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Recently, the propagation of information through quantum many-body systems, developed to study
quantum chaos, have found many applications from black holes to disordered spin systems. Among other
quantitative tools, Krylov complexity has been explored as a diagnostic tool for information scrambling in
quantum many-body systems. We introduce a universal limit to the growth of the Krylov complexity in
dissipative open quantum systems by utilizing the uncertainty relation for non-Hermitian operators. We
also present the analytical results of Krylov complexity for characteristic behavior of Lanczos coefficients
in dissipative systems. The validity of these results is demonstrated by explicit study of transverse-field
Ising model under dissipative effects.
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Introduction. In quantum systems, interactions propa-
gate the initially localized information across the exponen-
tially large degrees of freedom [1–4]. This phenomenon,
known as quantum scrambling, is crucial for addressing
diverse unresolved questions in physics, such as the fast-
scrambling conjecture for black holes [5,6], peculiarities in
strange metal behavior [7,8], and phenomena related to
many-body localization [9,10]. Central to understanding
quantum scrambling is the concept of out-of-time-order
correlators (OTOC) [1,11] that are used to identify an
analog of the Lyapunov exponent for systems in the semi-
classical limit or having a large number of local degree of
freedom [12,13], thereby providing a connection with
classical chaos. This “quantum Lyapunov exponent” exhib-
its a universal upper bound, attained by black holes [14,15]
and intertwined with the eigenstate thermalization hypo-
thesis [16,17].
In this letter, we consider another quantitative measure

of quantum scrambling—Krylov complexity [18–20].
Krylov complexity (K-complexity) is a measure of the
delocalization of a local intial operator evolving under
Heisenberg evolution with respect to the Hamiltonian
[18–23]. It is conjectured to grow at most exponentially
in nonintegrable systems [18] and can be used to extract the

Lyapunov exponent, thereby, establishing a connection
with OTOC [24,25]. In isolated systems, a fundamental
and ultimate limit to the growth of the K-complexity is
introduced by formulating a Robertson uncertainty relation,
involving the K-complexity operator and the Liouvillian,
as generator of time evolution [26]. Such a bound is
saturated by quantum systems in which the Liouvillian
satisfies SU(2), SLð2;RÞ and the Heisenberg and Weyl
algebra (HW) [27]. These algebras arises naturally in
certain quantum chaotic systems, such as the SYK model,
but other chaotic systems do not maximize the growth of
K-complexity.
Recently, the study of K-complexity has been extended

to open quantum systems in which the operator growth
is governed by the Lindblad master equation [28–33]. In
such systems, the information is generally lost to the
environment which is reflected by the late time decay of
K-complexity. In this letter, we propose a fundamental
speed limit to the growth of K-complexity in open quantum
systems interacting with a Markovian bath. Since the
operator evolution in open quantum systems is nonunitary,
we employ the uncertainty relation for non-Hermitian
operators, thereby, obtaining a bound which depends on
the probability decay. The probability describes the loss of
information to the environment, and the bound reduces to
the closed system case in the absence of this term. In
addition, we also give the analytical results of the growth of
K-complexity in presence of purely imaginary diagonal
Lanczos coefficients, which is a characteristics of open
system as discussed in [29].
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Brief survey of K-complexity in closed systems. In an
isolated system, the evolution of any operator O0 under
a time-independent Hamiltonian H is described by the
Heisenberg equation of motion,

OðtÞ ¼ eitHO0e−itH ¼ eiLctO0 ¼
X∞
n¼0

ðitÞn
n!

