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Data are presented on the inclusive reaction K p ~ AX at 7.3 GeV/c and compared with recent
results at 3.93 and 14.3 GeV/c. The s dependence of the polarization can be qualitatively understood
in the framework of triple-Regge phenomenology.

I. INTRODUCTION

In this paper a study is presented on the polar-
ization of the A produced in the reaction

K P-A+ anything

at 7.3 GeV/c. The weak decay of the A, and the
subsequent measurement of polarization, afford
one the opportunity to investigate spin-dependent
effects in an inclusive reaction. The data are
compared with recent results on reaction (1) at
3.93 and 14.3 GeV/c. ' Several interesting regular-
ities are found. In particular, essentially energy-
independent u-channel polarization is observed.
This effect and the much stronger energy depen-
dence of the t-channel polarization are qualitatively
understood through the triple-Regge formalism.

In Sec. II the data sample is discussed; the ex-
perimental results on cross sections and polariza-
tion are presented in Sec. III. In Sec. IV we dis-
cuss polarization effects within the triple-Regge
framework and make comparisons with the data
in Sec. V. Section VI is reserved for a summary
and conclusions.

II. DATA SAMPLE

Our data result from a 600000-picture exposure
of 7.3-GeV/c incident K mesons in the BNL
80-in. hydrogen-filled bubble chamber. All
events were measured on the BNI. HPD and pro-
cessed through the BNL version of TVGP-SQUAW.

A total of 22 000 events were obtained which fit
at least one kinematic A -type hypothesis (including
missing mass). All Ao-Ko ambiguities (which
amount to &7/~ of the total number of A' events)
were decided in favor of the A' hypothesis. This
procedure was justified in that the unfitted "~'"m
effective mass spectra, which resulted from
the interchange of P- "~'" in the A-P~ decay,
revealed only a very small (-120 events) signal
for contamination from the decay R'- m'~ . All

III. EXPERIMENTAL RESULTS

Table I gives the distribution of the single-parti-
cle invariant cross section

f(x}= Eg dc
P;„*,. dxdP ' (2)

as a function of the Feynman scaling variable
x = Pg~~/P, *„,. In Fig. 1 and in Table I the data are
compared with recent results at 3.9 and 14.3
GeV/c. As expected, ' no scaling behavior is ob-
served in any region of x. However, the shape of
the 7.3-GeV/c f(x) distribution, while different
from that at 3.9 GeV/c, is very similar to that at
14.3 GeV/c. In fact, as shown in Table I the ratio
R(x) of the values of f(x) between 7.3 and 14.3
GeV/c is essentially constant at a value of -1.6
for -0.8 «x «0.4. This ratio (see Table I) for re-
gions of x corresponding to the target and beam
fragmentation exhibits a slightly smaller value,
which implies a less steep energy dependence than
in the central region.

Figure 2 shows the polarization of the A', PA,
plotted as a function of -t~ ~, the momentum

distributions presented in this paper have been
corrected for scanning and measuring inefficien-
cies on a topology-by-topology basis. Geometrical
corrections for A" s which decay either too close
to the primary vertex (projected length less than
1 cm) or outside the fiducial volume have also
been included. Finally, all cross sections contain
corrections for the unobserved A —n~' decay mode.
The total corrected number of events was divided
by the microbarn equivalent, as determined by
the number of T decays in the data sample, and
resulted in a cross section of 3.08+0.05 mb for
reaction (1}, where the error is statistical. The
estimated uncertainty in the 7 count and in the
various inefficiency corrections results in an ap-
proximate 7%%u~ systematic uncertainty in this num-
ber and all cross sections quoted in this paper. '
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TABLE I. Values of f{x) for different intervals of x.

x interval

-1.0 to —0.9
-0.9 to -0.8
-0.8 to -0.7
-0.7 to —0.6
-0.6 to -0.5
-0.5 to -0.4

f(x) at 7.3 GeV/c
(pb)

764 +43
1479 + 59

1760 ~63
1812 +60

1824+ 58
1808 +56

f{x) at 7.3 GeV/c
( b)

