
Quintessential interpretation of the evolving dark energy in light
of DESI observations

Yuichiro Tada *

Institute for Advanced Research, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8601, Japan
and Department of Physics, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8602, Japan

Takahiro Terada †

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University,
Furo-cho Chikusa-ku, Nagoya 464-8602, Japan

(Received 29 April 2024; accepted 24 May 2024; published 24 June 2024)

The recent result of the Dark Energy Spectroscopic Instrument (DESI) in combination with other
cosmological data shows evidence of the evolving dark energy parametrized by the w0waCDM model. We
interpret this result in terms of a quintessential scalar field and demonstrate that it can explain the DESI
result even though it becomes eventually phantom in the past. Relaxing the assumption on the functional
form of the equation-of-state parameter w ¼ wðaÞ, we also discuss a more realistic quintessential model.
The implications of the DESI result for Swampland conjectures, cosmic birefringence, and the fate of the
Universe are discussed as well.
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Introduction. The cosmological constant (Λ) [1], or more
generally dark energy (DE), is the least understood funda-
mental parameter in the low-energy effective field theory
based on general relativity and the Standard Model of
particle physics. For example, the stable de Sitter universe
sourced by Λ is questioned in the context of quantum gra-
vity such as the Swampland program [2,3] (see Refs. [4–6]
for reviews). If it is indeed unstable and hence the dark
energy is evolving, it can play a richer cosmological role.
For example, an evolving ultralight axionlike field is
discussed as a solution [7] (see also Refs. [8–12]) to the
recently observed cosmic birefringence [13–17]. Thus, the
nature of dark energy can be related both to fundamental
physics and to cosmological observations.
Following their early data release [18,19], the DESI

Collaboration has recently announced its first-year results
of the analyses of the baryon acoustic oscillation (BAO)
[20–22] based on their large-volume precise observations
of galaxies, quasars, and Lyman-α forest. See Refs. [23–42]
for earlier BAO results. Although the Dark Energy Spectro-
scopic Instrument (DESI) data alone are consistent with the
Lambda cold dark matter (ΛCDM) model, if the model is
generalized to wCDM and w0waCDM models (see, e.g.,
Refs. [43,44]), the central values of these parameters are
deviated from the ΛCDM value [22]. Combined with
cosmic microwave background (CMB) data [45–52] and
supernova data, they even exclude the ΛCDM model

against the w0waCDM model at 2.5σ, 3.5σ, and 3.9σ for
Pantheonþ [53], Union3 [54], and DES-SN5YR [55],
respectively, as the supernova data. The data show the
preference to w0 > −1 and wa < 0, where wðaÞ ¼ w0 þ
wað1 − aÞ is the equation of state (EOS) parameter of the
dark energy with a being the scale factor of the Friedmann-
Lemaître-Robertson-Walker cosmology.1 If confirmed, this
result potentially has substantial implications for the origin
and future of ourselves and the Universe.
In this paper, we discuss interpretations of the DESI

result in terms of a canonical real scalar field. The scalar
field playing the role of dark energy is called quintessence
(see, e.g., Ref. [59] for a review). We first phenomeno-
logically translate the observed relation w¼w0þwað1−aÞ
into the scalar-field language. We discuss the implications
for the Swampland conjectures (see Refs. [60,61] for earlier
works) and the cosmic birefringence. To overcome the
limited validity range of the resulting model, we relax the
assumption on the relation w ¼ wðaÞ and consider a
canonical model without the quintessence becoming phan-
tom (w < −1). We also extrapolate the DESI results into
the future and discuss the fate of the Universe.
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1The increase of w0 is correlated with the decrease of H0

[56,57], which is the opposite direction to solve the Hubble
tension. (For other issues in the interpretation of the DESI data in
the ΛCDM model, see Ref. [58], which appeared soon after the
first version of our paper.) Nevertheless, the significance of the
Hubble tension in the w0waCDM model is reduced compared to
the ΛCDM model as the uncertainty gets larger with the addi-
tional parameters [22].
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Reconstruction of the scalar potential.We consider the flat
w0waCDM model, where the EOS parameter of the dark
energy is parametrized by the Chevallier-Polarski-Linder
form [43,62]

