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The study of Regge and multi-Regge processes can be carried out either in terms of the
rapidity or the missing-mass variables. In theoretical studies it is more advantageous to use
the rapidity variable, while in practice missing masses are easier to measure. The asymp-
totic relations between the two variables, known in theory, are not reliable at presently
available energies. We derive here a formula that provides ~. statistical relation between the
two variables, reliable even at present energies, and demonstrate its validity by applying it
to a sample of events in which both the missing-mass and the rapidity variables are known.

Regge and multi-Regge processes may be studied
in terms of either the rapidity-gap variables or
the missing-mass variables. Consider for ex-
ample the process depicted in Fig. 1(a). When the
gap 6 is large, we may either analyze the process
in terms of b,—using it as the asymptotic variable
in the Regge expansion, studying the differential
cross section der/da as a function of h, and so
on —or we may equally well carry out the analysis
in terms of the variable s!M~', where s is the
overall c.m. energy squared and 3f~ is the "miss-
ing" mass recoiling against particle a in the final
state. Similar considerations apply to multi-
Regge reactions. For example, the double-Regge
reaction of Fig. 1(c) may be tiescribed either in
terms of 6, and g or in terms of s/ms' and s/m„',
where M~ and MA are the missing masses recoil-
ing against a and b respectively in the final state.

The coexistence of the two sets of variables is
due to the fact that each has certain merits the
other does not have. For example, the final-par-
ticle phase space is easy to imagine f Figs. 1(a),
l(b), 1(c)] in terms of the rapidity variable which
exploits the dynamical feature that most of the
interesting physics is in the longitudinal direction.
The rapidity-gap variables have the further
advantage that they are local —for example, in the
double-Regge process of Fig. 1(c), each Reggeon
is described by the corresponding 6, in contrast
to the overlapping missing-mass variables s/M
and s/Ms' which obscure the factorization property
of the multi-Regge pole expansion. Next, the
rapidity gaps 6, and g of Fig. 1(c) (the simplest
example of a multi-Regge process) satisfy an ad-
ditive kinematical constraint which is easy to
visualize and implement, ' whereas the equivalent
constraints in the variables M„' and M~' are com-
plicated. ' On the other hand, if we switch our
attention from the contemplation of these processes

to the measurement of their cross sections, the
situation is reversed —the rapidity gaps are im-
possible to measure except for fitted events, ow-
ing to undetectable neutrals in the final state,
whereas the missing masses can be determined
free of this ambiguity.

We have presented the above facts to motivate
the need for a formula that connects the two sets
of variables so that using it we can pass freely
from one to the other, therefore exploiting the
merits of both. We know in theory that the two
sets of variables are equivalent in the asyv~ptotic
Regge limit —for example, in the case of Fig. 1(a)
we know that

d, ~ ln(s/Ms')+C,

where C~ is a function of certain transverse mo-
menta. In the Regge limit, as 6- ~, and the
transverse momenta are frozen, one can ignore
C~. In practice, when the overall rapidity space
is at most 8 units long the omission of C„could
be unwarranted. In what follows we will derive a
formula for the average value of C~ based on a
certain assumed average behavior in the trans-
verse direction. We will then subject this formula
to a quantitative test.

Let us begin with the formula for the c.m. en-
ergy squared of two particles with masses M, and

M~:

s„™,'+M, +20, lz, cosh(J, —y, ) —2 pi, ~ p~,
&2 ~

S12 large

where p« is the transverse momentum, y; is the
rapidity, and p, ; =(M, '+ (P~; ~')' -, the transverse
mass of particle i Turning to. Fig. 1(a) we see that
if we treat the cluster 8 as a single object of mass
MB and call y~ the location of its center of mass,
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the final c.m. energy squared is

s —pa' pB~ p a'~ pa'MB~ B

if p~ =M~ for large M~. To calculate y~ we use
the definition of center of mass, measuring all
momenta in the rest frame of particle ¹

Ms sinh(y„- ys) = —,Ms e"& '&

N-l

Q pll '

(3)

If particle 1 is well separated from particle 2 in
rapidity, so that e'& '»&e'& '2, me can approxi-
mate' the sum by the leading term P)~y to get

To examine the reliability of Eq. (7), we ana-
lyzed a sample of events of the reaction n p
—v w'v P at 205 GeV/c. ' The final-particle mo-
menta were determined by a 4-constraint fit, and
the particles were labeled n, P, y, and ~ in the
order of increasing rapidity. The events satisfy
e =proton and 6 = m .

Plotted in Fig. 2(a} is the measured rapidity
gap R„& between a and P, versus ln(s/M, „') for
each event. The straight line of unit slope and
intercept = —1 represents our expectation based
on Eq. (7}. The scatter of points about this line
reflects the statistical fluctuations around the as-
sumed mean behavior, and reminds us that Eq.
(7) is to be used not event by event but over an
ensemble.

While it is apparent from Fig. 2(a) that Eq. (7)

M~ e'& '3 = p, e'& '~ .

