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Finite entanglement entropy in string theory
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We analyze the one-loop quantum entanglement entropy in ten-dimensional type-II string theory using
the orbifold method by analytically continuing in N the genus-one partition function for string orbifolds on
R?/Zy conical spaces known for all odd integers N > 1. We show that the tachyonic contributions to the
orbifold partition function can be appropriately summed and analytically continued to an expression that is
finite in the physical region O < N <1 resulting in a finite and calculable answer for the entanglement
entropy. We discuss the implications of the finiteness of the entanglement entropy for the information

paradox, quantum gravity, and holography.
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Introduction. Entanglement entropy is a quantity of fun-
damental importance in quantum mechanics and quantum
field theory, and even more so in quantum gravity. The
naively defined von Neumann entropy measuring the
entanglement between the inside and the outside of a black
hole is divergent in quantum field theory and proportional
to the horizon area in units of the short-distance cutoff. This
divergence across any sharp boundary is a consequence of
the fact that field values on the two sides of the boundary
have strong short-distance correlations in a local quantum
field theory. If this divergence is not cured in quantum
gravity, then it would imply that the black hole has infinite
number of qubits and can store arbitrary amount of
information. Unitary evolution would then be impossible
unless the black hole is interpreted as a remnant with all the
attendant problems of this interpretation. Finiteness of
entanglement entropy is thus at the heart of the information
paradox in black hole physics.

Given the ultraviolet finiteness of string perturbation
theory, it behooves us to ask if one can define a suitable
notion of entanglement entropy in string theory and
examine its finiteness order by order. A direct definition
of such a quantity has proven elusive partly because it is not
clear how to define in string theory the relevant density
matrix and appropriate notions corresponding to its von
Neumann or Rényi entropy. One expects that it would be
difficult to introduce sharp boundaries in string theory
given the soft behavior of strings at short distances. One can
instead attempt an indirect definition by a generalization of
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Rényi entropy adapted to string theory using Z, orbifolds
[1]. The simplest example constructed in [1] is type-1I
string on Mg x R?/Z, where Mg is 7 + 1-dimensional
Minkowski spacetime, R? is two-dimensional Euclidean
plane, and the orbifold action is generated by a rotation in
the plane through an angle 4z/N for N odd.

It is convenient to write entanglement entropy as
§=50 4 Sq, where S is the classical contribution
and S, is the quantum contribution from higher-genus
Riemann surfaces [2,3]. The classical spacetime partition
function Z(%)(N) of the Z, orbifold theory is nontrivial and
analytic in N after including a boundary contribution, and
SO is simply given by the Bekenstein-Hawking entropy [2]
but with tree-level, unrenormalized Newton’s constant Gy,
The quantum spacetime partition function Z 4(N) is related
to the world sheet partition function Z,(N) by

log(zq(N)) :Zq<N> (1)

with a genus expansion

[Se]

Z,(N) = > Z9(w). )

g=1

The expression for Zq(N) is expressed as a sum over
orbifold sectors and is not obviously analytic. If an analytic
continuation exists, then the quantum entanglement
entropy would be given [1-3] by a perturbative expansion

$ =2 (Nlog(Z,(N))

— A
= SO ="—"—45. (3)
N=1 gz:; 4Gy 1

The orbifold method thus applies uniformly for computing
both the classical and quantum contributions.
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It is significant that the orbifold method in string theory
automatically supplies a classical term in (3) related to the
Bekenstein-Hawking formula, and that all higher order
terms are proportional to area. It thus appears to offer a
natural gravitational generalization of von Neumann
entropy with a systematic expansion that is intrinsically
holographic. The computation is formally analogous to the
replica method in field theory [4] and a priori has nothing
to do with black hole physics. But, unlike in field theory, it
appears that in a consistent theory of gravity the classical
term is inevitable in a discussion of quantum entanglement.
In fact, it is of crucial importance. Heuristic arguments
indicate that field-theoretic divergences in the quantum
entanglement entropy S, can be absorbed into renormal-
ization of Newton’s constant [5,6] suggesting that the total
entropy must be finite. In semiclassical gravity, a corre-
sponding fact in the more abstract formulation is that
inclusion of gravity turns the algebra of observables from
type-III to type-1I [7,8]. As discussed in [3], one expects a
stronger statement that the “algebra of observables” should
be akin to type-I corresponding to finite entanglement
entropy.