wðaÞ ¼ w0 þ wað1 − aÞ: ð1Þ

The scale factor a is normalized to unity at the present time,
so the present value of the dark-energy EOS parameter is
given by w0. On the other hand, wa parametrizes the time
dependence of w.
The purpose of this paper is to interpret the DESI result

in terms of quintessence. In this section, we assume exactly
the form in Eq. (1) and reconstruct the scalar field
dynamics. We consider a (homogeneous) canonical scalar
field ϕ with its potential VðϕÞ. In general, the EOS of such

a field is given by w ¼ 1
2
ϕ̇2−V

1
2
ϕ̇2þV

. For an arbitrary non-negative

potential VðϕÞ ≥ 0, the EOS parameter is restricted as
−1 ≤ w ≤ 1. As is well known, positive V with small
kinetic energy realizes w ≃ −1, surviving as dark energy.
Negative potential V < 0 allows values of w outside of the
above range, but a smooth transition from w≳ −1 with
V > 0 to w≲ −1 with V < 0 is impossible since w ¼ 1 at
V ¼ 0 unless the kinetic energy vanishes simultaneously.
Sometimes, one considers a phantom scalar field, which
has the wrong-sign kinetic term, to realize w < −1 with
V > 0, but it is either nonunitary or unstable. Even if the
phantom dark energy does not couple directly to the
Standard-Model particles, they interact with gravity and
the theory is not viable [63,64].
Let us compare the scalar-field EOS and Eq. (1). The

DESI results wa < 0 and w0 þ wa < 0, while literally
assuming Eq. (1), imply w < −1 for a sufficiently small a,
violating the null energy condition,2 and w > 1 for a
sufficiently large a. As we mentioned above, the smooth
transition into w < −1 is not allowed in our quintessence
model, so the interpretation in terms of ϕ must break down
before entering the regime with w < −1.3 On the other
hand, w > 1 in the future can be associated with a negative
potential VðϕÞ < 0 in the relevant field domain. We will
come back to these points below.
Assuming that the dark energy does not exchange the

energy densities with other cosmic components, we have
the continuity equation

ρ̇DE þ 3ð1þ wÞHρDE ¼ 0; ð2Þ

where ρDE is the dark energy density and H ¼ ȧ=a is the
Hubble parameter. The solution under the linear assump-
tion (1) is given by

ρDEðtÞ ¼ ρDE;0aðtÞ−3ð1þw0þwaÞe3waðaðtÞ−1Þ; ð3Þ

where ρDE;0 is the present value of ρDE. Since we are
interested in the relatively late-time universe, we can safely
neglect the radiation component. Using the redshift scaling
of the nonrelativistic matter component ρm ∝ a−3 and the
Friedmann equations, we can solve a ¼ aðtÞ.
Let us translate the dynamics of dark energy into the

quintessential field ϕ ¼ ϕðtÞ. That is, we reconstruct VðϕÞ
and the associated solution ϕ ¼ ϕðtÞ that reproduces the
specific dynamics (1). Using the Friedmann equation,

3H2M2
Pl ¼ Ωm;0a−3 þ ð1 −Ωm;0Þ

ρDEðaÞ
ρDE;0

; ð4Þ

the kinetic energy, the scalar potential, and its derivative are
given in terms of wðaðtÞÞ, and aðtÞ as follows:

1

2
ϕ̇2 ¼ 1

2
ð1þ wÞρDE; V ¼ 1

2
ð1 − wÞρDE;

V 0 ¼ 1

2
ðwaa − 3ð1 − w2ÞÞH

ffiffiffiffiffiffiffiffiffiffiffiffi
ρDE
1þ w

r
; ð5Þ

where V 0 ≡ dVðϕÞ=dϕ is the derivative of the scalar
potential. This can be used to map the contour on the
ðw0; waÞ plane to the contour on the ðV; V 0Þ plane. To this
end, we fix the present matter abundance Ωm;0 ¼ 0.3 and
deal with the combinations V=ð3H2

