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We demonstrate that in a chiral plasma subject to an external magnetic field, the chiral vortical effect can
induce a new type of magnetohydrodynamic instability, which we refer to as the chiral magnetovortical
instability. This instability arises from the mutual evolution of the magnetic and vortical fields. It can cause
a rapid amplification of the magnetic fields by transferring the chirality of the constituent particles to the
cross helicity of the plasma.
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Introduction. Magnetic fields and fluid vortices coexist in
many physical systems, encompassing the electromagnetic
(EM) plasmas in stellar and planetary objects, the quark-
gluon plasma (QGP) formed in heavy-ion collisions, and
the electroweak plasmas in supernovas and early Universe.
Notably, the magnetic field and fluid vorticity can induce
anomalous, parity-breaking, transport phenomena when the
plasma is chiral, that is, when the constituent particles
exhibit asymmetries between their left-handed and right-
handed species. Two prominent examples are the chiral
magnetic effect (CME) [1–3] and the chiral vortical effect
(CVE) [4–7], which lead to electric currents along the
magnetic and vortical fields, respectively. They both
emerge from the underlying chiral anomaly, which con-
nects fermion chirality with the topology of EM and
gravitational fields. In recent years, the CME and CVE
have attracted considerable attention in theoretical and
experimental researches across many subfields of physics,
including nuclear physics, astrophysics, cosmology, and
condensed matter physics; see Refs. [8–11] for reviews.
In the hydrodynamic regime (i.e., low energy and long

wavelength regime), the chiral plasma can be described by
the so-called anomalous hydrodynamics or chiral magneto-
hydrodynamics (MHD) which extends the standard MHD
by incorporating the electric currents from CME and CVE.
New wave modes can appear in chiral MHD, such as the
chiral magnetic wave [12], chiral vortical wave [13], chiral
electric wave [14], chiral Alfvén wave [15], and chiral heat
wave [16]. Furthermore, the CME can induce a novel
magnetic-field instability (and its variants) known as chiral

plasma instability or chiral dynamo instability [17,18],
which activates a dynamo mechanism (i.e., the amplifica-
tion of a weak seed magnetic field) similar to the α-dynamo
but without requiring the presence of finite mean kinetic
helicity. This has profound implications for our under-
standing of magnetic field formation and evolution in
various contexts, such as the early Universe [17,19–27],
supernovas and neutron stars [26–35], QGP in heavy-
ion collisions [36–40], and even Weyl/Dirac semimetals
[41–44]. Various other CME-leading instabilities were also
discussed in literature [29,45,46].
Unlike the CME, the influence of CVE on the evolution

of chiral plasma remains relatively unexplored. This might
be because the fluid vorticity is usually considered weak
comparing to the magnetic field (unless the system is in a
strong kinetic-helicity dominated turbulence). However,
this may not be the case when the CVE can cause or
catalyze plasma instabilities. Furthermore, there are
instances, such as the QGP in heavy-ion collisions, where
extremely strong vorticity can appear even in laminar flow
[47–49]. In this paper, we demonstrate that the CVE can
indeed induce a new MHD instability, which we refer to as
the chiral magnetovortical instability (CMVI), in a mag-
netized chiral plasma.
Before going into the detailed calculation, let us provide

an intuitive understanding of the CMVI. Suppose a chiral
plasma is situated in a background magnetic field B0 along
the z direction. Let us consider a sine-shaped perturbation
of the fluid velocity v perpendicular to B0, as depicted in
Fig. 1. In the absence of electric resistivity η, such a
perturbation would cause a bending of the magnetic field
line (according to Alfvén’s frozen-in theorem), resulting in
the generation of a perturbed magnetic field b perpendicular*huangxuguang@fudan.edu.cn
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to B0. However, the presence of a finite η would eventually
dampen b due to magnetic diffusion. This scenario changes
when the CVE is taken into account. The perturbation in the
fluid velocity induces alternating CVE currents along the y
direction and positioned along the z axis. These electric
currents generate additional magnetic fields that add to the
perturbed magnetic field b. When the CVE is sufficiently
strong, the perturbed field b in regions like the onemarked in
the figure is amplified instead of being damped,which in turn
leads to an amplification of the velocity v and the CVE,
leading to the emergence of an instability.
We now give an analysis using chiral MHD. We set

c ¼ ℏ ¼ kB ¼ 1 and also ε0 ¼ μ0 ¼ 1, the charge is q ¼ 1.

