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We evaluate the vacuum entanglement entropy across a cut of future null infinity for free Maxwell theory
in four-dimensional Minkowski spacetime. The Weyl invariance of 4D Maxwell theory allows us to embed
the Minkowski spacetime inside the Einstein static universe. The Minkowski vacuum can then be described
as a thermofield double state on the (future) Milne wedges of the original and inverted Minkowski patches.
We show that the soft mode contribution to entanglement entropy is due to correlations between asymptotic
charges of these Milne wedges or, equivalently, nontrivial conformally soft (or edge) mode configurations
at the entangling surface.
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Introduction. Entanglement is a distinguishing feature of
quantum physics, shaping many properties of complex
interacting systems. The entanglement between any sub-
system R and its complement can be quantified by the
entanglement entropy,

SvNðRρÞ ¼ −trðRρ log RρÞ; ð1Þ

i.e., the von Neumann entropy of the reduced density
matrix Rρ describing the state on R. Remarkably, the
AdS=CFT correspondence [1] equates the entanglement
entropy of subregions in the boundary conformal field
theory (CFT) with a generalized gravitational entropy in the
anti–de Sitter (AdS) bulk [2–6]. This discovery has sparked
many exciting advances in our understanding of quantum
gravity using the tools of quantum information, including
connections to quantum error correction [7,8] and insights
into the black hole information paradox [9–11].
Concurrently, gauge and gravity theories in asymptoti-

cally flat spacetimes were shown to have a very rich
infrared structure [12–15]. Here, the vacuum is infinitely
degenerate, with different vacua related by asymptotic
symmetries or, equivalently, the addition of soft particles
[14–17]. Arising from these developments, celestial
holography, e.g., [18–20], proposes a duality between a
(3þ 1)-dimensional asymptotically flat spacetime and a
two-dimensional celestial CFT (CCFT). Entanglement and

the representation of bulk subregions in the new holo-
graphic framework have been unexplored so far.
In this Letter, we take essential steps in formulating a

new entry in the flat space holographic dictionary relating
bulk subregions in 4D Minkowski spacetime and observ-
ables in 2D celestial CFT. It was noted in [21] that infrared
effects may contribute nontrivially to the entanglement
entropy across a cut on future null infinity Iþ. Pursuing this
direction further, we examine the vacuum entanglement
across a cut on Iþ for free Maxwell theory in four-
dimensional Minkowski spacetime. This entangling surface
on Iþ is defined by the future light cone emanating from a
point in the Minkowski geometry. Following standard
convention, we refer to the spacetime region to the future
of this light cone as the future Milne patch—see Fig. 1(a).
Hence, we are considering the entanglement entropy (1) for
the mixed state on this region.

(a) (b)

FIG. 1. (a) Penrose diagram of Minkowski spacetime and
associated inverted spacetime (delineated by solid and dashed
diagonal lines, respectively). They overlap in the patch Q, while
P, R, L denote Milne patches. Minkowski (black) and Milne
(white) Cauchy slices near Iþ are drawn as dashed curves.
(b) Conformal image in the Einstein universe.
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To this end, we leverage the Weyl invariance of 4D
Maxwell theory to embed the Minkowski spacetime inside
the Einstein static universe R × S3. In this context, a full
Cauchy slice is formed by Cauchy slices for Milne wedges
of the original geometry (R) and its counterpart (L) in the
“inverted” Minkowski geometry produced with a con-
formal inversion of the original spacetime—see Fig. 1.
We will show that the mixed state Rρ can be purified as a
thermofield double state on L and R. Along the way, we
develop new methods to characterize conformal primary
sectors of bulk subregions. A challenge in studying this
entanglement is then the treatment of soft modes. We
attribute the associated entanglement to asymptotic charge
fluctuations and explain how spacetime entanglement
could arise holographically from the celestial CFT. Due
to the universality of soft physics, we expect similar
methods to be useful to describe the asymptotic physics
of spacetime fluctuations in (quantum) gravity [22–24].

