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The causal-stable Müller-Israel-Stewart (MIS) theory is known to have a finite number of out-of-
equilibrium derivative-order corrections but requires treating the viscosity tensor as a separate degree of
freedom with its own equations of motion, apart from the fundamental fluid degrees of freedom like
velocity and temperature. In this work, I will show that it is possible to rewrite the MIS theory only in terms
of velocity and temperature, but the resultant constitutive relation for dissipation must include all orders of
gradient corrections. In this work, I will argue that an all-order resummation of gradient contributions is
equivalent to introducing new “nonfluid” degrees of freedom in the MIS theory. It will also be shown, using
the relativistic quantum causality condition, that any finitely truncated order of derivative correction,
however high it is, leads to a theory that is acausal, unless the corrections are infinitely summed up to all
orders.
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Introduction. Fluid dynamics is an effective theory that
describes the dynamics of a near equilibrium system by the
evolution of the conserved fields at long wavelength limit
[1,2]. The expectation values of these fields at equilibrium
define the hydrodynamic state variables which serve as
the fundamental fluid degrees of freedom. The out-of-
equilibrium dynamics is described in terms of the order-by-
order gradient corrections of these fields. For a relativistic
system however, the fluid theory needs to qualify some
physical criteria such as causal wave propagation and
stability against small perturbations. The relativistic version
of the long established first-order theories [1,3] turns out to
suffer from the pathologies regarding superluminal signal
propagation and thermodynamic instability. As a rescue,
the higher-order Müller-Israel-Stewart (MIS) theory [4–7]
has been suggested to apply as the standard theory of
relativistic dissipative fluid dynamics [8–10].
The MIS theory and the recent derivations of other

analogous higher-order theories [11–14] can serve as
causal as well as stable hydrodynamic formalism with
the fundamental fluid variables like velocity and temper-
ature being locally fixed to their equilibrium values by the
Landau gauge condition (Tμ

νuν ¼ −εuμ, Tμν is the energy-
momentum tensor, ε and uμ are the energy density and fluid
velocity at their local equilibrium values). The price is paid
by the limitation that these fundamental hydrofields are no
longer sufficient to describe the fluid dynamics and addi-
tional degrees of freedom have to be introduced. Hence, the
dissipative fields in the MIS theory are promoted as the

new degrees of freedom and are attributed their individual
equations of motion. Although this version of relativistic
hydrodynamic theories has been quite popular and phe-
nomenologically successful especially in the context of
high energy heavy ion data analysis [15], the physical
meaning of these new degrees of freedom still remains
somewhat questionable. These quantities do not relate to
any conserved fields. In other words, they do not have any
equilibrium counterparts. Given the scenario, one might
wonder if it is possible to have an equivalent “fluid
dynamical” description of MIS theory where the require-
ment of these nonfluid new degrees of freedom can be
eliminated. By fluid dynamical here I mean that (i) the
constitutive relation of the stress tensor can be entirely
written in the terms of temperature, velocity, and their
derivations and the only equations of motion are the stress
tensor conservation, and (ii) the fluid variables such as
velocity and temperature are fixed by the Landau gauge
such that there is no ambiguity in their definition.
Motivated by this idea, in this work, I attempt to rewrite

the MIS theory that obeys causality and stability while
remaining in the Landau frame (such that the field variables
are well defined) but without requiring any additional
degrees of freedom. For simplicity, here a conformal
system is considered without any conserved charges. We
will see that it is indeed possible to generate the identical
results of MIS theory only using the velocity and temper-
ature as fluid variables, if the constitutive relation for the
dissipation (here the shear tensor) runs up to infinite orders
of gradient correction. In this context, we remember that an
all-order resummation of gradient contributions is known to
be equivalent to introducing non-hydrodynamic modes*sukanya.mitra@niser.ac.in
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which have been implemented in many ways. In [16,17],
the transport coefficients are resummed by making them
frequency dependent in order to incorporate all-order
gradient corrections. In [18,19], these large orders are dealt
with using Borel resummation techniques with Padé
approximation which are also leading works of the far
from equilibrium attractor theory. MIS theory is one such
resummation scheme where the resummation is shown to
result in not only non-hydro-modes but new nonfluid
degrees of freedom. I will then explicitly prove, using
the causality condition ImðωðkÞÞ ≤ jImðkÞj of relativistic
quantum theory [20], that any finite-order truncation of the
derivative correction series immediately leads to acausality
unless the dissipations are promoted as individual degrees
of freedom or summed infinitely.
Throughout the article, I use natural units

(ℏ ¼ c ¼ kB ¼ 1) and flat space-time with mostly positive
metric signature ημν ¼ diagð−1; 1; 1; 1Þ.