Since the quantum effective action includes not only
local terms but also nonlocal terms arising from loops of
massless fields, not all contributions can be attributed to the
renormalization of Newton’s constant in the Wilsonian
action. Therefore, the entanglement entropy should be
finite but nonzero order by order in string perturbation
theory. Holographic considerations discussed in [3] also
confirm this expectation.

It is possible that the entropy defined by (3) is a more
fundamental notion than black hole entropy if one can
make sense of (3). At the quantum level, the definition of
black hole entropy has potential ambiguities. For super-
symmetric black holes at zero temperature it is possible to
define and in some cases compute exactly [9] the quantum
entropy, but these ambiguities need to be resolved. Entropy
in (3) is free of these ambiguities. It is more general and
geometric since it focuses on the bifurcate Rindler horizon
which in the Euclidean continuation corresponds to the tip
of the cone. It thus depends only on dividing space or the
Hilbert space into two parts and not on a specific spacetime
geometry or the asymptotics. Moreover, (3) presumably
gives the fine-grained entropy much like the von Neumann
entropy and not the coarse-grained thermodynamic entropy
as for a black hole.

In this note we develop further the program initiated in
[1] to compute quantum entanglement entropy using the
orbifold partition functions as the starting data, and in
particular to examine the finiteness of entanglement
entropy. This idea immediately encounters a possible
obstacle. The spectrum of the Z, orbifold contains several
tachyons for all N > 1. As a result, the world sheet partition
function Z,(N) suffers from severe infrared divergences
[1]. It would thus appear that we have simply traded the

ultraviolet divergence for an infrared divergence. However,
unlike ultraviolet divergences, infrared divergences are not
a matter of renormalization but contain important physics.
The spectrum of tachyons has a specific structure dictated
by the internal consistency of string theory.

To better understand the physics of the tachyons, we note
that the Euclidean plane R’ can be regarded as the
Euclidean Rindler space. The spacetime partition function
Zq(N ) can be viewed as the thermal partition function for a
Rindler observer, Zq (N) == Tr[exp(— 22 Hg)], where Hp is
the Rindler Hamiltonian which generates the translations of
Euclidean Rindler time corresponding to rotations in the
plane. One can regard Hy as the modular Hamiltonian of a
density matrix p = exp(—27zHp). One is forced to define
the density matrix in this indirect way since at present one
does not know how to define notions such as partial trace or
algebra of local observables in string theory. The partition
function Zq (N) can then be viewed as a generalization of
the Rényi entropy, Z,(N) := Tr(p"), for noninteger N
with A/ = 1/N. On physical grounds one expects good
analytic behavior of this function in the right half-plane
Re(NV) > 1 but not necessarily in the left half-plane
Re(N) < 1 where the tachyons exist.

We elaborate on this point following the observations in
[10]. In quantum mechanics, the density matrix p is a
positive Hermitian matrix normalized to Tr(p) = 1. The
eigenvalues of p have to be less than or equal to unity.
Therefore, the trace Tr(p”) exists in the region Re(N) > 1,
and the absolute value of Zq (N) is bounded by unity. On

the other hand, Tr(p") in general need not be well-defined
in the region Re(/V') < 1—the convergence of > % 4, does
not guarantee the convergence of >_® 1,. In other words,
the tachyons may not be a physical threat despite their
menacing comportment in the unphysical realm.

In string theory, the partition function (2) is represented
as an integral over a moduli space. This representation
provides a useful refinement. One could ask if the
tachyonic terms in the integrand can be summed and
analytically continued to obtain a finite and sensible
physical answer for the integral in the physical region.
As we shall see, this is indeed the case.