Preliminaries. A key step in celestial holography is
replacing plane waves by boost eigenfunctions, transform-
ing as conformal primaries under the Lorentz group [25].
These conformal primary wave functions (CPWs) in free
Maxwell theory in (3þ 1)-dimensional Minkowski space-
time, with coordinates X, are

AΔ;�
a;μ ðw;XÞ ¼ m�

a;μðw;XÞ
½−q̂ðwÞ · X��Δ

; Xμ
� ¼ Xμ ∓ iϵn̂μ; ð2Þ

labeled by points w in celestial space, corresponding to a
section of I� reached by null rays �q̂ðwÞ. The m�

a;μ label
photon polarizations, but their precise form will be un-
important in the following [26,27]. With n̂ obeying
n̂ · q̂ðwÞ ¼ 1, the iϵ provides a prescription to cross the
q̂ · X ¼ 0 surface.
The modes (2) have eigenvalues Δ under boosts toward

q̂ðwÞ, dual to dilations about w in celestial space. These
þ=− modes form a basis of solutions with positive-/
negative-definite frequencies with respect to Minkowski
time, provided Δ ¼ 1þ iλ; λ∈R. Here, λ is also a fre-
quency with respect to Milne time τ,

∂τA1þiλ
a ¼ϵ − iλA1þiλ

a ; τ ¼ 1

2
logð−X2Þ; ð3Þ

where ¼ϵ denotes equality when ϵ → 0. The Δ ¼ 1 (λ ¼ 0)
modes yield the Goldstone wave functions AG

a ðw; XÞ, while
their canonically conjugate conformally soft partners
ACS
a ðw; XÞ (which also have Δ ¼ 1) were constructed

in [28]—see also Supplemental Material [27].
The asymptotic symmetries of pure Maxwell theory are

generated by asymptotic charges [15,29]

Q½α� ¼
Z
I�∓

α � F b¼
Z
I�

dα ∧ �F; ð4Þ

where Iþ
− (I−þ) is the past (future) boundary of Iþ (I−) and

the last equality holds on shell. Turning on ACS changes the
values of the charges (4). In contrast, the global charge
obtained with constant α vanishes in free Maxwell theory.
From CPWs, one constructs operators

OΔ;�
a ðwÞ ¼ −ihAΔ;�

a ðwÞ; Ai ¼ OΔ�;∓
ā ðwÞ†: ð5Þ

Here h·; ·i denotes the spacetime inner product among
spin-1 conformal primary wave functions [28]. Replacing
AΔ by AG; ACS moreover defines the (conformally) soft
operators QaðwÞ ¼ Q½αG�;SaðwÞ, respectively. These can
be regarded as operators in the CCFT, exciting CPWs in the
Minkowski bulk with S-matrix elements encoded by CCFT
correlation functions.

Beyond the Minkowski patch. To prepare our entangle-
ment calculations, we employ the Weyl invariance of 4D
Maxwell theory to extend the CPWs (2) beyond the
Minkowski patch. We first consider an inverted
Minkowski patch covered by coordinates Xμ—see Fig. 1.
In the overlap X2; X2 > 0 with the original Minkowski
patch, an inversion Xμ ¼ Xμ

X2 and Weyl transformation relate
the two geometries. Given the Weyl invariance of the 4D
Maxwell theory, the gauge field A in the inverted patch is
simply related to the original A by

AμðXÞ ¼
∂Xν

∂Xμ AνðXÞ; X2 > 0: ð6Þ

The inverted CPWs (2) are found to be proportional to
shadow wave functions

AΔ;�
a;μ ðw;XÞ ¼ϵ e�iπðΔ−1ÞÃΔ;�

a;μ ðw;XÞ: ð7Þ

The shadow wave functions ÃΔ;�
a [25] yield an alternate

set of CPWs. We review their defining properties in [27].
The ϵ → 0 limit above ensures Eq. (7) crosses q̂ · X ¼ 0 ¼
q̂ · X in the overlap region consistently with the original
mode (2). While Eq. (6) only applies in the overlap of the
two Minkowski patches, the result (7) evolves to a solution
over the full inverted patch.
Note that inversions and shadow transforms preserve the

space of solutions and, moreover, both AΔ and ÃΔ have
opposite Milne frequency with respect to AΔ. Therefore, a
proportionality (7) between the former modes is unsurpris-
ing. We expect a similar relation between shadows and
inversions to be a general property of Weyl-invariant
theories—see also [30,31].