Chiral magnetovortical instability in chiral MHD. We
consider a chiral plasma in which the electric current j is
given by the following constitutive relation,

j ¼ nvþ σðEþ v × BÞ þ jB þ jω; ð1Þ
where jB ¼ ξBB and jω ¼ ξωω (ω ¼ ∇ × v is the vorticity)
represent the CME and the CVE, respectively, with ξB ∝ μ5
and ξω ∝ μ5μ (μ and μ5 are the electric and chiral chemical
potentials) the corresponding conductivities, σ > 0 is the
usual electric conductivity, and n is the charge density. For
the purpose of analysis, we focus on the non-relativistic
limit as it offers a more transparent understanding of the
CMVI, although a similar analysis can be adapted for
relativistic case as well. The governing equations are the
following set of chiral MHD equations (See the Appendix
for a derivation):

ρð∂t þ v · ∇Þv ¼ −∇Pþ ð∇ × BÞ × B; ð2Þ

∂tB¼∇× ðv×BÞþη∇2BþηξB∇×Bþηξω∇×ω; ð3Þ

accompanied by the solenoidal conditions for velocity v
(incompressibility) and magnetic field B (Gauss law):

∇ · v ¼ 0; ð4Þ

∇ · B ¼ 0: ð5Þ
In the above equations, P is the pressure, ρ is the mass
density, and η ¼ 1=σ is the electric resistivity. In Eqs. (2)

and (3), we have neglected the viscous terms for the sake of
simplicity. However, the effects of viscosity can be readily
taken into account. Note that the electric field is not
dynamical in MHD due to the screening effects (i.e., the
timescale of MHD processes is much longer than
the screening time of electric field), but determined by
the constitutive relation (1).
Thewavemodes and possible instabilities arising from the

CME have been discussed extensively. Therefore, our focus
here is on the CVE. For clarity, we deactivate the CME and
assume constant pressure and mass density (and thus con-
stant η; ξω) for the moment. We examine the behavior of
small fluctuations around a static equilibrium state in the
presence of a background magnetic field B0, i.e., v ¼ 0þ v
and B ¼ B0 þ b with v and b counted as of order δ ≪ 1.
We keep terms linear in δ in Eqs. (2) and (3) and obtain

ρ∂tv ¼ B0 · ∇b − ∇ðB0 · bÞ; ð6Þ

∂tb ¼ B0 · ∇vþ η∇2b − ηξω∇2v: ð7Þ

We note that if we start with relativistic hydrodynamic
equations, we still obtain the same linearized equations,
albeit with the replacement of mass density ρ by the
enthalpy density εþ P (where ε is the energy density).
Contracting B0 with Eq. (6) implies ∂tðB0 · vÞ ¼ 0, indi-
cating that the longitudinal velocity fluctuation is not
dynamical. Therefore, we pay our attention on the trans-
verse velocity fluctuation by assuming v · B0 ¼ 0. With
this and the solenoidal conditions (4) and (5), Eqs. (6) and
(7) further imply ∂tðB0 · bÞ ¼ 0, meaning that the longi-
tudinal magnetic field fluctuation is not dynamical. Hence,
we assume b · B0 ¼ 0 in our analysis.
To find the eigenmodes of Eqs. (6) and (7), we substitute

the plane-wave form of the fluctuations,

v ¼ f veiðk·x−ωtÞ; b ¼ f beiðk·x−ωtÞ; ð8Þ
where f v;b are amplitude vectors, and obtain

ρωf v ¼ −ðB0 · kÞf b; ð9Þ

ðηk2 − iωÞf b ¼ ðηξωk2 þ iB0 · kÞf v: ð10Þ

We obtain immediately the following equation for
dispersion relations:

ω2 þ iηk2ωþ iηξωk2
B0 · k
ρ

−
ðB0 · kÞ2

ρ
¼ 0; ð11Þ

whose solutions are given by

ω ¼ ω� ≡ −i
η

2
k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0 · kÞ2

ρ
−
η2k4

4
− iηξωk2

B0 · k
ρ

s

ð12Þ

FIG. 1. Illustration of the arising of the CMVI.
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≈� B0 · kffiffiffi
ρ

p − i
η

2

�
1� ξωffiffiffi

ρ
p

�
k2 þOðk4Þ; ð13Þ

where the last line is valid when jk⊥j≲ jkzj ≪ jB0j=ðηjξωjÞ
and jB0j=ðη ffiffiffi

ρ
p Þ. The first term, ω ¼ �B0 · k=

ffiffiffi
ρ

p
, repre-

sents the usual Alfvén wave modes propagating along and
opposite to B0. Without CVE, the presence of the electric
resistivity always induce dissipative diffusion of the mag-
netic field. However, when the CVE is turned on in the
parameter region jξωj≳ ffiffiffi

ρ
p

, one of the Alfvén wave modes
becomes unstable. This is the CMVI, which amplifies the
magnitudes of the magnetic-field and velocity fluctuations.
We also note that in another parameter region, namely,

when jkj ≫ jB0j=ðηjξωjÞ and jB0jjξωj=ðηρÞ (but jkj ≪ 1=η
should be always satisfied in order for the hydrodynamic
analysis being applicable), we have

ω ≈� ξω
ρ
B0 · kþOðk−2Þ: ð14Þ

The same dispersion relation was derived in Ref. [15] and
was referred to as the chiral Alfvén wave. However, in
Ref. [15], the magnetic field was considered nondynamical,
and as a consequence, it was found that the dispersion
relation (14) holds for jkj → 0. It is interesting to note that
in the presence of a dynamical EM field, the situation is
changed, and the jkj → 0 dispersion relation is actually
given by the last line of Eq. (13).
Some comments are in order: (i) The CMVI appears

when jξωj > ffiffiffi
ρ

p
, regardless of whether we make the small

wave number expansion, as we did in Eq. (13). (ii) For
k⊥ B0, we only have one dissipative mode ω− ¼ −iηk2 for
magnetic field diffusion [see Eq. (7)], while the velocity
fluctuation does not propagate. (iii) The appearance of
CMVI indicates that during the evolution of the system, the
chirality of the constituent particles should decrease in
order for ξω to decrease and eventually cease the instability.
The continuity equation for helicity thus implies that the
magnetic and/or flow helicities would increase, thereby
triggering a dynamo action. We will analyze this possibility
in the following.

Fate of CMVI. The CMVI, once it takes place (i.e., when
ξω >

ffiffiffi
ρ

p
, assuming ξω > 0), cannot last forever. The

system would evolve toward a state where ξω <
ffiffiffi
ρ

p
, thus

terminating the CMVI. Due to the conservation of electric
charge, we expect that the decrease of ξω would be mainly
due to the decrease of μ5. To analyze how this occurs, we
examine the chiral anomaly equation,

∂tj05 þ ∇ · j5 ¼ CE · B; ð15Þ

where C is a constant representing the strength of the chiral
anomaly, j5 is the chiral current, and j05 ¼ n5 þ κBv · Bþ
κωv · ω with n5 the chiral density of constituent particles,

κB ∝ μ and κω ∝ T2 the conductivities of chiral separation
effect (CSE) [50,51] and axial CVE, respectively.
Assuming a homogeneity of the system and writing n5 ¼
χ5μ5, with χ5 ∝ T2 denoting the chiral susceptibility, we
can derive the following evolution equation for μ5:

χ5∂tμ5 ¼ −
C
2
∂tHb − κB∂tHc − κω∂tHv − Γχ5μ5; ð16Þ

where Hb ¼ hA · Bi, Hc ¼ hv · Bi, and Hv ¼ hv · ωi are
the average magnetic, cross, and kinetic helicities, respec-
tively, with h� � �i≡ V−1 R d3xð� � �Þ. Using A ¼ B0 × x=2þ
a (with a is the fluctuating vector potential), and the
conditions hai ¼ 0 ¼ hvi, one finds that Hb ¼ ha · bi and
Hc ¼ hv · bi. We have also introduced the chirality relax-
ation rate Γ in order to account for the chirality-flipping
process due to, e.g., massiveness of the particles [30].
To proceed, we expand the fields in their Fourier modes,