Entanglement entropy in type-ii string theory. Following
[1] we consider orbifolds of type-II superstring in light-
cone gauge on flat space R® x R?. The orbifold group
Zy ={1,g,....9"" 4miJ,
is the generator of rotations in R2. The one- loop partition
function can be written [1,3] as an integral over the
fundamental domain D of the modular group SL(2,Z)

in the upper-half-z plane:
2
(e i)

ZO(N) = Z

DT2kf0

4)
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Here Ay is the regularized horizon area in string units

Vg
Ay i=—— 2=d. 5
H (27[[;)8 ’ S (¢4 ( )
The function
1 9(z]7)
G = 6
(€)= @ o2l ©

is defined in terms of the Jacobi theta-function and the
Dedekind eta-function:

9(z|7) = 24 smﬂzH (1-

9 =¢T]0 -4 0

where ¢ :=exp(2zir) and y:=exp(2ziz). With
T = 7y + i1, the fundamental domain D can be taken to
be the usual “keyhole” region <

The orbifold Hilbert space has N sectors labeled by the
“twists” k =0, ..., N — 1, where k = 0 corresponds to the
untwisted sector. A term with a given k and £ in (4) can be
viewed as a trace over the oscillator modes in k-twisted

sector,
ok +f| 2
NETNIT

where N; and Ny, are the oscillator energy operators and €,
and ey, are the ground state energies for the left and the right
movers respectively in the k-twisted sector. In the Green-
Schwarz light-cone formalism €; = ¢ = —k/N in the k-
twisted sector [1]. The 7y-integral in (4) ensures that only
level-matched states with N; = Ny contribute to the trace.
Summing over the “twines” £ ensures that only Zy-
invariant states contribute.
For spacetime interpretation, we recall that

g (1 =q"y)(1 =¢"y™"),

=T 4 NL+€L—NR+5R’ 8
Hf[g gNtergNeter] (8)

:NL+NR+€L+€R- (9)

can be identified as the mass operator of states in the string
spectrum. States for which M? is positive, zero, negative are
respectively massive, massless, or tachyonic. One can
identify 2z7, with the Schwinger parameter. Large 7,
corresponds to the infrared regime whereas small 7,
corresponds to the ultraviolet regime.

We write the integral (4) as a modular integral of a
modular function F(r) with the Weil-Petersson measure
over the fundamental domain D:

C N, (10)
D 72

ZW(N) = Ay

The famously soft ultraviolet behavior of strings corre-
sponds to the fact that the modular integral is restricted to
the keyhole region. Field-theoretic UV divergences which
arise from the region near 7, — 0 are absent. However, the
integral does suffer from IR divergences because the
integrand grows exponentially as 7, — oo.

To analyze these divergences systematically, we note that
the modular function admits a Fourier expansion

= Fu(r2.N)e

The zero mode is given by

N—1 N—1
E /dTl
Tk 073

=

2rxint, . (11)

2

FO T2, (12)

(EH "”|T)

The infrared divergence comes from terms in F(z,, N)
that grow exponentially as 7, becomes large which corre-
spond to the propagation of tachyonic states.

There are only a finite number of such terms. The
expression (8) is invariant under the exchange of k and
N — k. Using this symmetry one can restrict the attention to
1<k< % Using (6) and (7) it is easy to see that the
tachyonic part of the integrand F (7, N) can be written as

2
Fi(2.N) = 3
2

4tk
p( ") e (13)

k=

with f(z,, N) given by

43
(2N—4k)
filra N) =) e

r=0

(14)

where r; is the largest non-negative integer such
that r(2N — 4k) < 2k.

It is noteworthy that all terms in the sum in (13) and (14)
have unit coefficients indicating that tachyonic states of a
given k and a given mass-squared have unit degeneracy.
This important fact can be easily verified also in the
Hamiltonian formalism. In the k-twisted sector, the ground
state is unique with negative energy €; + € = —2k/N. In
spacetime it corresponds to a tachyon with mass-squared
M?* = —2k/N and unit degeneracy. We refer to it as the
“leading” tachyon in the sense that it has the most negative
M?. Raising operators on the ground state in each sector
can only increase the total energy and can give rise to
subleading tachyons as long as M? remains negative. After
acting with a sufficient number of raising operators, M>
eventually becomes positive and therefore only a finite
number of tachyonic terms are possible. It turns out that
only the fractionally moded oscillators of the single
complex boson coordinatizing the Rindler plane R? are
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relevant because the action of raising operators of other
fields yield nontachyonic states. As a result, the subleading
tachyons also have unit degeneracy.