Complementary Milne patches. The two Minkowski space-
times are also conformally mapped to the Einstein universe
R × S3 as in Fig. 1(b) [32]. The future null Minkowski
boundary Iþ (plus i0) is a Cauchy surface for the Einstein
universe. Another Cauchy surface is given by the union of
the Cauchy surfaces for the (future) Milne patches of the
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original and inverted Minkowski patches, plus the surface
(on Iþ) between them.We denote theseMilne patches as left
(L) and right (R), respectively. Hence, a state on Iþ should
admit a decomposition in terms of L, R states, as illustrated
in Fig. 1. This will allow us to evaluate the entanglement
across the cut on Iþ connecting the L, R patches.
We proceed by constructing CPWs associated with the

Milne patches. The modes (2) can be decomposed into
LÃΔ; RAΔwith initial data supported, respectively, on L and
R Cauchy surfaces

AΔ;� ¼ϵ e�iπðΔ−1ÞLÃΔ þ RAΔ; Δ ∉ Z: ð8Þ

Here, AΔ;� agrees with RAΔ inside R, and with e�iπðΔ−1ÞLÃΔ

inside L, upon extending Eq. (7) to the full inverted
Minkowski patch. Hence, for the principal series (i.e.,
Δ ¼ 1þ iλ, λ∈R), the nonsoft (i.e., λ ≠ 0) modes
LÃΔ; RAΔ are defined by Eq. (8).
An alternate definition of the L, R modes retains the ϵ

regulator to make Eq. (8) an exact equality. Then LÃΔ

and RAΔ are smooth finite energy solutions. For instance,
their Minkowski inner products can be evaluated using the
standard inner products among Minkowski CPWs [25,33]—
see also Supplemental Material [27]. Since Iþ is a
Minkowski Cauchy surface and splits into complementary
L and R Cauchy surfaces, the inner product decomposes as

h·; ·i≅ϵ Lh·; ·i þ Rh·; ·i: ð9Þ

Thus, the Minkowski inner products of LÃΔ and RAΔ yield
inner products Lh·; ·i; Rh·; ·i in the Milne theories.
Conformally soft modes revisited. Here, we reveal ACS

as configurations sourced by charged particles in the
Einstein universe beyond the original Minkowski patch.
While AG has vanishing field strength, ACS possesses

electric fields localized on the q̂ · X ¼ 0 plane and the
X2 ¼ 0 light cone. An expansion near I� reveals that the
former leads to a nontrivial electric field Fru near i0

“sourced” by the radiative modes Fuz [34]. Hence, turning
on ACS yields a nontrivial asymptotic charge (4)

Q��α; ACS
� ¼ 4πdα: ð10Þ

To understand this better, we introduce

ACSIðw1;w2;XÞ≡
Z

w2

w1

ACSðw;XÞ ð11Þ

(which is path independent, because ACS is exact on celestial
space). The field strength of ACSI is supported on three shock
waves: Two planar shock waves along q̂1 · X ¼ 0 and
q̂2 · X ¼ 0 carry electric field lines in from infinity, which
then transfer to a spherical shock wave at X2 ¼ 0.
Figure 2(a) draws the shock waves of ACSI in the Einstein

universe, where a new interpretation of the charges (10)

emerges. From this perspective, the same field configura-
tion arises as the Lienard-Wiechert fields of two oppositely
charged particles, as shown in Fig. 2(b). Moreover, their
trajectories contain kinks that act as sources and sinks for
the shock waves. We emphasize that the shock waves
propagate in the original Minkowski patch, but the charges
sourcing them do not. Still, the effect of these charges
manifests quite physically in the Minkowski theory, giving
precisely [35] the asymptotic charges (4) as a mathematical
distribution α ↦ Q�½α�. For example, Eq. (10) matches the
dipole source of ACS in Eq. (11).
Soft modes in Milne patches. By analogy with AG; ACS,

we expect pairs of canonically conjugate soft (Δ ¼ 1)
modes supported in the L and R patches. As we show
in [36], simply taking the Δ → 1 limit of LÃΔ; RAΔ violates
matching conditions at i0 [13,37].
A decomposition respecting the matching conditions can

be found by considering the extension of AG; ACS outside
the Minkowski patch discussed above, with charges run-
ning in between L, R,

AG ¼ LAGþ RAG; ACS ¼ LAGþ LAEþ RAE: ð12Þ
Here, we have introduced the “edge”modes LAE; RAEwhich
are localized to an ϵ-regulated shock wave as shown in
Fig. 3 and ensure smoothness of ACS in Eq. (12) at finite ϵ.
As ϵ → 0, the shock wave retreats from the Milne patches,
leaving

LAG ¼ lim
ϵ→0

ACS; RAG ¼ lim
ϵ→0

ðAG − ACSÞ; ð13Þ

which are pure gauge in their respective Milne interiors.

(a) (b)

FIG. 2. (a) Shock waves of ACSI extended beyond the Min-
kowski patch. (b) Charged particles sourcing the shock waves.

