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Statistical mechanics from relational complex time with a pure state
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Thermodynamics and its quantum counterpart are traditionally described with statistical ensembles.
Canonical typicality has related statistical mechanics for a system to ensembles of global energy eigenstates
of a system and its environment, analyzing their cardinality. We show that the canonical density for a
system emerges from a maximally entangled global state of system and environment through relational
complex time evolution between system and environment without the need to maximize the entropy or to

count states.
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Canonical typicality has proven to be a powerful concept
to understand how statistical mechanics emerges for a
(small) system S singled out from its environment £ where
environment and system together are in a pure energy
eigenstate of the global Hilbert space [1,2]. This is achieved
by analyzing what is “typical” about the ensemble of
excessively many possibilities to realize such an eigenstate
in a small energy interval [E, E + SE] and assessing the
exponentially growing number of typical realizations in
ensembles of increasing energy E. The approach carries
the spirit of statistical mechanics which deals with many
degrees of freedom and therefore naturally with ensembles.
Yet, quantum mechanics introduces already for a single
degree of freedom a probabilistic perspective with the wave
function associated with its dynamics. Hence, one could
hope to capitalize on this fundamental quantum property
to derive statistical mechanics from a single pure state.
The fact that, compared to classical mechanics, quantum
mechanics offers with entanglement another resource for
variety already encoded in a single state renders the exis-
tence of such a state as the source of statistical mechanics
more likely. We will show that statistical mechanics is
contained in a single, maximally entangled global eigen-
state (MES) of system and environment without the need to
consider ensembles of global states at different energies
[1,2] or to count degenerate states of the system [3].
Instead, we extend the relational time approach originally
conceived by Page and Wootters [4] to propagate density
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matrices in imaginary relational time. This will allow us
to conceive the fundamental thermodynamic relation
from the density matrix of a maximally entangled global
state for any desired imaginary time y, which will turn
out to represent temperature in the well-known way,
(kgT)~! =y, if infinite temperature y = 0 is linked to
the MES. Hence, relational complex time evolution turns
out to be the element which completes the quest for
deriving statistical mechanics from a pure quantum state
without the need to resort to additional statistical consid-
erations. The result confirms the conjecture that temper-
ature, similarly as time, has a relational root [5] and
provides a physical justification for the striking connection
between dynamics and thermal physics [6].

Relational time emerges from a splitting of the global

Hamiltonian H,,, = H ® 1 e+ 1QH < + Vinto system A
and environment H ¢ interacting w1th each other through V.

Since the global state W fulfills (H — Ey)|¥) = 0 one
can formulate the invariance principle [7]

M uEw) Yy — ) (1)

which does not only hold for all imaginary-valued sym-
metry parameters A = i/, but also for real ones A = y or, in
general, for complex A.
With (1) we can write for the density matrix Py =
|PH (Y| of the global state
Pl}, — eA(ﬁmt_Emt)P\PeA*(I:Itm_Etm)' (2)
From now on we will assume in accordance with the
original proposal for relational time [4] that the interaction
V is small enough to be neglected. In fact, this condition
can be softened without losing the thrust of the relational

time concept by only demanding that [Hg, V] =0,
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implying that the environment’s eigenstates are not
changed by the interaction, as we will see later.

For now with V = 0, the evolution according to the
Hamiltonians for the environment fzg =H.—-E, and
system H in (2) factorizes,

eA(Hmt_Etm) — eAhé‘ ® eAH’ (3)

and we can obtain from (2) the density matrix of the system
evolved in complex time A,

P(A) = 70 e M poe M, (4a)
where
e Mpoe™ N = tre[pe(—A*) Py] (4b)
with
pe(A) = e Mepg(0)e ™, (4c)

which follows from (2) after tracing over the environment.
We have left room for a conditioning density pg(0) of
the environment, such that p(0) = Z(0)~'tre[ps(0)Py].
The normalization Z(A) = (¥|pg(—A*)|¥)) ensures that
trp(A) = 1.

Note that according to (4b) the evolution of the system
density p with A means evolution of the environment
density with —A* illustrating the relational character of the
evolution in system and environment, respectively. For real
and continuous A = y, differentiation of (4a) leads to

dp(y)/dy = —{H — (H)(7).p(v)}. (5)

the von Neumann equation for imaginary time y emerging
from complex relational time. The mean energy (H) =
tr(H p) of the system in the anticommutator {-,-} ensures
the normalization. For real time A = il, 1 € R, the standard
von Neumann equation

dp(i2)/da = —ilH. p(i)] (6)

for the time dependence of the density matrix follows from
(4a) by differentiation. The conditioning environmental
density pg in pg = trg[pg(0)Py] allows one to specify
different initial conditions with the global state |¥)) as
discussed for wave functions in [7]. Both differential
equations hold of course for all global states satisfying (1).

Statistical mechanics is encoded in (4). Standard tracing
over the environment [implying pg(0)  1¢] with eigen-
states |J)o and eigenenergies E; of H in (4b) renders
the system density diagonal. Denoting |¢,) = (J|¥)) and
A =y/2 +iA we get from (4b) using (4¢)

1 S
J Ath AN hg J
Z(A) 2] :< |€ ye | >5

— Z(lA)EJje-ref|¢J><¢J|

= e, ™

pA) =

where ¢; = E — E; and the normalization Z(A) absorbs the
constant of proportionality in pg¢(0) o« 1. The last identity
follows from the invariance principle and (3).