0M
2
PlÞ and V 0=ð3H2

0M
2
PlÞ

so that it is not sensitive to the overall scale H0.
4 Figure 1

shows the contour evaluated at the present time.
From Eq. (5), we obtain ϕ̇ðtÞ and VðtÞ. Integrating the

former, we obtain ϕðtÞ, whose integration constant is set
such that the origin of ϕ coincides with the current value,
i.e., ϕðt0Þ ¼ 0. We also assume ϕ̇ðt0Þ > 0 without loss of
generality. Typically, we find ϕ does not turn around, so
ϕðtÞ can be inverted to tðϕÞ. Thus, one can reconstruct
VðϕÞ ¼ VðtðϕÞÞ. In addition, we obtain aðtÞ from the
Friedmann equation (4). For an intuitive understanding, we
show the reconstructed scalar potential VðϕÞ in Fig. 2 and
the time evolution of ϕðtÞ as well as aðtÞ in Fig. 3 with the
central value of DESIþ CMBþ DES (w0 ¼ −0.727 and
wa ¼ −1.05) as the benchmark parameter.

2It was suggested that such a phantom phase is a mere
consequence of an inappropriate choice of priors [65], after
the appearance of the first version of our paper.

3A simpler picture is that the linear relation (1) should be
viewed as a toy model, or the simplest nontrivial parametrization
of wðaÞ with time dependence [66–69]. Equation (1) must be a
good approximation for a sufficiently small j1 − aj as a truncation
of the Taylor series, but the Oð1Þ value of jwaj may suggest the
importance of higher order terms. In this picture, the form of wðaÞ
can be modified for a sufficiently small a. Discussions along
these lines are presented in Sec. III.

4In the following, we use the same value of Ωm;0 as a
representative value unless otherwise specified since the results
do not crucially depend on its precise value. Because of the
assumed flatness of space, the dark energy density is obtained as
ΩDE ¼ 1 − Ωm.
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We can reconstruct ϕðtÞ and VðϕðtÞÞ only up to the point
where ϕ becomes a phantom in the past. At the benchmark
point, this occurs at a ¼ 0.74 or z ¼ 0.35. This redshift is
greater than the pivot redshift values zp, i.e., the redshift
values most sensitive to the determination of w, reported in
Ref. [22]. This suggests that the interpretation in terms of
quintessence makes sense although it eventually becomes
phantom in the past. We interpret the phantom crossing as
an indication of the breakdown of the effective theory,
and it should be replaced by another theory in the early
Universe.
It is also intriguing to discuss the implications for the

future of the Universe by extrapolating Eq. (1). Figure 3
shows that the accelerated expansion [70,71] will soon stop
and it will turn to the decelerated expansion again. Literally
assuming Eq. (1) eventually leads to wðaÞ ≥ 1. From the

EOS of ϕ, w ¼ 1
2
ϕ̇2−V

1
2
ϕ̇2þV

, we see that V must get negative.

Further growth of w corresponds to V asymptoting to 0
from below with slowly rolling-up ϕ (see the inset of

Figs. 2 and 3). Of course, we can easily imagine that the
linear behavior wðaÞ changes at some point in the future,
and the shape of the potential may be modified. If the final or
asymptotic value of VðϕÞ is positive, there will be another
accelerated expansion phase in the future with the reduced
dark energy. On the other hand, if the field is trapped in a
minimum with V < 0 or if the potential is unbounded below,
the Universe will eventually turn around into a contracting
phase [72,73]. In such a case, the kinetic energy of ϕ
typically dominates the energy density of the Universe and it
will lead to a big crunch. We emphasize again that any
statement about ϕ > 0 relies on the extrapolation of Eq. (1).
The thawing quintessence, or the decaying dark energy,

may be a consequence of the quantum gravitational censor-
ship against the stable de Sitter-like universe. The (refined)
de Sitter conjecture reads [74–76] (see also Refs. [77–80])

jV 0j ≥ cV; or V 00 ≤ −c0V; ð6Þ

in the reduced Planck unit MPl ¼ 1, where c and c0 are
some positive constants. Naively, these dimensionless
constants are expected to be of Oð1Þ, leading to some
tension with slow-roll inflationary models [75,81–87]. In
the negative part of the potential, the left inequality is
automatically satisfied. For positive potential, the conjec-
ture requires a sufficiently large slope (first inequality) or
otherwise it should be unstable (second inequality).
Figure 2 shows that the positive part of the potential has
a positive second derivative, so we focus on the first
inequality. By studying cmax ≡minV>0 jV 0j=V, we can
place an upper bound on c, i.e., c ≤ cmax, for the recon-
structed potential to be consistent with the conjecture. The
constraint is shown in Fig. 4 in combination with the field
excursion Δϕ to be discussed next.
An important implication of the light scalar field [7] is

the recently detected cosmic birefringence [13–17], which
requires new physics beyond the Standard Model [88].
The idea is that the following axionlike coupling biases the

FIG. 1. The 1σ and 2σ contours of the allowed values of V and
V 0 at the present time. The blue, green, and orange contours
correspond to Pantheonþ, DES, and Union, respectively, com-
bined with CMB and DESI. We set Ωm;0 ¼ 0.3 for simplicity.