Ln
cO0; ð1Þ

where Lc is Hermitian Liouvillian superoperator given by
Lc ¼ ½H; •�. The operator OðtÞ can be expressed as a span
of the nested commutators with the initial operator due to
the repeated action of the Liouvillian as shown in Eq. (1).
One constructs an orthonormal basis fjOnÞgK−1n¼0 from this
nested span of commutators, by choosing a certain scalar
product ð·j·Þ on operator space. This orthogonal basis is
known as the Krylov basis and is achieved with the Lanczos
algorithm—a three term recursive version of the Gram-
Schmidt orthogonalization method.
The dimension of Krylov space K obeys a bound

K ≤ D2 −Dþ 1, where D is the dimension of the state
Hilbert space [20]. In the orthonormal basis fjOnÞg,
the Liouvillian takes the tridiagonal form LcjOnÞ ¼
bnþ1jOnþ1Þ þ bnjOn), where bn are referred to as
Lanczos coefficients. The values bn are generated during
the iterative steps of the orthogonalization process, signi-
fying the characteristics of the scrambling process and
serving as an indicator of chaos.
Once, the orthonormal basis is established, we can write

the expansion of the operator OðtÞ as

OðtÞ ¼
XK−1
n¼0

inϕnðtÞjOnÞ ð2Þ

The amplitudes ϕnðtÞ evolve according to the recursion
relation ∂tϕnðtÞ ¼ bn−1ϕn−1ðtÞ − bnϕnþ1ðtÞ with the initial
conditions ϕnð0Þ ¼ δn;0. The Lanczos coefficients bn can
be thought of as hopping amplitudes for the initial operator
O0 localized at the initial site to explore the Krylov chain.
The increase in support of operator away from the origin in
Krylov chain reflects the growth of complexity as higher
Krylov basis vectors are generated. To quantify this, one
defines the average position of the operator in Krylov
chain—called the Krylov complexity as

CðtÞ ¼ ðOðtÞjKjOðtÞÞ ¼
XK−1
n¼0

njϕnðtÞj2 ð3Þ

where K ¼ P
K−1
n¼0 njOnÞðOnj is position operator in the

Krylov chain. The growth of Krylov complexity obeys an
upper bound given by,

j∂tCðtÞj ≤ 2b1ΔK; ð4Þ

where the dispersion of the position operator K is defined
as ðΔKÞ2 ¼ hK2i − hKi2. One can define a characteristic

timescale τK ¼ ΔK=j∂tCðtÞ to write an analog of the
Mandelstam-Tamm bound as τKb1 ≥ 1=2.

K-complexity in open-quantum systems. In open systems
where the system interacts with an environment with weak
coupling (Markovian bath), the dynamics of any operator is
described by the Lindblad master equation

Lo½•� ¼ ½H; •� − i
X
k

�
L†
k • Lk −

1

2

�
L†
kLk; •

�� ð5Þ

where the operators fLkg are the Lindblad or the jump
operators, which describe the nature of the interaction
between the system and the environment. Since the Krylov
basis fLn

oO0gK−1n¼0 constructed from such a evolution in
non-Hermitian, the usual Lanczos algorithm fails to ortho-
normalize them. Therefore, one resorts to alternatives such
as Arnoldi or bi-Lanczos algorithms that are applicable to
non-Hermitian cases. In particular, the bi-Lanczos algo-
rithm generates a biorthonormal basis fjpnÞ; jqnÞgK−1n¼0

using the span fLn
oO0gK−1n¼0 and fðLoÞ†O0gK−1n¼0 . These basis

vectors obey the orthonormality relation ðqmjpnÞ ¼ δmn. In
such a basis, the non-Hermitian Lindbladian Lo can be
written in a tridiagonal form

cjþ1jpjþ1Þ ¼ LojpjÞ − ajjpjÞ − bjjpj−1Þ ð6Þ

b�jþ1jqjþ1Þ ¼ L†
ojqjÞ − a�j jqjÞ − c�j jqj−1Þ: ð7Þ

The bra and ket versions of the time-evolved operator
OðtÞ can, therefore, be expanded as

jOðtÞi ¼
X
n

inϕnðtÞjpnÞ;