vðt; xÞ ¼
Z
k
vðt; kÞeik·x; ð17Þ

bðt; xÞ ¼
Z
k
bðt; kÞeik·x; ð18Þ

where
R
k ≡

R
d3k=ð2πÞ3. For each Fourier mode, we

further expand it in helicity basis with e3ðkÞ ¼ k̂≡ k=jkj
and e�ðkÞ as the right-hand and left-hand helicity basis
vectors. They satisfy the following properties: k̂ × e�ðkÞ ¼
∓ie�ðkÞ, k̂ · e�ðkÞ ¼ 0, and e�ðkÞ · e��ðkÞ ¼ 1; e�ðkÞ ·
e�∓ðkÞ ¼ 0. The solenoidal conditions for v and B imply
that vðt;kÞ¼P

s¼�vsðt;kÞesðkÞ and bðt; kÞ ¼ P
s¼� bs ×

ðt; kÞesðkÞ. Using this helicity expansion and focusing
on the long-wavelength modes, we can rewrite Eqs. (6)
and (7) as

∂tz1�ðt; kÞ ¼ −iωþz1�ðt; kÞ; ð19Þ

∂tz2�ðt; kÞ ¼ −iω−z2�ðt; kÞ: ð20Þ

Here, z1;2 ¼
P

s¼� z1;2sesðkÞ are theCVE-modified Elsasser
fields [52], given by

z1� ≈
�
1 −

iηξ0ωk2

2B0
0 · k

�
v� −

�
1 −

iηk2

2B0
0 · k

�
b0�; ð21Þ

z2� ≈
�
1 −

iηξ0ωk2

2B0
0 · k

�
v� þ

�
1þ iηk2

2B0
0 · k

�
b0�; ð22Þ

with the primed quantities being scaled as B0
0 ¼

B0=
ffiffiffi
ρ

p
; b0 ¼ b=

ffiffiffi
ρ

p
, and ξ0ω ¼ ξω=

ffiffiffi
ρ

p
. Writing in helicity

basis, the average kinetic energy per unit mass, magnetic
energy per unit mass, and various helicities are expressed by
Ev ¼ hv2i=2 ¼ ð1=2VÞ Rkðjvþj2 þ jv−j2Þ, Eb ¼ hb02i=2¼
ð1=2VÞRkðjb0þj2 þ jb0−j2Þ, Hv¼ð1=VÞRk jkjðjvþj2−jv−j2Þ,
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Hb ¼ ð1=VÞ Rkðjbþj2 − jb−j2Þ=jkj, and Hc ¼ ð1=VÞ Rk ×
ðvþb�þ þ v−b�−Þ, respectively.
When the chirality relaxation is negligible, Γ ¼ 0, the

coupled equations (16), (19), and (20) permit a state in
which μ5, various helicities, and kinetic and magnetic
energies are stationary. Such a state satisfies the condition
that ξ0ω ¼ 1. To see this, we first observe from Eq. (19) that
the magnetic diffusion would eventually diminish z1� and
enforce v� ¼ b0� when ξ0ω ¼ 1. Then, Eqs. (20) and (22)
gives that v�ðt; kÞ ¼ b0�ðt; kÞ ∝ eiB

0
0
·kt representing a pure

Alfvén wave (an Alfvenic state). In this case, Ev;b, and
Hv;b;c become time independent, which also implies the
time independence of μ5 according to Eq. (16). This
suggests that when Γ ¼ 0, the system will eventually
evolve into a state such that ξ0ω ¼ 1, regardless of whether
ξ0ω is initially smaller or larger than 1, as confirmed by
numerical calculation given in Fig. 2. When ξ0ω is initially

larger than 1, this provides a dynamomechanism. It has been
long believed that the Alfvenic state is favored in relaxation
processes in the MHD plasmas [53]. Therefore, for a chiral
plasma, the CMVI provides a mechanism for a fast reach of
such a Alfvenic state, in addition to other known effects [54].
Note that such a state maximizes the cross helicity Hc for a
fixed total energy per unit mass Ev þ Eb.
When a finite Γ is present, μ5 is constantly driven to zero.

