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NX ~ 3m amplitudes and the symmetric-group dual resonance model*
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Annihilation processes XX ~ 3m are compared to a suitably adapted symmetric-group dual resonance
model for pion-pion elastic scattering in which the over-all normalization is the only free parameter.
The fits are found to be rather unsuccessful, essentially because of the absence of odd daughter
trajectories, and it is shown that there is no may of obtaining a better result from this model, even by
the usual artifice of completely eliminating the p trajectory.
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(where s is the four-momentum squared of w' a.nd

The reaction

Pn —m'm m at rest

has been explained by the Veneziano model' to a
satisfactory degree such that it has become a stan-
dard test case for any four-pion dual amplitude.
The first successful explanation for the three-pion
Dalitz plot for this reaction' was given by Love-
lace, ' who observed that the Pn state has the quan-
tum numbers (J =0 ) of a heavy pion, so that the
process could be related to a mm scattering am-
plitude. Considering the lack of a strong p band,
he proposed an amplitude,

m, , t is that of m' and m', , and m, is the pion
mass), which was able to account, at least qual-
itatively, for the two most striking features of
this Dalitz plot: (i) a strong enhancement in the
low (m w ) mass region and (ii) a large area of
depletion of events in the center of the plot where
M'(w'v, ) = M'(s'w, )= 1.08 GeV'. Earlier efforts
at explaining these features by superimposing
resonances had not met with much success, even
when a strong exotic (w v ) contribution was in-
cluded. '

However, the Lovelace fit, although spectacular,
was not accurate in detail —for example, the hole
at, the center of the Dalitz plot was not as well
defined as demanded by the data —and this led to
several attempts'' to improve the agreement by
adding satellite terms or changing the imaginary
part of the trajectory function. ' Since the zero of
Eq. (2) coming from the pole of the I' function at
a(s)+ n(t) =3 is important to the fit, Altarelli and
Rubinstein' generalized Eq. (2) to the form
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and got a better fit to the projections of the plot
by adjusting the coefficients. The essential two-
dimensional nature of the problem, however, was
pointed out by Gopal, Migneron, and Rothary, who

were able to obtain an excellent fit over the whole
Dalitz plot by a more careful consideration of the
coefficients of the satellite terms in Eq. (4).

Recently, a new' type of dual resonance model
has been proposed. ' Its construction is based on
the use of the symmetric group, and it provides
for four pseudoscalar mesons a Born amplitude of
the form

x y, (o.(s), o.(t ), a(u); x},

where

and

y = 1+ n(s} + u(t ) + u(N)

&& [( . iw/s)( e -i~/3)]y'g2

(6)
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rp, (n(s), n(t), n(u);x)

= (1-x+x') '[n(s)x+ n(t)(1-x) —n(zi)x(1-x)] .

This model, which has no odd daughter trajecto-
ries, preserves all requirements of analyticity,
crossing symmetry, and Regge behavior, provides
room for generalization to N-point functions, and
includes several earlier generalized Euler B-
function models as special cases. ' It ha, s also
been suggested that the amplitude in Eq. (5) can
be derived from a factorizable ghost-free scheme
even for physical intercepts such as ne(0) = —,'; this
is a major theoretical advantage over the old
Lovelace formula.

Although the amplitude in Eq. (5) was originally
proposed for pion-pion scattering, it is natural to
test it phenomenologically in the annihilation pro-
cess. We have considered two reactions: (i)
Pn-m'm m, where the amplitude is given by
A, (s, t ), and (ii) the reaction
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FIG. 2. Comparison of experiment and the symmetric-
group model for pp- 37t at rest. The experimental
data are on the left half of the plot and the model pre-
dictions on the right.

PP- m'm'm' at rest, (8)

where symmetry dictates that the amplitude be
[A,(s, t)+A, (t, u)+A, (u, s)]; in both cases, the
only free parameter in the problem is the over-all
normalization. %e use the same trajectory func-
tion as Lovelace [Eq. (3)]. The amplitude A, is
evaluated by expanding into a finite series of B
functions plus a remainder integral, which is
evaluated numerically.