MIS theory: An all-order gradient correction theory. To set
the chain of arguments, I start with the well-known form
of the MIS equations of motion keeping up to the linear
terms [21],

∂μTμν ¼ 0; Tμν ¼ ε

�
uμuν þ 1

3
Δμν

�
þ πμν; ð1Þ

πμν þ τπDπμν ¼ −2ησμν: ð2Þ

The conformal and uncharged energy-momentum tensor Tμν

consists of the equilibrium fields such as energydensity ε and
hydrodynamic velocity uμ (along with projection operator
Δμν ¼ ημν þ uμuν) and the viscous correction πμν that
depends upon shear viscosity η and relaxation time of shear
viscous flow τπ. The notationDð¼ uμ∂μ in local rest frameÞ
indicates the temporal derivative correction of the hydro-
dynamic fields and σμν ¼ Δμν

αβ∂
αuβ denotes the traceless,

symmetric velocity gradient with Δμναβ ¼ 1
2
ΔμαΔνβþ

1
2
ΔμβΔνα − 1

3
ΔμνΔαβ. Here I attempt to derive the combined

results of Eqs. (1) and (2) without treating πμν as an
independent degree of freedom. Instead of attributing an
individual differential equation to πμν like Eq. (2), I express it
as a sum of order-by-order gradient corrections in Eq. (1)
itself as

πμν ¼
X
n

πμνn ;

πμν1 ¼ −2ησμν; πμνn ¼ −τπDπμνn−1; n ≥ 2: ð3Þ

This summation of order-by-order gradient correction in (3)
leads to the shear-stress tensor as the following:

πμν ¼ −2η
�XN

n¼0

ð−τπDÞn
�
σμν; ð4Þ

whereup toNth order of temporal derivative corrections have
been taken. Next, I linearize the conservation equations (1)
and (2) for small perturbations of fluid variables around their
hydrostatic equilibrium as ψðt; xÞ ¼ ψ0 þ δψðt; xÞ. Here,
the subscript 0 indicates global equilibrium and the fluctua-
tions δψðt; xÞ are expressed in the planewave solutions via a
Fourier transformation δψðt; xÞ → eiðkx−ωtÞδψðω; kÞ, with
wave 4-vector kμ ¼ ðω; k; 0; 0Þ. Following the linearization,
the shear and sound channel dispersion relations fromEq. (4)
respectively become

ðiωÞ þ η̃ðikÞ2
�XN
n¼0

ðτπiωÞn
�
¼ 0; ð5Þ

ðiωÞ2 þ 4

3
η̃ðiωÞðikÞ2

�XN
n¼0

ðτπiωÞn
�
−
1

3
ðikÞ2 ¼ 0: ð6Þ

Here η̃ ¼ η=ðε0 þ P0Þ ¼ η=ð4
3
ε0Þ for a conformal system.

It can now be readily checked that, if in Eqs. (4)–(6) the
sum over the gradient series is taken up to all orders
(N → ∞), the infinite sum results in a closed form, such asP∞

n¼0 x
n ¼ 1

1−x with x ¼ τπiω. The sum exists within the
radius of convergence jτπiωj < 1, whose circumference is
the location of the first non-hydro-mode of MIS theory
(ω ¼ − i

τπ
), beyond which hydrogradient expansion should

not be trusted anyway. Applying this technique, Eq. (4)
turns out to be

πμν ¼ −2ηð1þ τπDÞ−1σμν; ð7Þ

where this infinite sum appears in the denominator of the
expression of πμν in the form of the relaxation operator
ð1þ τπDÞ. We can see Eq. (7) readily takes us to Eq. (2).
Hence, we see that the all-order infinite sum in πμν in
Eq. (3) is producing the identical results of solving the πμν

from Eq. (2) by considering it an independent degree of
freedom, without actually doing so. Consequently, from
Eqs. (5) and (6) with N → ∞, we find the well-known
dispersion polynomials of MIS theory [22], which at local
rest frame for shear and sound channels are given respec-
tively by

