(A2)
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Possible values of u{™ are 0, 1, #2,.... A set
of all exclusive reactions of the type (Al) deter-
mines the distributions W{™ of u{™ in charge
space:

w = wm |, (A32)

(A3b)

(m _
Ew‘.u-l.
m

J

Y max Yi+g y y
wi(’:zl(y)‘xf ' dyn“'f dy(ﬂf dy:'.'.fz
y ¥ ¥y y

1 min

1 min

where ¥, .., is the maximum of ¥, and ¥, ,;, the
minimum of y,. Further, we define the distribu-
tion independent of {¥,}:

Wg'“ocfdy W (). (A5)

We impose the normalization condition on W{™ ()
and W™,

Additivity of charge permits us to determine
uniquely the distribution W{™, W{"(y), and W™

NOBUYUKI MURAI AND TATEAKI SASAKI 11

(n

Here we denote by w{"), the probability, summed
over possible {f,} with fixed {y;}, that the value
of the ith charge flow is p (=u{™). The explicit
dependence of W{™ on a,b and rapidity is sup-
pressed in order to simplify the notation. Equa-
tion (A3b) gives the normalization.

There may be various possible definitions of the
distribution W{™(¥) at a rapidity point y:

dy, (the number of events with p{™ =p), (A4)

I

from experiments. This implies that powerful
distinctions between various pictures of multiple
production are made by comparing the empirical
distributions with those peculiar to the pictures.*
In contrast to the charge fluctuation at the central
rapidity points,* the QNF concerns more detailed
information on the transmission of charge. It is
immediately clear that the above discussions can
be easily generalized to other additive quantum
numbers.

*Work supported in part by the National Research Coun-
cil of Canada and the Department of Education of the
Province of Quebec.
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