hOðtÞj ¼
X
n

ð−iÞnψ�
nðtÞðqnj: ð8Þ

The amplitudes ϕnðtÞ and ψnðtÞ evolve according to the
recursion relation

ϕ̇nðtÞ ¼ ianϕn − bnþ1ϕnþ1 þ cnϕn−1

ψ̇�
nðtÞ ¼ −ia�nψ�

n − c�nþ1ψ
�
nþ1 þ b�nψ�

n−1 ð9Þ

with the initial conditions ϕnð0Þ ¼ ψnð0Þ ¼ δn;0. The
numerical investigation in Ref. [29] shows that in open-
quantum systems, the coefficients an, bn and cn obeys bn ¼
cn ¼ jbnj and an ¼ ijanj, therefore, in what follows, we
assume this to be valid. With this, the recursion relation for
the amplitudes becomes ϕ̇nðtÞ ¼ −janjϕn − jbnþ1jϕnþ1 þ
jbnjϕn−1 and ψnðtÞ ¼ ϕnðtÞ. Therefore, in open systems,
in addition to hopping amplitude bn, there exist addi-
tional on site potentials −janj (See Fig. 1). The purely
imaginary nature of these on-site potentials result in decay
of K-complexity showing the loss of information to
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environment. The K-complexity in analogy to isolated
system case can be treated as

CðtÞ ¼
XK−1
n¼0

nψ�
nðtÞϕnðtÞ ¼

XK−1
n¼0

njϕnðtÞj2: ð10Þ

and also define the complexity operator in using the
biorthogonal basis jpnÞ; jqn) as,

K ¼
XK−1
n¼1

njpnÞðqnj: ð11Þ

Thermodynamic limit. In the continuum limit of n, we can
write the recursion relation for ϕnðtÞ as

∂tϕðx; tÞ ¼ −aðxÞϕðx; tÞ − ∂xbðxÞ · ϕðx; tÞ
− 2bðxÞ · ∂xϕðx; tÞ: ð12Þ

We can make further simplification by making the sub-
stitution bðxÞ∂x ¼ ∂y and χðy; tÞ ¼ ffiffiffiffiffiffiffiffiffi

bðxÞp
ϕðx; tÞ which

leads to

2∂yχyðy; tÞ þ ∂tχðy; tÞ þ ãðyÞχðy; tÞ ¼ 0 ð13Þ

where ãðyÞ ¼ aðxðyÞÞ. The initial condition requires
jϕðx; 0Þj2 ¼ δðxÞ which can also be translated to
jχðy; 0Þj2 ¼ bðxÞδðxÞ. The Eq. (13) belongs to the generic
family of first-order partial differential equations

f∂uξðu; vÞ þ g∂vξðu; vÞ þ qðu; vÞξðu; vÞ ¼ Fðu; vÞ ð14Þ

where f, g are constants. The PDE (14) can be solved using
suitable choice of characteristic curves [34], therefore,

analytical result for the wave function ϕðx; tÞ can be found.
The K-complexity CðtÞ and total probability PðtÞ defined
in continuum as

CðtÞ ¼
Z

dxxjϕðx; tÞj2; PðtÞ ¼
Z

dxjϕðx; tÞj2: ð15Þ

For few common choices of aðxÞ and bðxÞ, the analytical
results are [35] listed in Eq. (16).
The solution depicted in Fig. 2 illustrates that, at late

times, both the K-complexity and total probability exhibit
exponential decay. The above choices are inspired by the
numerical results of the growth of Lanczos coefficients in
open systems and these capture various regimes of Lanczos
coefficients [29]. In thermodynamic limit, for open systems
with boundary dephasing, bn will go through asymptotic
linear growth [29] while an coefficients will not start
growing at all. Hence, it will reduce to closed system
dynamics and the corresponding speed limit holds. For bulk
dephasing, an grows from the beginning and the growth
of complexity is similar to the first case we considered
in Eq. (16).
In finite size system, the growth in bn is followed by a

saturation, and the descent, while the growth in an is
followed by a saturation without showing any descent.
The descent of bn features fluctuations which is large in
integrable models compared to chaotic models. This results
in suppression of saturation value in integrable model due
to localization in the Krylov chain [36].