But this process can be very slow as usually Γ is small. As
an illustration, in Fig. 2, we show the time evolution of ξω,
cross helicity Hc, and magnetic energy Eb, with an initial
ξ0ω ¼ 5; we assume that ξ0ω to be homogeneous. To high-
light the effect of CMVI, we have chosen an initial
condition such that Hb ¼ Hv ¼ 0, which implies that they
remain zero throughout the time evolution. Other param-
eters are chosen as follows: All the dimensionful quantities
are in units of 1=η which is considered as a constant, the
background magnetic field is jB0

0j ¼ 5, the initial vþð0Þ ¼
b0þð0Þ are given as a Fermi-Dirac shape v0=½expð10ηjkzj −
100Þ þ 1� with v0 ¼ 0.1. It is evident from Fig. 2 that at the
early times, the CMVI drives both the cross helicity and
magnetic energy to grow exponentially. After that ξ0ω
becomes smaller than 1, the system evolves slowly (qua-
sistationarily) toward vanishing velocity and magnetic field
due to the finite Γ. In such a way, the CMVI provides a fast
dynamo mechanism by transferring chirality of constituent
particles to the cross helicity of the system. It is worth
noting that such a CMVI-induced dynamo mechanism
bears some analogy with the turbulent cross helicity
dynamo [55,56], in which the turbulent electromotive force
hv × bi gains a term ∝ ω due to the mean cross helicity in
the plasma. This cross-helicity dynamo has been shown to
play significant roles in geophysical and astrophysical
plasmas [55,56]. However, it is important to note that
our CMVI-induced dynamo has a completely different
origin from the cross-helicity dynamo, although they could
act together in a turbulent chiral plasma.

Inclusion of chiral magnetic effect. In the above discussion,
for the purpose of transparency, we have intentionally
excluded the CME from the electric current. Upon restoring
the CME, the linearized chiral MHD equations, expressed
in terms of the reduced variables, become

∂tv ¼ B0
0 · ∇b0; ð23Þ

∂tb0 ¼ B0
0 · ∇vþ η∇2b0 þ ηξB∇ × b0 − ηξ0ω∇2v: ð24Þ

These equations allow plane-wave eigenmodes moving
along B0

0, kkB0
0, with dispersion relations

ω ¼ ωχ
� ≡ −

iη
2
ðk2 − χξBjkjÞ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðB0

0 · kÞ2 − η2ðk2 − χξBjkjÞ2 − 4iηξ0ωk2B0
0 · k

q

ð25Þ

FIG. 2. Evolution of ξω, cross helicityHc, and magnetic energy
Eb, normalized with their initial values. The lines in red, blue,
purple, and orange correspond to ηΓ ¼ 0, 0.01, 0.02, and 0.03,
respectively.
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≈� B0
0 · k − i

η

2
ð1� ξ0ωÞk2 þ iχ

1

2
ηξBjkj þOðjkj3Þ; ð26Þ

where χ ¼ � corresponds to two different helicities in b,
and we have omitted terms suppressed by ηξB=B0

0 in
Eq. (26) as η is usually very small. Therefore, we observe
that, assuming ξ0ω; ξB > 0, when ξ0ω > 1, there is always an
unstable mode corresponding to ωχ¼þ

− . Even when ξ0ω < 1,
the usual chiral plasma instability is catalyzed in a way
that the modes with jkj < ξB=ð1 − ξ0ωÞ are unstable, mean-
ing that the unstable region in the wave number is enlarged
from jkj < ξB [17,18] to jkj < ξB=ð1 − ξ0ωÞ.