Obviously, (7) represents the canonical density for all
temperatures if one identifies y = 1/(kT) and if (¢b;|¢p,) =
cd;y, where the constant ¢ once again can be absorbed in
Z(A) and therefore may be set to unity, ¢ = 1. Then,
evaluating the entropy S = —tr(pInp) with (7) gives
S(y/2) = y(H)(y/2) + InZ(y/2) implying the thermody-
namic relation dS = yd(H).

Note that we have derived the canonical density for the
system solely by the relational connection to the global
state apart from requiring the |¢;) to be orthonormal. This
requirement has a physical reason: With a system at infinite
temperature y = 0 we associate minimal structure implying
in the relational context that the system states |¢;) with
their different energies €; should be contained in the global
state with equal probability (¢,|¢,) = (P|J)(J|¥) =1
for all J. The global state with this property is maximally
entangled,

) =D e ® ([¥) =D 1) ® ). (8)
J J

where the {|¢,)} form an orthonormal basis for the system
Hamiltonian with eigenenergies €;. Note that, thanks to the
MES and with (H¢)g = tre(Hepe),

E = (H)(A) + (Hg)e(A) ©)

holds for all complex times A, in particular for all temper-
atures. The link of the MES to infinite temperature through
complex relational time motivates its role for statistical
mechanics which is given in [3] on very general grounds of
symmetry considerations for a global pure state describing
system and environment.

This remarkably direct quantum route to the fundamental
relation of thermodynamics through relational imaginary
time propagation of a maximally entangled global state
bears some interesting properties of relational complex
time, we would like to point out in the following.

(A) The energy constraint (1) has the consequence, that

Pe. he] = 0 < [p, H] = 0. (10)

In other words, if the conditioning density pg is
(block) diagonal in the energy eigenstates of the
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environment, the system’s density matrix p com-
mutes with the system Hamiltonian, rendering p
stationary in real time, see Eq. (6). As the imaginary
time evolution is ruled by the anticommutator, the
system’s density changes in imaginary time, but only
through the exponential energy factors, the coeffi-
cients in the density remain constant. Since simply
tracing over the environment implies pg(0) o 1
diagonal, this is also true for the imaginary time
evolution giving rise to statistical mechanics as
derived: The evolution relates via the von Neumann
equation in imaginary time the system at different
temperatures, maintaining equilibrium (that is sta-
tionarity in real time), thereby explicating the
“peaceful coexistence of thermal equilibrium and
emergence of time” as put forward in [8].

(B) As a pure state the MES carries vanishing entropy
St = 0. A density matrix of the system singled out
from the MES by tracing over the environment,
p=D""tg[Py] = D7 Y0 |y (|, is  maxi-
mally mixed with (maximal) entropy, S =InD,
where D is the dimension of the system’s Hilbert
space. This property characterizes the maximal
deficit of knowledge or degree of in-determinism,
which is typically associated with a system’s state at
infinite temperature.

The mathematical connection of a maximally
determined global MES with a maximally mixed
(in-determined) state of the system originates from
the way, how information about the system is
encoded in the MES, namely by exclusively and
evenly linking system wave functions to those of the
environment. Hence, giving up the link through
tracing over the environment leaves minimal infor-
mation about the system. On the other hand, a global
state which is not an MES is in general a Schmidt
state  |¥) =D ;a;//)e ® |¢;), a;€R. Links
within (sub)systems, represented by coefficients
ay # 1 in the global state are preserved upon cutting
the links to the environment by tracing over it, and
the resulting system state is not maximally mixed.

In an experimental situation the global system designed

may not be in a maximally entangled or close by state,
but only in a Schmidt state. In this case it is still possible
to mimic thermodynamics for the system via a suitable
conditioning density p¢ of the environment. With p¢(0) =

> i) {J|e one gets explicitly

= g e )il ()
J

where A = y/2 + iA. A conditioning density pe with p; =
aj? gives rise to a canonical density for the system and
therefore statistical mechanics. Such a setup is conceivable
using cavities and quantum control. It may be even more
interesting to study with this kind of setup deviations from
statistical mechanics with densities of the form of (11).
Another step of complication would be to include real time
dynamics if p does not commute with A, directly relevant
for eigenstate thermalization [9,10]. Of course, this com-
plicates the expression for entropy which is also true for
explicit interaction V # 0 in H,,.

Partially, the effect of interaction is included through the
entanglement in the global state: Without interaction the
global state could be a simple product state. Preserving
the general outcome, an interaction V in (1) can be included
which commutes with the environmental Hamiltonian,
[H¢, V] = 0, or due to the Jacobi identity [11] equivalently
[V, |J){J|¢] = 0. This means that the environment is big
enough such that its eigenfunctions are not modified by V.
The result (7) remains the same, only that now the eigen-
functions |¢;) and eigenenergies ¢ fulfill the Schrodinger
equation (A + (J|V|J)e —€;)|p;) = 0.

In summary, we have shown from a relational dyna-
mics point of view how statistical physics of a system is
encoded in maximally entangled states of the system and its
environment. The observation underscores their pivotal role
for fundamental quantum principles, as these states are also
key in the derivation of Born’s rule with envariance [12].
Maximally entangled states have the least structure and are
evenly distributed over system and environment, corrobo-
rating the situation at infinite temperature. Without the need
of ensemble considerations such as canonical typicality,
but by capitalizing on the probabilistic nature of a quantum
state itself, statistical physics for the system at finite
temperature emerges from propagation of the maximally
entangled state in relational complex time.

We thank A. Eisfeld and F. Fritzsch for helpful
discussions.
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