Inserting this into Eq. (3) gives

(5)

Assuming that on the average (p~}= 350 MeV/c
for all particles, and that particle I is a pion (on
the basis of the preponderance of pions among
produced particles), we get

s (y.,}A=in —, +ln

m.6—
a so 6

4

where ( g, ) =(M, '+(p~}')'~'. If particle a is a
pion the second term (the average value of C~)
vanishes, while if a is a proton ln(( y, ,)/( g~))
= —1. Clearly the latter constant is not ignorable
compared to the rapidity gaps currently being
studied.

The gap in Fig. 1(b) may be described by Eq. (7),
after we perform the substitutions g' —b' and
A —B. The double-Hegge reaction of Fig. 1(c) is
described by the repeated application of Eq. (7),
once for each gap.
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FIG. 1. Rapidity diagram for (a) particle b dissocia-
tion, (b) particle a dissociation, and (c) double-Pomeron
exchange (DPE).
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FIG. 2. (a) Measured rapidity gap R„&between the
proton and the nearest pion vs ln(s/hf 3,2). (b) Measured
rapidity gap R& & bebveen the fast ~ and the nearest
71' vs ln(sW&„+„-, ). The lines with the unit slope are
our expectations from formula (7). The broken lines
represent the cuts corresponding to &0=2. (c) 'Mea-
sured" rapidity gap R„& vs ln(s/M» ) {p is the fake 71 ).
(d) "Measured" rapidity gap R&~ vs ln(s/M»+~, )
(y is the fake 7t ). (e) R~& vs R&&. (f) ln(s/M3„2) vs
ln(s/Mp ~+ ~go )
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TABLE I. Comparison of Eq. (7) with experimental data of Ref. 4.

Pr
lection

Miss lng-mass
formula for
rapidity gap

b, p= 3

Measured rapidity
gap (R~& and R s)

Dp=3

"Measured"
rapidity gap
for faked 7(P

g~ andRsp)
4p —2 b, p= 3

dissociation
p dissociation
double-Pomeron
exchange (DPE)

94
48

95
46

12

91
37

107
79

98
51

is in qualitative agreement with experiment, we
subject it to a quantitative test in the following
manner. We select all events in which the rapidity
gap next to the proton exceeds some g, first on
the basis of the directly measured gaps B &

and

then on the basis of missing mass, selecting those
events which, according to Eq. (7), have a gap
exceeding g. In Fig. 1(a), the two modes of selec-
tion correspond to picking events above the line
R &

= + and to the right of the line In(s/M„') = + + 1,
respectively. The former selection yields 95
events and the latter yields 94 events, for +=2.
These results and the corresponding ones for
=3 are summarized in Table I under "m dis-
sociation. "

The results of a similar analysis of the gap next
to the fast w [Fig. 2(b)] are contained in Table I
under "proton dis soc iation. "

We now consider the gaps next to the slow pro-
ton (a) and the fast s (&) simultaneously. In Fig.
2(e) are plotted the measured gaps R~a and Rzz,
and in Fig. 2(f) are shown the values of ln(s/M„')
and In(s/M~„+, -„„„a}for each event. We selected
events in which both gaps exceeded —first from
Fig. 2(e), and then from Fig. 2(f), using Eq. (7).
The results for =2 and 3 are summarized in
Table I under "double-Pomeron exchange (DPE)".

We wish to emphasize two points here. Firstly,
we use the terms m dissociation, proton dissocia-
tion, and DPE only to label the various selections
and do not imply that for some dynamical reason
the conditions 6& + mark the onset of such pro-
cesses. Secondly, the comparisons we have per-
formed so far only confirm the integrated form of
Eq. (7)—to test it differentially one needs to bin
the events in the rapidity-gap variable, comparing
numbers within each bin. Unfortunately the pres-
ent statistics do not permit a meaningful com-
parison of the latter type.

In a sample such as ours, where all the rapid-

ities are determined by the 4-constraint fit, Eq.
(7) provides the connection between an analysis
based on rapidity gaps and one based on "missing"
masses. While such a connection is interesting
in itself, the real utility of Eq. (7) lies in unfitted
reactions, where it allows the (indirect} mea-
surement of the two gaps closest to the extreme
particles —if one assumes that the mornenta of
the latter are measurable.

To illustrate this fact, we pretended that the
pion (P) next to the proton is neutral. If we select
events with a gap next to the proton larger than
b directly on the basis of just the "observable"
gap R

&
we overestimate, whereas the indirect

determination of the gap on the basis of the miss-
ing mass recoiling across the proton was seen
to be in fair agreement with the analysis based
on R„a [see Fig. 2(c)]. A similar consideration
applies to the proton dissociation events [Fig.
2(d)] if we pretend that the pion (y) next to the
fast w (5) is unobservable. The results of the
selection based on the "observable" gaps (R, z
and Raq) are summarized in Table I and we find

that substantial overestimation can result if one
tries to measure rapidity gaps directly.

In conclusion, we have presented here a formula
that provides a statistical relation between the
rapidity-gap and missing-mass variables and have
demonstrated its validity (in the integrated sense).
We have shown that for an important class of
(unfitted) events the indirect determination of
rapidity gaps from the missing masses using this
formula is more rel iable than any direct gap mea-
surement that ignores possible neutrals.
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