FIG. 3. Electric fields of edge modes RAEI (brown) and LAEI

(yellow) are part of the ϵ-regulated X2 ¼ 0 shock wave of ACSI.
Side panel shows how the shock wave contributes to the normal
component of the electric field at ∂LΣ and ∂

RΣ.
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Equation (9) implies that these L, R Goldstone and edge
modes are canonically conjugate. Note that only two
independent combinations of the four soft modes are
permitted in the Minkowski theory, namely ACS and AG.
The Goldstone and edge modes augment the phase space

of, e.g., the R Milne patch with soft degrees of freedom
RQ; RS defined by the inner product of A with RAG and RAE,
respectively, as in Eq. (5). Paralleling Eq. (4), the R
asymptotic charge reads

RQ½α� ¼
Z
∂
RΣ
α � F; ð14Þ

where RΣ is an R Cauchy surface. By Eq. (12),

Q ¼ LQþ RQ; S ¼ LQþ LS þ RS: ð15Þ

Entanglement. Let us now study how states in the
Minkowski and Einstein Hilbert spaces embed into the
product space of the L and R Milne patches. We start by
showing that the common vacuum of the former is thermal
with respect to the latter. After analyzing constraints on the
soft modes, we evaluate their contribution to the entangle-
ment between the L and R patches.
Relation between vacua. Weyl invariance of Maxwell

theory allows us to prepare the vacuum state j0i of the
Minkowski and Einstein spacetimes with a Euclidean path
integral over an S4 hemisphere. As described in the
Appendix, the same path integral prepares an entangled
thermal state from the Milne perspective. As a result, the
vacuum state j0i is identified with a thermofield double state
on L and R. An analogous path integral argument leads to
the thermality of Rindler wedges and could alternatively be
deduced from an analysis of the Bogoliubov transformations
relating the Minkowski and Milne modes. In particular,
demanding that j0i and the Milne vacua L=Rj0i be annihi-
lated by the respective annihilation operators, one finds

j0i ∝ e−K
þLj0iRj0i; ð16Þ

where the entangling operator is given by

Kþ ¼ −
Z

∞

0

dλe−πλ
Z

ϵð2ÞðLã1þiλÞ† · ðRa1−iλÞ† ð17Þ

in terms of Milne creation operators. Here, ϵð2Þ is the volume
form over celestial space [27].
Turning to the soft modes, rather than relying on the

λ → 0 limit of our analysis above, we instead study the
constraints [38] that entangle the edge modes [39,40] (see
related results in [41,42]).
Soft constraints. In gauge theory, upon stitching together

two complementary regions LΣ; RΣ of a Cauchy slice, the
physical Hilbert spaceH is not simply the product of the L,
R Hilbert spaces LH ⊗ RH. Rather, the admissible physical
states satisfy constraints [38].

For example, Gauss’s law at the entangling surface
∂
LΣ ¼ −∂RΣ requires continuity of the normal component
of the electric field [38],Qent0 ≡ LQþ RQ ¼ 0. The Hilbert
space H of the theory covering the full Cauchy surface is
then the kernel H ¼ kerQent0 ⊂ LH ⊗ RH. This relates the
Hilbert spaces of the Einstein universe and L, R Milne
patches.
However, Qent0 is precisely the asymptotic charge Q in

Eq. (15), which is nontrivial in the Minkowski Hilbert
space. Instead, an appropriate constraint annihilating this
Hilbert space can be selected by finding a linear combi-
nation of L, R soft operators that commutes with the
Minkowski operators Q and S,

Qent ¼ LQþ RQþ 2ðLS − RSÞ: ð18Þ

The extra terms account for the sources in Fig. 2(b), which
violate Gauss’s law. Due to mixing with hard modes, Qent

in fact only annihilates the Minkowski Hilbert space in the
ϵ → 0 limit, as discussed later.
Because the vacuum j0i is shared by the Einstein and

Minkowski theories, it is annihilated by Q and Qent (with
ϵ → 0). The Minkowski Hilbert space also contains states
jqi with asymptotic charges Q½α� ¼ R

ϵð2Þqα parametrized
by a celestial scalar function qðwÞ [43]. These jqi carry a
background