τπω
2 þ iω − η̃k2 ¼ 0; ð8Þ

τπω
3 þ iω2 −

�
4

3
η̃þ 1

3
τπ

�
ωk2 −

1

3
ik2 ¼ 0: ð9Þ

So if we choose to integrate out πμν from Eq. (2) by solving
it first in terms of the fluid variables using the perturbative
technique of derivative expansion, the resultant fluid
equations turn out to have an infinite number of derivatives
[Eq. (3) with N → ∞]. This infinite sum over the gradient
corrections [Eq. (3)] being “integrated in” [summed in a
closed form to generate temporal derivatives in the
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denominator such that πμν gets its own differential equa-
tion (7)], as the new degrees of freedom in MIS theory, is
the key result of the current work.
Based on these results, in this work I argue that the

theory well known as the MIS theory [Eqs. (1) and (2)
combined], that is known to be free from the acausal signal
propagation and thermodynamic instabilities, is not a
second-order or any finite higher-order truncated theory.
Rather an infinite sum over the derivative-order corrections
is required to produce Eqs. (1) and (2). This infinite sum is
actually equivalent to attributing a new degree of freedom
other than velocity and temperature. Describing the dis-
sipative dynamics of a relativistic system in terms of
gradient corrections renders a pathology-free theory only
and only if the corrections are summed up to infinite orders.
Any truncation at finite order directly leads to the violation
of causality and cannot serve as an acceptable hydro-
dynamic theory.
In the following sections, I will establish that any finitely

truncated-order summation of πμν in Eq. (3), however high
it is, cannot produce a pathology-free stable-causal theory.
In order to resolve the issues of causality and stability, we
need to consider all orders of gradient corrections in Eq. (4)
(N → ∞), such that the infinitely summed derivatives
generate the relaxation operator ð1þ τπDÞ in the denom-
inator of πμν. To prove this, I take recourse of the relativistic
quantum theory causality condition,

ImðωðkÞÞ ≤ jImðkÞj; ð10Þ

which indicates the stability invariance of a theory as well
[23–25]. In the following, I will show case by case that a
truncated theory always violates Eq. (10), while an all-
order theory resulting from the infinite sum restores the
causality and stability by always satisfying (10) for τπ > η̃.

Testing truncated theory. In order to check condition (10),
we need to extract the solution ωðkÞ from the respective
dispersion polynomial. Here, as a test case, I investigate the
shear channel frequency solution under the inequality (10).
As mentioned in the previous section, for a truncated theory
where πμν is taken up to a certain finite order N, the shear
channel dispersion polynomial (5) becomes

ðiωÞ þ η̃ðikÞ2
�XN
n¼0

ðτπiωÞn
�
¼ 0: ð11Þ

I will now show that, for any finite N, the solution of
Eq. (11) is not able to satisfy the condition given in (10) for
all possible values of k.1

Truncation at N ¼ 0: For N ¼ 0, we have the usual
Navier-Stokes shear channel which has an exact solution,

ω ¼ −iη̃k2. For any real k, the condition (10) requires η̃ to
be positive. But if k is a purely imaginary large number
k ¼ �ip, with pð≫ 1Þ real and positive, we have
ImðωÞ ¼ η̃p2, which with η̃ > 0 clearly violates ImðωÞ ≤
jImðkÞj since ImðωÞ ∼ p2 and jImðkÞj ∼ p.
Truncation at N ¼ 1: For N ¼ 1, we have the exact

solution

ω ¼ −iη̃k2=½1 − η̃τπk2�: ð12Þ

For a value of k given by η̃τπk2 ¼ ð1� ϵÞ with ϵ to be real,
positive, and ϵ ≪ 1, Imðω�Þ ¼ � 1

τπ
1
ϵ which is a large

number. Now if τπ is positive (η is also a positive number
[26] considering the constraints of the second law of
thermodynamics), then k is a real number with ImðkÞ¼0
and ImðωþÞ ¼ 1=ðτπϵÞ is a large positive number. So
ImðωÞ ≤ jImðkÞj is violated. If τπ is negative, Imðω−Þ ¼
−1=ðτπϵÞ is again a large positive number with jImðkÞj ¼
1=

ffiffiffiffiffiffiffiffiffi
η̃jτπj

p
which is a finite quantity. So ImðωÞ ≤ jImðkÞj is

again violated.
Finite truncation at N ≥ 2: For N ≥ 2 but still with finite

truncation, Eq. (11) is only possible to solve at limiting
values of k. At k → 0, Eq. (11) gives at least one solution,

ðiωÞ ¼
�

1

η̃τNπ k2

� 1
N−1

: ð13Þ

Here the relaxation time and the wave vector is expressed as

τπ ¼ jτπjeiσπ; k ¼ jkjeimπ; ð14Þ

with σ ¼ 0 and σ ¼ 1 corresponding to positive and
negative values of relaxation time, respectively, and m is
any real number. The imaginary part of frequency and wave
number respectively becomes

ImðωÞ ¼ −
�

1

η̃jτπjN jkj2
� 1

N−1
cos

�ð2mþ σNÞ
N − 1

π

�
;

jImðkÞj ¼ jkjj sinðmπÞj: ð15Þ

We can always choose a domain such as 1
2
<

ð2mþ σNÞ=ðN − 1Þ < 3
2
, where the cosine function of

ImðωÞ is negative such that ImðωÞ is a large positive
number if jkj is small. But jImðkÞj is finite at small jkj. So
clearly condition (10) is violated.
So we see that for any truncated value of N starting from

0, there always exists at least one mode such that the
imaginary part of ω becomes greater than the modulus of
the imaginary part of k in the complex k-plane and hence
has issues with causality and stability. Thus we can safely
conclude that any truncated order of gradient correction in
Eq. (3) cannot produce a relativistic, dissipative theory that
is consistent with the causality-stability assessment.