1121+36

1785 +44

1816+40

f(x) at 14.3 GeV/c (Ref. 1)
(I b)

850 ~35

1120 + 40

1165+42

f(x)(„
f (&& I ~43

1.32+ 0.07

1.59+ 0.07

1.56 ~ 0.07

0 4
-0.3

to -0.3
to -0.2

1783 ~ 52
1689 ~ 50

1735 ~35 1055 ~ 40 1.64+ 0.07

-0.2 to -0.1
-0.1 to —0.0

0.0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1.0

1568 +47
1581+45

1606+46
1569 +46

1581 ~48
1404 ~46

1173+43
912 + 40

609 +34
334 +26
227 +22

51 +10

1575 +33

1588 +33

1492 ~33

1043 ~ 29

471 +21

139 +12

970 ~ 35

980 ~35

940 +38

725 ~ 35

332 ~20

76+10

1.62+ 0.07

1.62+ 0.07

1.59 ~ 0.07

1.44 + 0.08

1.42 + 0.11

1.83 ~ 0.30

5000—
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transfer between the target proton and the out-
going A. The polarization is obtained from

3
PA = —(cos8),

Q

where (cos8) is the moment (weighted over events)
of the cosine of the angle between the normal to
the production plane defined by
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FIG. 1. Invariant cross section plotted as function of
x for the data at 3.93 and 14.3 GeV/e of Borg et al.
(Ref. 1) along with that of the present experiment.
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FIG. 2. Distribution of the A polarization as a function
of the momentum transfer between the target proton and
A.



1012 QHUNQ, EISNER, PROTOPQP E SCU, AND F IE LD

z = 0.647. As seen in Fig. 2 the polarization is
small and positive at low -t, changes sign at
-t = 2.0 GeV', and becomes large and negative in
the large-(-t) region. In Fig. 3 the polarization as
a function of x is compared with that determined
at 3.9 and 14.3 GeV/c. For x& -0.5 the polariza-
tion, significantly positive at 3.9 GeV/c, is ob-
served to diminish in intensity with increasing
energy; it is consistent with zero in the 7.3-GeV/c
data. The region, x&0, of forward A' production
exhibits values of the polarization which are es-
sentially independent of energy. This latter point
is more convincingly demonstrated in Fig. 4, in
which the polarization in the present data is com-
pared, as a function of u, with that at 14.3 GeV/c.
Except in the first u bin (-2o disagreement) the
polarization distributions are observed to be re-
markably similar up to u= 4.5 GeV'.

The polarization as a function of u for different
slices of the X mass squared (M') is shown in
Fig. 5 for the 7.3-GeV/c data. The negative polar-
ization in each bin of u is observed to be built up
from negative polarizations from each region of
M .

0.8—

I I I I ) I t I I ( I f I 1 j I l I

~ 3.93 GeV/c
7.3 GeV/c
14.3 Ge V/c

0.4—

-04—
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I I I } I i I I I ( i I I ( i I I I J~
0 0.5 I.O-0.5

one has

IIG. 3. A polarization as a function of x for the data
at 3.93 and 14.3 GeV/c of Borg &t al. (Ref. 1) along with
that of the present experiment.

IV. POLARIZATION IN THE TRIPLE-REGGE FORMALISM

e(s, t, M')—= s, (s, t, M') (3a)

The generalized optical theorem of Mueller"
relates the squares of the s-channel helicity am-
plitudes Fq~. ~ ~ (s, t, M') for the inclusive pro-
cess a+ b-A+ X to a discontinuity of the forward
3-to-3 amplitude A„A-,»(s, t, M') In part. ieular,
defining the invariant cross section

1
o(s, t, M' =

16ws(2s, + 1)(2so + 1)

x ),~. ), g~ s, t, M
a 1X

(3b)

where s, and s, are the spins of particles a and b,
respectively. By the use of the generalized optical
theorem, (3b) becomes (see Fig. 6)

o(s, t, M2)=, Q Discu2(X Xokp1A(s, t, M )1A.,X((Xg), (3c)

which yields, in the triple-Regge region (large s/M ', large M'}, the usual triple-Regge formula,

(4a)

where

(4b)

The term g, ,,(t) denotes the triple-Regge coupling of the three Reggeons i, j, and k where Regge poles t

and j with trajectories o, (t) and a, (t), respectively. , are exchanged and the Regge pole k with intercept
a, (0) controls the Reggeon-particle total cross section (see Fig. 6). The residue function P„- ~ (t) [P„„(0)]
is the Regge coupling to the Xa [t(f(] channel and $(t} is the usual Regge signature factor.