Discussion. To summarize, we have demonstrated that the
presence of the CVE can induce a new type of plasma
instability, the CMVI, in the presence of a background
magnetic field. While the condition for CMVI to occur,
ξ0ω > 1, is stringent, we have discussed that other mech-
anisms, such as turbulence-induced cross helicity [55,56],
may facilitate the onset of CMVI. Additionally, the
combined effects of CVE and CME can broaden the
kinematic region for the occurrence of chiral plasma
instability, thus leaving a trace of CMVI. The CMVI can
have interesting implications, e.g., it may lead to a new
dynamo action and affect the evolution of the magnetic,
cross, and kinetic helicities in chiral plasma. Possible
applications include the electromagnetic plasma in astro-
physical objects, the primordial electroweak plasma in
early Universe, the quark-gluon plasma in heavy-ion
collisions, and the electron plasma in Dirac and Weyl
semimetals.
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Appendix: Derivation of the MHD equations. For
completeness, we provide a derivation of the chiral
MHD equations (2) and (3) in this appendix. A similar
derivation for the conventional MHD equations can be
found in textbooks such as [57]. In the one-fluid
description of the chiral plasma, the equation of motion
for flow velocity v is given by (where P, ρ, n, and j are
pressure, mass density, charge density, and electric
current, respectively)

ρð∂t þ v · ∇Þv ¼ −∇Pþ nEþ j × B; ðA1Þ

coupled with the Maxwell equations,

∇ · E ¼ n; ðA2Þ

∇ · B ¼ 0; ðA3Þ

∇ × B ¼ ∂tEþ j; ðA4Þ

∇ × E ¼ −∂tB; ðA5Þ

and the continuity equations for ρ and n,

∂tρþ ∇ · ðρvÞ ¼ 0; ðA6Þ

∂tnþ ∇ · j ¼ 0: ðA7Þ

The constitutive relation for j is

j ¼ jf þ johm þ jB þ jω; ðA8Þ

with jf ¼ nv the free current, johm ¼ σðEþ v × BÞ the
Ohmic current, jB ¼ ξBB the CME current, and jω ¼
ξωω the CVE current. We have omitted the viscous
terms in Eq. (A1) for the sake of simplicity. However,
the effects of viscosity can be readily taken into account.
From Eq. (A5), we have jEj=jBj ∼ L=τ≡ u0 with L, τ

and u0 the characteristic length, time, and velocity scales of
the plasma. In the nonrelativistic limit, u0 ≪ 1, and one
finds

j∂tEj
j∇ × Bj ∼ u20 ≪ 1; ðA9Þ

jnEj
jj × Bj ∼

j∇ · EjjEj
jð∇ × BÞ × Bj ∼ u20 ≪ 1; ðA10Þ

jjfj
j∇ × Bj ∼

j∇ · Ejjvj
j∇ × Bj ∼ u20 ≪ 1: ðA11Þ

Therefore, we can eliminate nE from Eq. (A1), ∂tE from
Eq. (A4), and jf from Eq. (A8). Consequently, the electric
field E is no longer a dynamical quantity and is determined
by Eq. (A8),

E ¼ −v × Bþ ηðj − jB − jωÞ: ðA12Þ

Substituting Eq. (A4) into Eq. (A1) and E into Eq. (A5), we
obtain Eqs. (2) and (3) in the main text.

CHIRAL MAGNETOVORTICAL INSTABILITY PHYS. REV. D 109, L121302 (2024)

L121302-5



[1] A. Vilenkin, Equilibrium parity violating current in a
magnetic field, Phys. Rev. D 22, 3080 (1980).

[2] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, The
effects of topological charge change in heavy ion collisions:
“Event by event P and CP violation”, Nucl. Phys. A803,
227 (2008).

[3] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Chiral
magnetic effect, Phys. Rev. D 78, 074033 (2008).

[4] A. Vilenkin, Macroscopic parity violating effects: Neutrino
fluxes from rotating black holes and in rotating thermal
radiation, Phys. Rev. D 20, 1807 (1979).

[5] J. Erdmenger, M. Haack, M. Kaminski, and A. Yarom, Fluid
dynamics of R-charged black holes, J. High Energy Phys.
01 (2009) 055.

[6] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R.
Loganayagam, and P. Surowka, Hydrodynamics from
charged black branes, J. High Energy Phys. 01 (2011) 094.

[7] D. T. Son and P. Surowka, Hydrodynamics with triangle
anomalies, Phys. Rev. Lett. 103, 191601 (2009).

[8] X.-G. Huang, Electromagnetic fields and anomalous trans-
ports in heavy-ion collisions—A pedagogical review, Rep.
Prog. Phys. 79, 076302 (2016).