Analytic continuation of tachyonic contributions. The
spectrum is thus replete with tachyons and the partition
function (4) is badly divergent in each twisted sector for all
k=1,...,N — 1. It seems hopeless to try to make sense of
the integral for N > 1. Remarkably, the precise structure of
string theory allows for a summation of the tachyonic terms
in the integrand. This sum can be analytically continued to
the physical region Re(N') > 1 where it tends to a finite
limit as 7, — oo and the integral (16) is then finite.

The function f;(z,, N) depends on r; with an intricate
dependence on k which makes it difficult to obtain a simple
answer for the sum over k in (13). It is useful to consider
instead a function f;(z,,N) obtained by taking r; to
infinity in (14). It corresponds to adding infinitely many
(fictitious) massive string states and some massless ones
which do not change the convergence properties at large 7,.
One can similarly define 7/ (z,, N) by replacing f(z,, N)
by fi(7o.N) in (13). The k-sum can now be readily
performed for all values of 7z, to obtain

2(N=1)(4r+2)7)

- © 1 —¢ N
fg(TZ’ N) = E e ) “2alari2)r, (15)
r=0 N

S| o

T —e

Remarkably, this function is perfectly finite for 0 < N < 1
as 7, — oo even though it diverges for N > 1.

To separate the tachyonic and nontachyonic contribu-
tions, one can rewrite the partition function (10) as

ZW(N) = AH/

2
SF N+ F @) (6)
D T3

where F(z, N) is the nontachyonic remainder of F(z, N)
defined by FX(z,N):= F(z,N) — Fl(z,, N). With this
splitting, one can examine the dependence on N of each
of the two terms in (16) separately.

The integral of F®(z,N) has no tachyonic divergences
by construction and is convergent both in the IR and the
UV. This finite integral could be performed numerically for
each N to obtain finite values for all odd integers. An
interpolation method like the Newton series [3] could then
be used to deduce from this data an analytic continuation or
“extrapolation” in the physical region 0 < N < 1 as long as
there is no unexpected oscillatory behavior.

The integral of F} (z,, N) is divergent in the region N > 1
but has a finite limit as 7, — oo for0 < N < 1. We thus find
that the tachyonic part of the integrand can be summed and
analytically continued such that the total integral is free of the
IR divergences in the physical domain0 < N < lor N > 1.

It is worth emphasizing that this surprising finiteness is
not accidental but depends critically on three very specific
“just so” properties of superstring theory.

(1) There are exactly N — 1 leading tachyons with unit
degeneracy in each twisted sector. The analytic
continuation of (15) would not have the desired
behavior in the N plane if there were, for example,
N + 1 leading tachyons, or if the multiplicities were
different.

(2) The total ground state energy —2k/N in the k-
twisted sector is linear in k. In the light-cone Green-
Schwarz formalism, there are four complex fermions
twisted by k/N with ground state energy
+1/12—= (1 —k/N)k/2N. There is single complex
boson twisted by 2k/N with ground state energy
—1/12+ (1 =2k/N)k/N for 2k < N, and three
untwisted complex bosons with ground state energy
—1/12. The contributions quadratic in k/N cancel
out as do the constant terms. This precise cancelation
resulting in ground state energy linear in k depends
on the specific structure of the superstring and is not
true, for example, for the bosonic string.

(3) The subleading tachyons also have energies linear in
k and have unit degeneracies for reasons explained
earlier. A simple geometric sum (15) would not be
possible without these properties.

The taming of the tachyons in the physical region is very
encouraging. One can now compute the entropy from the
region near N = 1 approaching from N < 1. It is interest-
ing that one can extract a nontrivial finite answer for a
physical quantity even though in the intermediate steps
supersymmetry is broken and the spectrum is inflicted with
tachyons. A similar phenomenon has been noted in the
open string sector using quite different methods [10] and
appears to be a general feature.

There is a perverse possibility that the terms coming
from massless and massive modes which are finite for
N > 1, sum up to a divergent answer for 0 < N < 1. On
physical grounds this seems unlikely. For any set of
massive or massless fields, the physical density matrix p
is expected to have eigenvalues less than or equal to unity.
With the ultraviolet cutoff provided by string theory, it
would be unphysical if Tr(p"V) turns out to be convergent
for N'< 1 but divergent for AV > 1. In any case, it is
important to explore the integral further to rule out this
eventuality and explicitly compute the finite remainder.