ACS½q� ¼ 1

4π

Z
ϵð2ÞðwÞqðwÞACSIðw;∞Þ; ð19Þ

produced by dressing [44]

jqi ¼ eiS½q�j0i; S½q� ¼ −ihACS½q�; Ai: ð20Þ
Since S½q� is linear in ACS

a , it is also linear in Sa. Hence, it
can be shown using Eq. (15) that ½S½q�;Qent� ¼ 0, so jqi
satisfies the Minkowski constraint.
Entanglement of edge modes. Let us now consider the R

reduced density matrices of the states jqi
Rρ½q�≡ trLHjqihqj ¼ ei

RS½q�=2Rρ½0�e−iRS½q�=2: ð21Þ

Hence, Rρ½q� and Rρ½0� are unitarily related because S½q� ¼
1
2
RS½q� þ Lð� � �Þ [36]. Here, RS½q� is defined in analogy to

Eq. (20), using the R inner product with

RAE½q� ¼ 1

2π

Z
ϵð2ÞðwÞqðwÞRAEIðw;∞Þ; ð22Þ

where RAEI is constructed from RAE in the same manner as
Eq. (11). By design, RAE½q� has Milne asymptotic charge
RQ½α� ¼ R

ϵð2Þqα. Thus, all Rρ½q� share the same spectrum
and von Neumann entropy (1), being merely dressed by
different edge mode backgrounds.
Therefore, we focus on the entanglement of j0i, which

yields Rρ½0�. Because
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½RQ; Rρ½0�� ¼ −trLH½LQ; j0ih0j� ¼ 0; ð23Þ
Rρ½0� admits a decomposition into blocks Rρ½0; q� of definite
RQ (or equivalently RQ) [39,40]

Rρ½0� ¼
Z

E½q�p½q�Rρ½0;q�;

RQ½α�Rρ½0;q� ¼ Rρ½0;q�RQ½α� ¼
�Z

ϵð2Þαq
�

Rρ½0;q�; ð24Þ

where E½q� and p½q� are a measure and probability
distribution over the functions q. Further, trRρ½0; q� ¼ 1.
Isolating blocks Rρ½0; q� by fixing the Milne asymptotic

charge in a path integral representation of Rρ½0�, we find the
blocks differ in their edge mode background (22), but share
identical quantum fluctuations (due to the theory being
free) [39,40]. This leads to the unitary relation [36]

Rρ½0; q� ¼ ei
RS½q�Rρ½0; 0�e−iRS½q� ¼ Rρ½2q; 0�: ð25Þ

Consequently, the von Neumann entropy of Eq. (24)
decomposes into two independent pieces [39,40]

SvNðRρ½0�Þ ¼ SShðpÞ þ SvNðRρ½0; 0�Þ; ð26Þ

where the Shannon entropy SShðpÞ of p½q� is identified as
the edge mode contribution [45]. In contrast to [39,40] the
edge modes are identified with conformally soft modes
(11). We demonstrate in [36] that these differ from the static
modes in [39,40] by a gauge transformation.
Further, our path integral analysis identifies the factor

p½q� ∝ exp½−I2π½RAE½q��� due to the additive contribution
made by the background shift (22) to the Euclidean action
I2π [46]. Explicitly [47],

Iβ½RAE½q�� ¼ −β
2 logð1ϵÞ

Z
ϵð2Þqð□ð2ÞÞ−1qþOðlog−2ð1=ϵÞÞ

ð27Þ

where ð□ð2ÞÞ−1 denotes convolution with the celestial
Green’s function [27]. The similarity to the edge mode
action of [39,40], despite their focus on the spacetime
interior, is natural from the Einstein universe perspective.

Discussion. Let us consider now the holographic interpre-
tation of the entanglement studied in this Letter. Emulating
Eq. (5) using the Milne modes (8) and inner products (9),
we construct operators LÕΔ

a; ROΔ
a. In the ≅

ϵ
sense, ROΔ

a is
proportional to annihilation and creation operators,
Ra1−iλa ðwÞ, Ra1−iλā ðwÞ†, for Δ ¼ 1þ iλ and 1 − iλ (with
λ > 0), respectively. These appear in a mode expansion
of the field operator, multiplying the positive and negative
Milne frequency modes ðRA1þiλÞaðwÞ and ðRA1−iλÞaðwÞ,
respectively. Similarly, LÕΔ

aðwÞ is proportional to Lã1þiλ
a ðwÞ

and Lã1þiλ
ā ðwÞ†. Holographically, LÕΔ

a; ROΔ
a are seen as

conformal primaries in two sectors LCFT; RCFT dual to
the respective bulk Milne theories.
However, these sectors of the CCFTare not independent.