FIG. 2. The reconstructed scalar potential VðϕÞ at the bench-
mark point. The potential is negative for ϕ=MPl > 1.44.

FIG. 3. Dynamics of aðtÞ (vermilion solid line) and ϕðtÞ
(sky-blue dashed line) at the benchmark point.

QUINTESSENTIAL INTERPRETATION OF THE EVOLVING … PHYS. REV. D 109, L121305 (2024)

L121305-3



propagation of photon depending on its chirality in the
presence of nonvanishing ϕ̇, generating birefringence:

L ¼ 1

4

ffiffiffiffiffiffi
−g

p
gϕγγϕFμνF̃μν; ð7Þ

where gϕγγ is the ϕ-photon-photon coupling constant,Fμν is
the field-strength tensor of photon, and F̃μν its dual. The
observed isotropic cosmic birefringence angle β is β ¼
0.34°� 0.09° [16]. This is related to the field excursion Δϕ
from the last scattering surface to the present time as β ¼
gϕγγΔϕ=2 [7]. In our case, we cannot extendϕðtÞ beyond the
phantom crossing, and we substitute the field excursion from
the phantom point to the present time to Δϕ. One may
interpret our Δϕ as a lower bound on the true Δϕ once the
theory is completed into the would-be phantom regime. The
result of our analysis on Δϕ is shown in Fig. 4 in combi-
nation with cmax. The preferred range of the coupling is

gϕγγ ¼ 0.12

�
0.1MPl

Δϕ

�
M−1

Pl : ð8Þ

With such a suppressed interaction with photons, it is free
from observational constraints [7].
The required field excursion is sub-Planckian whereas it

can become Planckian in the future (see Fig. 2). The Oð1Þ
Planckian field excursion can potentially be in tension with
(the refined version [89,90] of) the Swampland distance
conjecture [3], which states that an infinite tower of
particles becomes light as m ∼ expð−dΔϕÞ with an Oð1Þ
parameter d as any scalar field ϕmoves over a distanceΔϕ.
If the field space of ϕ is compact like an axion, the
constraint disappears. Even if it is not compact, the actual
breakdown of the effective field theory occurs only after ϕ
moves over super-Planckian distance leading to the follow-
ing constraint [91]:

Δϕ≲ 3

d
MPl log

�
MPl

H0

�
: ð9Þ

Because of the large logarithmic factor, this constraint is
easily satisfied.

A concrete canonical model. Relaxing the linear assump-
tion (1), we here investigate a more realistic realization of
the time-varying EOS parameter from the viewpoint of the
thawing quintessence model. In the thawing model, the
quintessential scalar field ϕ is first frozen on the potential
due to the Hubble friction in the early Universe. As the
dark matter energy density gets diluted, the scalar field
“thaws” and starts to roll down to the potential minimum.
Expanding the potential up to the second order around the
initial field value ϕi as VðϕÞ ≃

P
2
n¼0 V

ðnÞðϕiÞðϕ − ϕiÞn=n!
and supposing that the evolution of the scale factor is not
significantly altered from that of the ΛCDM, one finds the
evolution of the EOS parameter w in this model as [66,67]

wðaÞ ≃ −1þ ð1þ w0Þa3ðK−1ÞF ðaÞ; ð10Þ

with

F ðaÞ ¼
"

ðK − FðaÞÞðFðaÞ þ 1ÞK þ ðK þ FðaÞÞðFðaÞ − 1ÞK
ðK −Ω−1=2

ϕ ÞðΩ−1=2
ϕ þ 1ÞK þ ðK þΩ−1=2

ϕ ÞðΩ−1=2
ϕ − 1ÞK

#
2

; ð11Þ

where

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4

3

M2
PlV

00ðϕiÞ
VðϕiÞ

s
; FðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩ−1

ϕ − 1Þa−3
q

:

ð12Þ
Here, Ωϕ is the current density parameter of ϕ and we

will assume the flat universe, i.e., Ωϕ þ Ωm ¼ 1. The wa

parameter in the linear model (1) can be viewed as −w0ðaÞ
in this formula.
As we are now interested in a relatively large value of

jwaj going beyond the so-called slow-roll approximation,
we still need a parameter fine-tuning via a numerical
parameter search to get a desired value of w and consis-
tently recover the current density parameter Ωϕ. Let us
suppose the axionlike potential,

FIG. 4. The 1σ and 2σ contours of the allowed values ofΔϕ and
cmax. The color coding is same as in Fig. 1.
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VðϕÞ ¼ Λ2f2
�
1þ cos

ϕ

f

�
; ð13Þ

with model parameters Λ and f as a representative thawing
model. We find that the central value ðw0; waÞ ≃ ð−0.7;−1Þ
with Ωm ≃ 0.3 can be realized by the parameter set
ðΛ2=H2

0; f=MPl;ϕi=fÞ ¼ ð8.7; 0.41; 0.55Þ. The correspon-
ding evolution of w is shown in Fig. 5. The field excursion
is calculated as Δϕ ≃ 0.33MPl while it reads ≃0.17MPl in
the linear model discussed in the previous section. The
discrepancy may come from the smooth deviation of w
from the linear relation. Nevertheless, this factor difference
can be absorbed into the parametrization of the coupling
constant to explain the cosmic birefringence.
The Swampland coefficientsMPljV 0j=V andM2

PlV
00=V in

this model are shown in Fig. 6. One sees that either of them
always exceeds the unity and hence the model is compat-
ible with the Swampland de Sitter conjecture.
The axion decay constant is constrained to be sub-

Planckian by the weak gravity conjecture [92]. Applied to
an axion, it can be written in the following form:

f ≲MPl

Sinst
; ð14Þ

where Sinst is the instanton action. This means that the axion
decay constant f is sub-Planckian as long as the contri-
butions from higher instanton numbers are well suppressed.
Our benchmark value f=MPl ¼ 0.41 is consistent with this
conjecture.

Discussions. We investigate the interpretation of the
recent DESI result on the time-varying dark energy as a
quintessential scalar field. Supposing the linear evolution of
the EOS parameter w (1), the corresponding scalar potential
is reconstructed in Sec. II up to the time when the simple
linear relation indicates the phantom EOS, w < −1. The
more realistic thawing model with the axionlike potential
(13) is discussed in Sec. III.
Not only are the observational data understood in terms

of a scalar field, but the time-varying dark energy also has
several implications in the cosmological and particle
physics context. For example, the decaying dark energy
is preferred by the de Sitter Swampland conjecture [74,76]
as exhibited in Figs. 4 and 6. The sufficient field excursion
can also explain the observed cosmic birefringence through
CMB [7,13]. The fate of the Universe strongly depends on
the future shape of the potential, even the big crunch being
possible.
One finds that the deviation of the linear relation in

the thawing model is not negligible in Fig. 5. It even
appears around the pivot scale zp ≃ 0.26 or ap ≃ 0.79 of
DESIþ CMBþ DES [corresponding to the central value
ðw0; waÞ ¼ ð0.727;−1.05Þ] where w is best constrained by
the observational data. The model here is hence expected
to be confirmed or falsified in the near future by observing
the time evolution of the dark energy beyond the linear
assumption.
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FIG. 5. Time evolution of the EOS parameter in the axionlike
thawing model (13) with the parameters ðΛ2=H2

0; f=MPl;ϕi=fÞ ¼
ð8.7; 0.41;0.55Þ. The blue line is the numerical result of the
background equations of motion, the orange dashed one corre-
sponds to the analytic formula (10), and the black dotted one is
the linear fitting today (1) with ðw0; waÞ ¼ ð−0.7;−1Þ.

FIG. 6. The Swampland coefficients MPljV 0j=V (blue) and
M2

PlV
00=V (orange-dashed) in the model (13) with the same para-

meters as Fig. 5. Either of them always exceeds the unity (thin
horizontal line), exhibiting the compatibility with the Swampland
de Sitter conjecture.
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