CðtÞ ¼
8<
:

1
β

�
e2βt − 1

�
exp

	
2α
β

��
1 − e2βt

�þ 5t
�


bðxÞ ¼ βxþ 1 & aðxÞ ¼ αx;

1
β

�
e2βt − 1

�
e−2αt bðxÞ ¼ βxþ 1 & aðxÞ ¼ α:

PðtÞ ¼
(
exp

	
2α
β

��
1 − e−2βt

�þ 5t
�


bðxÞ ¼ βxþ 1 & aðxÞ ¼ αx;

e−2αt bðxÞ ¼ βxþ 1 & aðxÞ ¼ α:
ð16Þ

FIG. 1. Schematic of Krylov chain for dissipative open systems
in which hopping amplitudes between the sites are bn coefficients
and on-site potential ian.

FIG. 2. The analytic results of K-complexity CðtÞ and the total
probability PðtÞ for two different choices (labeled as 1 and 2) of
function aðxÞ and bðxÞ given in Eq. (16). The parameter ðα; βÞ for
three choices are fð0.01; 2Þ; ð3; 2Þg, respectively. In both cases,
the complexity exponentially decays to zeros at late times.
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Dispersion bound on K-complexity in open-systems. As
we have seen, the operator evolution in open quantum
systems is nonunitary, therefore, to consider the growth of
K-complexity, we consider the uncertainty relation for non-
Hermitian operators. Apart from this, to consider the effect
of the probability decay resulting from the non-Hermiticity
explicitly, we primarily frame the relation in terms of the
unnormalized decaying complexity before recasting it in
terms of the renormalized measures. We consider the
uncertainty relation for non-Hermitian operators A and B
in a d-dimensional Hilbert space [37,38],

hðΔAÞ2ihðΔBÞ2i ≥ jhA†Bi − hA†ihBij2 ð17Þ

where the variance of a non-Hermitian operator O is
defined as [38]

hðΔOÞ2i≡ hO†Oi − hO†ihOi: ð18Þ

Using A ¼ K̃† ≡K=PðtÞ and B ¼ L̃ ¼ L=PðtÞ—
normalized version of operators, and using the definitions
of K-complexity, we can rewrite the uncertainty relation
as [35]

j∂tPðtÞ · CðtÞ − ∂tCðtÞj2 ≤ 4jb1j2ðPðtÞÞ2hðΔK̃†Þ2i ð19Þ

where the expectation value taken with respect to operator
jOðtÞÞ. In terms of renormalized complexity defined as
C̃ðtÞ ¼ CðtÞ=PðtÞ, we can recast the bound as

jð1 − PðtÞÞ · ∂tPðtÞ · C̃ðtÞ þ PðtÞ · ∂tC̃ðtÞj2
≤ 4jb1j2ðPðtÞÞ2hðΔK̃†Þ2i: ð20Þ

In isolated system, the total probability PðtÞ ¼ P
n jϕnðtÞj2

is conserved so that ∂tPðtÞ ¼ 0 and K̃† ¼ K. Therefore, the
bound reduce to Eq. (4) as expected.

In isolated systems, the dispersion bound is saturated iff
the Lanczos coefficients grow according to [26]

bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
α0nðn − 1Þ þ 1

2
γ0n

r
: ð21Þ

For α0 > 1 and large n, this reduces to linear growth
bn ¼ ffiffiffiffiffi

α0
p

n. In the thermodynamic limit, open systems
under boundary dephasing alone, behaves similar to iso-
lated systems since the seed operator is localized in the bulk
and takes indefinite time to reach the boundary. Therefore,
we expect the dispersion bound to be saturated for similar
systems which satisfies Eq. (21).1

Numerical results. To illustrate the validity of the bound
in Eq. (19), we study the transverse-field Ising model
Hamiltonian for N spins, given by,