%e have obtained fits for the two reactions over
the two-dimensional Dalitz p1.ot. The method used'

consists of dividing a part of the Dalitz plot into a
number of bins of equal areas, calculating the con-
tribution of the new amplitude to each bin, and
then using a random-number routine to generate
events of the required density. The results are
shown in Figs. 1-3, in each of which the left half
shows the experimental data. ""Figure 1 is for the
reaction Pn-m'm m and the results of the new
model (the Lovelace model is discussed else-
where'); Figs. 2 and 3 are for PP-rr'zi'Ir compared
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FIG. 1. Comparison of experiment and the symmetric-
group model for the reaction pn- ~'m 7( at rest. The
experimental data are on the left half of the plot and the
symmetric-group model predictions on the right.

FIG. 3. Comparison of experiment and the Lovelace
model for pp- 3~ at rest. The experimental data are
on the left half of the plot and the model predictions on
the right.
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to the new model and Lovelace's amplitude, re-
spectively. The fits are clearly unsatisfactory.
Table I lists the )( values.

The fit to pn- 2m m' reproduces the two promi-
nent features of the experimental data —viz. , the
low-mass m m enhancement and the central hole-
but is otherwise generally unsuccessful. The fail-
ure of this model is, however, rather instructive:
The essential point is that the symmetric-group
model we have used, unlike the Lovelace model
and its extensions, contains no odd daughter tra-
jectories. ' Thus, in the region of o (s},a(t) = 1
there is only a spin-one p resonance without any
s wave, and the residues there, being proportional
to cos8 where 8 is the scattering angle, must
vanish at 8=w/2. Hence there is a marked deple-
tion of events at a, = 1 near t= u and at o., = 1 near
s = u. Experimentally, the n~ = 1 bands show ap-
proximate isotropy, and this is generally cited as
evidence that the p is only very weakly produced in
the annihilation process. '

The Lovelace procedure of summarily rejecting
the p trajectory will not work here for at least
two reasons.

(i) If we consider using an amplitude

1

A(s, t) = dxx "& ' (1-x) "8 '
0

)( (I 2)(as+ I g+ ag —1)/2
w

where the leading trajectory has the intercept
a(0) = n~(0)- 1, then compared to ww-ww we have
only odd daughters and the resonances in mm- mm

and (Pn)-Sw become nonoverlapping sets.
(ii) If nevertheless we do use Eq. (9), then al-

though the residues at unit u~(s) and n~(t ) are
satisfactory the residues at np(s) =2 and n~(f) =2
become unsatisfactory since they contain only
spin-one (p'} resonances and consequently vanish
at 8 = w/2, contrary to experiment.

The fits to PP-3m' by the symmetric-group and
Lovelace models also show poor agreements.
Since the symmetric-group model has only evenly

TABLE I. g values obtained by fitting the Lovelace
and symmetric-group-model amplitudes for the reac-
tions pn 7r'7l n and pp-7( m 7to at rest.

Reaction

pn r+ m'

Amplitude

Lovelace9

X2

2457

No. of bins

300

at rest Symmetric group 2754 300

pp —7('vr'7(' Lovelace 1108 100

at rest Symmetric group 1424 100

spaced trajectories, the symmetry of the problem
implies the presence of a dominant f' resonance
and a residue proportional to cos'8; this gives the
sharp enhancements at the low 2m' mass region
and the wide areas of depletion in between (Fig. 2).
The Lovelace model, on the other hand, has the
e trajectory and produces a strong band structure
for the ~ but a very weak enhancement at the low
2m' mass region, presumably because the spin-
zero e would be the dominant member.

The failures of these fits are disappointing. The
best fits have been obtained by fitting coefficients
of Eq. (4). The motivation of the present work was
not only to test a new model in a new context, but
also, because of the unique feature, among others,
that there are no parameters in this model, to
understand the origin of these coefficients, The
hole at the center of the Dalitz plot and the low-
mass mm enhancement are gross features that are
successfully predicted by essentially any dual
model parametrization, but dual models have
given no understanding of the relative strengths
of the final-state resonances. In particular, our
present results draw renewed interest to a long-
standing mystery of why the p meson is not pro-
duced with normal strength in Pn- (2w )w'.
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