The decay A polarization is given by'
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PA(s, t, M')v(s, t,M')=, , p 2Im[F», .~ „(s,t, M')F"„&, ), .~ (s, t, M')],
16ws 2s& + 1) 2s() + 1)

which again by the use of the generalized optical theorem becomes'

(5a)

PA(s, t, M')v(s, t, M') = g 1m[Disc„2 ( I(.,I(., ——,
' IA(s, t, M')

I
I(.,I(., + —,') J .

8ws 2s, + 1 (2s, + 1 (5b)

This formula, in contrast to the unpolarized in-
variant cross section (3c), involves the forward
3-3 amplitude when initial and final A helicities
are not the same. In the triple-Regge region (5b)
becomes

) „(s, (,»*»(., ~ M*) -' p ~...(()('=,}"'""~"'
S

krak

(M 2
)

((»(0)
y

where

P;„t = 1

8v(2s, + 1)(2s, + 1)

(iv) At fixed x, P„(s, t, x)v(s, t, x) behaves like
s ))Io) '. (If 1 is a. Pomeron, then P„v scales; if
k is a normal meson Reggeon [n„(0)= 2], then
PAv~ 1/vs ).'

TOTAL K p A+ X 7.3 Gev/c

Q.O —MM —I.02

x Q p'„)„(t)p' „(t)lm[g;(t)$p(t)]

x g;»(t)P'~, ~,(0)lm $,(0) . (6b)

I I I

I.O- MM —2.02

This formula is analogous to the polarization for-
mula for two-body scattering (except PA is also a
function of M') and has the following properties:

(i) P(,(s, t, M') = 0 if Regge pole t equals Regge
pole j or if they have the same phase.

(ii) PA(s, t, M') arises from the interference be-
tween helicity-flip and -nonf lip amplitudes.

(iii) Parity implies P~ = 0 if t is a, natural-parity
Regge pole and j is an unnatural-parity Regge
pole or vice versa. '

Z.'

O
I—

f4

Ct:

C)
CL

2.0 —MM —3.02

I

[
I

3.0 —MM —4.02

I

I

I

4.0- MM —5.02

I

I I I

I

I

I I I I
I I I I I I I I I I I I I I (

I I

7.3 Gev/c
~ l4. 3 Gev/c

0.0
I

1.0 2.0 3.0
U(Gev2 )

5.0 —IVIM —6.0

4.0 5.0

l I
I I

I
I I

(

I I

6.0 —MM -70

I
I

I ( (

I I

7.0 —MM -8.0

I I I I I I I I I I I I I I I I I I I I

I 2 3 4
U(Gev }

FIG. 4. Comparison between 7.3 and 14.3 GeV/c of the
A polarization as a function of u, the momentum transfer
between the incident K and the A.
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FIG. 5. A polarization as a function of u for different
intervals of the mass squared of X.
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V. COMPARISON W'ITH THE DATA

We now attempt to understand the experimental
results for E P- AX for x near + I in terms of
the triple-Regge formalism of Sec. IV. '

A. K p~AL (nearx= —1)

For this case particle a is a proton and Eq. (8b)
for the A polarization becomes'

&& 1m[ g;(t) (,(t)*]g,»(t)P (0)Im $~(0) . (7)

The leading triple-Regge terms responsible for A

polarization in K p- AX (small-t region} are thus
of the form K**K*R,"where R = f, &y, p, A„f',
or Q (see Fig. 7)." Note that terms of the form
K**K*Pvanish by generalized C parity [i.e. ,

gx**x*~(t}= 0 assuming that the Pomeron P is an
SU(3) singlet with C = +1]. This implies that P~c
ha. s no scaling term" [see property (iv) above] and
behaves at fixed x like

P„(s, t, x)o(s, t, x) = C(x, t)/Ms+A(x, t)/s. (8a)

The invariant cross section has both scaling and
nonscaling terms so that at fixed x

o(s, t, x) = c(x, t) + b(x, t)/v s + a(x, t)/s, (8b)

which implies that PA(s, t, x) = PAo/o decreases as
s increases.