[9] Y.-C. Liu and X.-G. Huang, Anomalous chiral transports
and spin polarization in heavy-ion collisions, Nucl. Sci.
Tech. 31, 56 (2020).

[10] D. E. Kharzeev and J. Liao, Chiral magnetic effect reveals
the topology of gauge fields in heavy-ion collisions, Nat.
Rev. Phys. 3, 55 (2021).

[11] M. N. Chernodub, Y. Ferreiros, A. G. Grushin, K.
Landsteiner, and M. A. H. Vozmediano, Thermal transport,
geometry, and anomalies, Phys. Rep. 977, 1 (2022).

[12] D. E. Kharzeev and H.-U. Yee, Chiral magnetic wave, Phys.
Rev. D 83, 085007 (2011).

[13] Y. Jiang, X.-G. Huang, and J. Liao, Chiral vortical wave and
induced flavor charge transport in a rotating quark-gluon
plasma, Phys. Rev. D 92, 071501 (2015).

[14] X.-G. Huang and J. Liao, Axial current generation from
electric field: Chiral electric separation effect, Phys. Rev.
Lett. 110, 232302 (2013).

[15] N. Yamamoto, Chiral Alfvén wave in anomalous hydro-
dynamics, Phys. Rev. Lett. 115, 141601 (2015).

[16] M. N. Chernodub, Chiral heat wave and mixing of mag-
netic, vortical and heat waves in chiral media, J. High
Energy Phys. 01 (2016) 100.

[17] M. Joyce and M. E. Shaposhnikov, Primordial magnetic
fields, right-handed electrons, and the Abelian anomaly,
Phys. Rev. Lett. 79, 1193 (1997).

[18] Y. Akamatsu and N. Yamamoto, Chiral plasma instabilities,
Phys. Rev. Lett. 111, 052002 (2013).

[19] M. Giovannini and M. E. Shaposhnikov, Primordial hyper-
magnetic fields and triangle anomaly, Phys. Rev. D 57, 2186
(1998).

[20] A. Boyarsky, J. Frohlich, and O. Ruchayskiy, Self-consistent
evolution ofmagnetic fields and chiral asymmetry in the early
Universe, Phys. Rev. Lett. 108, 031301 (2012).

[21] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Long-
range magnetic fields in the ground state of the Standard
Model plasma, Phys. Rev. Lett. 109, 111602 (2012).

[22] H. Tashiro, T. Vachaspati, and A. Vilenkin, Chiral effects and
cosmic magnetic fields, Phys. Rev. D 86, 105033 (2012).

[23] M. Dvornikov and V. B. Semikoz, Influence of the turbulent
motion on the chiral magnetic effect in the early Universe,
Phys. Rev. D 95, 043538 (2017).

[24] E. V. Gorbar, I. Rudenok, I. A. Shovkovy, and S.
Vilchinskii, Anomaly-driven inverse cascade and inhomo-
geneities in a magnetized chiral plasma in the early
Universe, Phys. Rev. D 94, 103528 (2016).

[25] A. Brandenburg, J. Schober, I. Rogachevskii, T.
Kahniashvili, A. Boyarsky, J. Frohlich, O. Ruchayskiy,
and N. Kleeorin, The turbulent chiral-magnetic cascade
in the early universe, Astrophys. J. Lett. 845, L21 (2017).

[26] J. Schober, I. Rogachevskii, A. Brandenburg, A. Boyarsky,
J. Fröhlich, O. Ruchayskiy, and N. Kleeorin, Laminar and
turbulent dynamos in chiral magnetohydrodynamics. II.
Simulations, Astrophys. J. 858, 124 (2018).

[27] K. Kamada, N. Yamamoto, and D.-L. Yang, Chiral effects in
astrophysics and cosmology, Prog. Part. Nucl. Phys. 129,
104016 (2023).

[28] A. Ohnishi and N. Yamamoto, Magnetars and the chiral
plasma instabilities, arXiv:1402.4760.

[29] N. Yamamoto, Chiral transport of neutrinos in supernovae:
Neutrino-induced fluid helicity and helical plasma insta-
bility, Phys. Rev. D 93, 065017 (2016).

[30] D. Grabowska, D. B. Kaplan, and S. Reddy, Role of the
electron mass in damping chiral plasma instability in super-
novae and neutron stars, Phys. Rev. D 91, 085035 (2015).