To see this, we can express the entangling operator (A5) as
a coupling between LÕΔ and ROΔ. For example, amplitudes
in the j0i state are evaluated by CFT correlation functions
in the presence of this interaction,

h0j • j0i ¼ he−Kþ−ðKþÞ†•iLCFT;RCFT: ð28Þ

With • in RCFT, the holographic dual of the thermal
expectation value (A3) arises by tracing out LCFT, i.e.,
he−RK•iRCFT with

RK ¼ −
Z

∞

0

dλe−2πλ

ð2πÞ3
1þ λ2

2λ

Z
ϵð2ÞRO1−iλ · RO1þiλ: ð29Þ

Expanding the exponential in Eq. (29) yields a series of
correlation functions weighted by ðe−2πλÞn and the entan-
glement entropy corresponds to the von Neumann entropy
of this distribution. This procedure is reminiscent of [48],
which examines entanglement between two interacting
CFT. However, their framework allows for a standard
evaluation of entanglement entropy of the resulting mixed
state, which is not the case for the CCFT.
Our calculations relied on the Maxwell theory being both

free and Weyl invariant. So, what general lessons have been
learned? Much of the analysis would carry through for a
(weakly) interacting conformal gauge theory (e.g., N ¼ 4
super-Yang-Mills). However, one clear distinction arises
since the unitary relation (25) fails. Hence, there is not a
separation (26) between independent hard and soft contri-
butions to the entanglement entropy. If Weyl invariance is
also lost, e.g., by introducing massive particles, asymptotic
states would still decompose in terms of modes with support
to the future and past of the cut on Iþ and the Minkowski
vacuum j0i would be some entangled state of these modes.
The decomposition would again divide the CCFT into two
sectors interacting through the entangling operator.
While one sector would still correspond to the RCFT dual

to the R patch, it is interesting to speculate on the
organization of the remaining modes. Recall that the full
Minkowski spacetime can be foliated with (Euclidean) AdS
and dS slices [49–53], as in Fig. 1(a). One might conjecture
that the P, Q, R patches have their own dual CFTs that
mutually interact to exchange excitations and encode
entanglement in spacetime. It would be interesting to
explore these speculations further.
Further details can be found in [36]. There, we evaluate

the edge mode partition function [39,40], from which
SShðpÞ is easily computed. We also draw connections to
the CFT renormalization and cutoff scales.
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Appendix: Entanglement from path integrals. Weyl
invariance of Maxwell theory allows us to prepare the
vacuum state j0i of the Minkowski and Einstein space-
times with a Euclidean path integral over an S4 hemi-
sphere, as shown in Fig. 4(a). However, the same path
integral prepares an entangled thermal state from the
Milne perspective—see Fig. 4(b). That is, the overlap
Lhφ0jRhφj0i with L, R states coincides with the matrix
element of an evolution by π in imaginary Milne time τ,

Lhφ0jRhφj0i ∝ Rhφje−πRHRjφ̃0i ðA1Þ

⇒ j0i ∝
X
i

e−πEiLjẼiiRjEii; ðA2Þ

where RH is the R Hamiltonian, with eigenstates RjEii
and eigenvalues Ei. A CPT transformation in Eq. (A1)
reinterprets the path integral boundary condition set by
the L state Lhφ0j as an R state Rjφ̃0i—for Maxwell theory,
this coincides with the shadow transformation. Hence, j0i
is a thermofield double state on L and R, and tracing
over the L Hilbert space yields the thermal state

Rρ½0�≡ trLHj0ih0j ∝ e−2π
RH: ðA3Þ

This closely parallels the path integral argument for the
thermality of Rindler wedges and, in fact, the L, R Milne
patches can be conformally mapped to Rindler wedges.
As in the Rindler case, Eq. (A2) may alternatively be

deduced by studying mode decompositions. With Δ ¼
1þ iλ, Eq. (8) coincides precisely with the Unruh [54]
construction of positive- and negative-definite Minkowski
frequency modes in terms of L, R modes with frequency λ.
Thus, the resulting Bogoliubov transformations relating
Minkowski and Milne annihilation operators are identical
to the Rindler case. Demanding j0i and the Milne vacua
L=Rj0i be annihilated by the respective annihilation oper-
ators, one finds

j0i ∝ e−K
þLj0iRj0i; ðA4Þ

where the entangling operator is given by

Kþ ¼ −
Z

∞

0

dλe−πλ
Z

ϵð2ÞðLã1þiλÞ† · ðRa1−iλÞ† ðA5Þ

in terms of Milne creation operators. Here, ϵð2Þ is the
volume form over celestial space [27]. Since each Milne
creation operator increments the Milne energy E by λ, we
have recovered Eq. (A2).
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