1This part of the calculation has been done with the collabo-
ration of Sayantani Bhattacharyya.
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Testing all-order theory. The all-order infinitely summed
theory has the shear channel dispersion polynomial as the
following:

τπðiωÞ2 − ðiωÞ − η̃ðikÞ2 ¼ 0: ð16Þ

The solution of Eq. (16) is

ω� ¼ 1

2τπ

�
−i� f−1þ 4η̃τπk2g1

2

�
: ð17Þ

Now decomposing ω as ω ¼ ωR þ iωI and expressing k as
k ¼ jkjeimπ as before, it is possible to derive

2ð1þ 2τπωIÞ2 ¼ f1 − 4η̃τπjkj2 cosð2mπÞg
� ½1þ 16η̃2τ2πjkj4 − 8η̃τπjkj2 cosð2mπÞ�12:

ð18Þ

In the following, it will be proved that for any value of jkj
and m, it is not possible to violate condition (10). If
possible, violation of (10) demands

ωI > jkjj sinðmπÞj: ð19Þ

Equations (18) and (19) simultaneously lead us to the
inequality

�
�
f1 − 4η̃τπjkj2g2 þ 16η̃τπjkj2sin2ðmπÞ

�1
2

> 1þ 4η̃τπjkj2 þ 8τπjkjj sinðmπÞj
þ 8τπðτπ − η̃Þjkj2sin2ðmπÞ: ð20Þ

We can see that, if τπ > η̃, the maximum value of the left-
hand side and the minimum value of the right-hand side of
(20) both are ð1þ 4η̃τπjkj2Þ. So the left-hand side of (20) can
never exceed the right-hand side and the violation of (10) is
never possible once the condition τπ > η̃ is satisfied.
Interestingly enough, this is the asymptotic causality con-
dition of MIS shear channel estimated from the large wave
number propagating mode that can be obtained from (10)
itself.
So we conclude that, once the condition τπ > η̃ is obeyed

by the transport coefficients, the causality condition ImðωÞ ≤
jImðkÞj is satisfied for all possible k values in an all-order
theory. Hence, in contrast to the truncated ones, an all-order
theory is the only admissible candidate for a reliable hydro-
dynamic theory for relativistic, dissipative fluids.

Conclusion. In this work, it has been shown that, although
in the conventional MIS theory the equations of motion for
temperature, velocity, and viscous tensor have finite num-
ber of derivatives, integrating out πμν by solving it in terms
of the fluid variables perturbatively results in an infinite
number of derivatives. For such a theory, the causal signal
propagation is not compromised as long as the gradient
corrections are summed up to infinite orders. The advan-
tage of such an approach is that, no new degrees of freedom
that could not be linked to conserved quantities are needed
to be introduced, but still the temperature and velocity can
be unambiguously fixed by the Landau gauge. The recently
proposed first-order stable and causal Bemfica-Disconzi-
Noronha-Kovtun (BDNK) theory [27–32] does not require
any additional degrees of freedom, but they are well
behaved only away from the Landau frame. Hence, the
primary field variables like velocity and temperature have
ambiguities in their first principle definition since they do
not coincide with those in either Landau’s or Eckart’s
frames apart from global equilibrium and consequently lack
a definition in terms of the microscopic field theory
operator Tμν. Of course the theory derived here with
infinitely many derivatives has practical limitations for
simulation purpose since it is not possible to solve them
even numerically for arbitrary initial conditions. But the
point of this work is to indicate that if we want to construct
a relativistic dissipative hydrodynamic theory purely in
terms of fundamental fluid fields like temperature and
velocity that have first principle microscopic definition,
causality is only maintained if all orders of derivative
corrections are taken into consideration. If this all-order
sum needs to be averted, it has to be folded in one way or
another: either in terms of new degrees of freedom (MIS) or
in terms of field redefinition leading to no first principle
definition of velocity or temperature (BDNK). In our recent
article [33], this tension has been further investigated. It has
be shown that in BDNK theory if we want to define the
velocity and temperature locally in terms of the stress
tensor operator like we do in Landau frame, then the
constitutive relation will include all orders of derivative
corrections as well.
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