H ¼ −
XN−1

j¼1

σzjσ
z
jþ1 − g

XN
j¼1

σxj − h
XN
j¼1

σzj; ð22Þ

where g and h are the coupling parameters. The interaction
with the environment are encoded in the set of Lindblad
operators Lk: (1)

ffiffiffi
α

p
σ�k with k∈ boundary, (2)

ffiffiffi
γ

p
σzi with

k∈ bulk, where α, γ > 0 is the coupling strength between
the system and the environment and σ�k ¼ ðσxk � iσykÞ=2.
For our numerical analysis, we will take field coupling
as g ¼ −1.05, h ¼ 0.5 and environmental coupling α ¼
γ ¼ 0.01. We choose an initial observable to be uniformly
distributed operator ð1=d; 1=d;…; 1=dÞT. We utilize the
vectorized form of the Lindbladian, expressed in terms of
the Hamiltonian H and the Lindblad operators Lk,

FIG. 3. Growth of K-complexity in dissipative transverse-field Ising model with field coupling ðg; hÞ ¼ ð−1.05; 0.5Þ and environment
coupling α ¼ γ ¼ 0.01. Left: Lanczos coefficients (in light gray) an, bn after removing the outliers. The dark gray curve shows the
averaged behavior obtained from filtering the original coefficients. Center: the K-complexity as a function of time t in log-log plot. After
the initial growth, the K-complexity decays to zero due to dissipation in system. Right: the illustration of dispersion bound in open-
systems—we show the left and right-hand side of inequality in Eq. (19).

1In finite systems, the seed operator hit the boundary in at most
scrambling time ts ∼OðNÞ, therefore, the results of isolated case
are expected to hold for time smaller than ts.
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Lo ¼
�
I ⊗ H −HT ⊗ I

�þ i
2

X
k

	
I ⊗ L†

kLk

þ LT
kL

�
k ⊗ I − 2LT

k ⊗ L†
k


 ð23Þ

where k iterates over the Lindblad operators. We implement
the bi-Lanczos algorithm, incorporating full orthogonali-
zation twice within the process to ensure the establishment
of an orthogonal basis.
The left panel of Fig. 3 shows the Lanczos coefficients bn

and an for system size N ¼ 6. The center panel of Fig. 3
shows the K-complexity which exhibits exponential growth
follows by decay due to environmental coupling. The right-
most panel illustrates dispersion bound on K-complexity in
open-systems [Eq. (19)] in log-log plots.

Conclusion.Our results establish the ultimate speed limit to
operator growth in open quantum systems. We showed that
the dispersion bound and the wave function decay governs
the complexity growth rate in most general versions of open
system dynamics. This bound holds for both finite sized
open systems and in the thermodynamic limit with both
boundary and bulk dephasing. In [39,40], the authors
introduce an analogous notion of complexity for quantum
many-body states, defined as a spread in the Krylov basis
formed by the Hamiltonian of the system—dubbed as
the spread complexity. The K-complexity dispersion
bound for both isolated, open, and measurement-induced

systems [41] can be extended to spread complexity. In this
case, it is important to note the presence of Lanczos
coefficients an in both isolated and open cases. A extension
of this work could explore the form of bound for the spread
complexity.
Another interesting direction could be to consider the

quantum-speed limit bound namely Mandelstam and Tamm
(MT) bound and Margolus and Levitin (ML) bound [42–44]
for the operator evolving in the Krylov chain. A key insight
is to consider the operator-state mapping, usually known as
“Choi-Jamiolkowski isomorphism” or channel-state duality.
Under such operator-state mapping, the Lindbladian dynam-
ics in operator space reduces to the Hamiltonian dynamics in
state space with extended dimension. Therefore, analogous
bound to MT (and ML) bounds can be derived.
In such a dual space, the open system case corresponds to

effective Hamiltonian of the form H̃eff ¼ H̃ − iΓ̃ in Krylov
basis where H̃ is a tridiagonal matrix and Γ is a diagonal
matrix with matrix elements as bn and an, respectively.
Therefore, the speed limit bound provided in Ref. [45]
should hold.
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