Remarkably, even though the integral (16) diverges for
N > 1, theintegrand is finite for fixed 7. The tachyonic part is
easy to analytically continue to the physical region. Our
results indicate that the resulting integral in the region N < 1
is finite, which is an essential ingredient in obtaining a
sensible physical interpretation.

Discussion. The orbifold method thus seems to yield a
finite answer for the entropy defined by (3) to one-loop
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order. There is no renormalization of Newton’s constant in
the ten-dimensional superstring. Therefore, in this case the
finite part of our one-loop computation gives directly the
one-loop entanglement entropy. One expects to be able to
garner more information than just this single number. The
analyticity property suggests that one can obtain a finite
expression for the entropy Tr(pN ) as an analytic function of
N in the physically relevant region Re(N) > 1 to learn
more about the short-distance degrees of freedom of string
theory. The fact that Z(1) =0 is consistent with this
interpretation. Using (1) it suggests that Tr(p) = 1, and
therefore it may be possible define a density matrix with a
well-defined trace. Finiteness of the entanglement entropy
is physically very significant for various reasons which are
worth recalling.

As discussed earlier, the resolution of the information
paradox is closely linked to the finiteness of the entangle-
ment entropy. Unitarity of the boundary theory in holog-
raphy indicates that most probably the time evolution in the
bulk is also unitary. However, it is essential to understand
the resolution of the information paradox directly in the
bulk gravitational theory. Understanding the finiteness of
entanglement is a step toward this goal. Entanglement
entropy is a critical ingredient also in the formulation of the
strong subadditivity paradox for Hawking emission [11—
13], or in the proof of the generalized second law of
thermodynamics [14]. Holographic entanglement entropy
beyond the classical formula also requires a definition of
entanglement in the bulk [15-21]; and quantum entangle-
ment entropy is relevant for defining the quantum extremal
surface and the proposals for reconstructing bulk observ-
ables and the black hole interior [22-28]. Some of the
works implementing the replica method assume absence of
tachyons—it would be interesting to explore this in more
detail. A string-theoretic definition of finite entanglement
entropy is desirable in these various contexts.

As emphasized in [3], entanglement entropy in flat space
computed here is relevant near the horizon of any large
mass two-sided black hole with bifurcate horizon, in
particular, the Schwarzschild black hole in anti de Sitter
spacetime. In this context, the ground state of the bulk

spacetime theory corresponds in the boundary to an
entangled state in the thermofield double [29-31].
Tracing over the left conformal field theory results in a
thermal state in the right conformal field theory. The
entanglement entropy of the thermofield double state thus
equals the entropy of the thermal bath, which has a
systematic double expansion that can be matched to a
perturbative expansion in the bulk in the string coupling g,
and the string scale /2. The classical Bekenstein-Hawking
entropy corresponds to the leading entropy of the thermal
state of order N2 in the large N limit. One expects that the
quantum entanglement entropy can be matched to the order
N° correction which is finite and in principle calculable. It
would be interesting to make this comparison for the finite
mass, nonsupersymmetric black hole.

In the holographic context, the algebra of observables of
the right CFT is manifestly type-I since it admits an
irreducible representation over the right Hilbert space,
reflected in the fact that the entanglement entropy is finite.
One expects a corresponding statement in the bulk as
discussed in [3]. The algebra of observables is type-III in
the field theory limit of the bulk but one expects that string
theory should ameliorate the situation. Finiteness of entan-
glement indicates that the algebra of observables of the bulk
quantum gravity is indeed akin to type-I as in the boundary
theory. In quantum gravity one cannot really define an
algebra of local observables and it is not clear what
generalization will correspond to notions like modular
Hamiltonian and entanglement entropy. See [7,8,32-35]
for recent discussions. A computable and finite entangle-
ment entropy in string theory would be a useful guide in the
search toward such a generalization. The orbifold has an
exact conformal field theory description which is the
required data for defining off-shell string field theory on
the conical background. It would be interesting if the
machinery of string field theory [36,37] can be brought to
bear on this important problem.
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