Therefore, in agreement with our experimental
observations, PA(s, t, x) (near x= -1) is expected
to decrease with increasing s.

B. K p ~ AX ( near x =1)

The near-constant A polarization seen in K p
—AXnear x = 1 can be understood once it is
realized that the RRP triple-Regge terms are
small relative to RRR terms in the energy region
under consideration (4-14 GeV/c). Thus both the

polarized cross section PAc(s, t, x) and the invari-
ant cross section o(x, t, x) decrease at fixed x
like I/Ws in this region, which results in P,~(s, I, x)
being approximately constant. " A I/vs dependence
of the unpolarized cross section is consistent with
the experimentally observed energy dependence
for large positive x (i.e. , R(x) for x& 0.4 is con-
sistent with [s(14.3 GeV/c)]"'/[s(7. 3 GeV/c)] "'
= 1.4 (see Table I)).

The small RRP term inE. P-AX in this energy
range for large positive x can be inferred from a
small invariant cross section for the reaction
E'p- AX. This follows since the RRP term in
R P- AX is equal to the corresponding term in
K'P —AX by crossing (see Fig. 8). In addition,
since the Reggeon-particle scattering amplitude
for N;p-N, p is exotic its imaginary part vanishes
for Reggeon exchange, and thus E'P-AX has no

RRR term and its invariant cross section near
x = + 1 is given entirely by the RRP term. Data
show" that the invariant cross section for K' f
-AX is substantially' smaller than R p-AX for
P,,„~14 GeV/e, which then implies a small RRP

b, Xb

a

=DISC

M b, )b

FIG. 6. Illustrates the generalized optical-theorem
formula for the unpolarized invariant inclusive cross
section for a +b —A+X.

FIG. 7. Shows the leading triple-Hegge term responsi-
ble for the A polarization in the inclusive reaction
K P —AX, where R = f, ~, p, A&, f', or IIt). The term
K**K*&vanishes by generalized C parity fassuming P
is an SU(3) singlet with C =+1].
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term and a large RRR term in the latter reaction
and, hence, the prediction of a constant I'A.

The smallness of the RRP term can also be
understood from the experimental knowledge that
the "anything" in (1) is predominantly pions in the
energy region under consideration [i.e., K P-A
+ pions dominates reaction (1)j. Duality implies
that the Reggeon-particle (NP) amplitude with pions
intermediate in the direct cha.nnel (i.e. , annihila-
tion channel) is dual to Regge exchange in the
crossed channel. " Thus the RRR term should
dominate and the RRP is expected to be small in
this region. "

't( t'

K-

CROSSING

K'

]i
K- K'

FIG. 8. Shows that the triple-Regge terms N& N&P
for the process K P- AX are related by crossing to
the N&NJP terms for the process K+p —AX. The latter
reaction has an exotic Reggeon-particle scattering am-
plitude, which via duality implies no N;N&R triple-
Regge term.

VI. CONCLUSION

In two-body exclusive processes, polarization
and density-matrix data have been crucial in test-
ing and refining our theoretical models. In in-
clusive processes, measurement of observables
other than just the invariant cross section may
well be of equal importance. We have seen that
the A polarization data on the reaction K p- AX
exhibit energy-dependent features which can be
qualitatively understood in the framework of
triple-Regge phenomenology. The large magnitude
(= 40%) of the A polarization for the baryon-ex-
change process (x near 1.0) compared to the

smaller A polarization for the meson-exchange
process (x near -1.0) is not easily explained, "
however. Further inclusive baryon- exchange
polarization experiments should be done (especial-
ly at higher energies) to see if the large effects
found in this experiment persist.
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