[31] M. Dvornikov and V. B. Semikoz, Magnetic field instability
in a neutron star driven by the electroweak electron-nucleon
interaction versus the chiral magnetic effect, Phys. Rev. D
91, 061301 (2015).

[32] G. Sigl and N. Leite, Chiral magnetic effect in protoneutron
stars and magnetic field spectral evolution, J. Cosmol.
Astropart. Phys. 01 (2016) 025.

[33] J. Matsumoto, N. Yamamoto, and D.-L. Yang, Chiral
plasma instability and inverse cascade from nonequilibrium
left-handed neutrinos in core-collapse supernovae, Phys.
Rev. D 105, 123029 (2022).

[34] J. Schober, I. Rogachevskii, and A. Brandenburg, Produc-
tion of a chiral magnetic anomaly with emerging turbulence
and mean-field dynamo action, Phys. Rev. Lett. 128,
065002 (2022).

[35] A. Brandenburg, K. Kamada, K. Mukaida, K. Schmitz, and
J. Schober, Chiral magnetohydrodynamics with zero total
chirality, Phys. Rev. D 108, 063529 (2023).

[36] Y. Akamatsu, A. Rothkopf, and N. Yamamoto, Non-Abelian
chiral instabilities at high temperature on the lattice, J. High
Energy Phys. 03 (2016) 210.

[37] Y. Hirono, D. Kharzeev, and Y. Yin, Self-similar inverse
cascade of magnetic helicity driven by the chiral anomaly,
Phys. Rev. D 92, 125031 (2015).

[38] X.-l. Xia, H. Qin, and Q. Wang, Approach to Chandra-
sekhar-Kendall-Woltjer state in a chiral plasma, Phys. Rev.
D 94, 054042 (2016).

[39] K. Tuchin, Taming instability of magnetic field in chiral
medium, Nucl. Phys. A969, 1 (2018).

[40] S. Schlichting and S. Sharma, Chiral instabilities & the fate
of chirality imbalance in non-Abelian plasmas, Phys. Rev.
Lett. 131, 102303 (2023).

[41] Z. Qiu, G. Cao, and X.-G. Huang, Electrodynamics of chiral
matter, Phys. Rev. D 95, 036002 (2017).

SHUAI WANG and XU-GUANG HUANG PHYS. REV. D 109, L121302 (2024)

L121302-6

https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1088/1126-6708/2009/01/055
https://doi.org/10.1088/1126-6708/2009/01/055
https://doi.org/10.1007/JHEP01(2011)094
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1088/0034-4885/79/7/076302
https://doi.org/10.1088/0034-4885/79/7/076302
https://doi.org/10.1007/s41365-020-00764-z
https://doi.org/10.1007/s41365-020-00764-z
https://doi.org/10.1038/s42254-020-00254-6
https://doi.org/10.1038/s42254-020-00254-6
https://doi.org/10.1016/j.physrep.2022.06.002
https://doi.org/10.1103/PhysRevD.83.085007
https://doi.org/10.1103/PhysRevD.83.085007
https://doi.org/10.1103/PhysRevD.92.071501
https://doi.org/10.1103/PhysRevLett.110.232302
https://doi.org/10.1103/PhysRevLett.110.232302
https://doi.org/10.1103/PhysRevLett.115.141601
https://doi.org/10.1007/JHEP01(2016)100
https://doi.org/10.1007/JHEP01(2016)100
https://doi.org/10.1103/PhysRevLett.79.1193
https://doi.org/10.1103/PhysRevLett.111.052002
https://doi.org/10.1103/PhysRevD.57.2186
https://doi.org/10.1103/PhysRevD.57.2186
https://doi.org/10.1103/PhysRevLett.108.031301
https://doi.org/10.1103/PhysRevLett.109.111602
https://doi.org/10.1103/PhysRevD.86.105033
https://doi.org/10.1103/PhysRevD.95.043538
https://doi.org/10.1103/PhysRevD.94.103528
https://doi.org/10.3847/2041-8213/aa855d
https://doi.org/10.3847/1538-4357/aaba75
https://doi.org/10.1016/j.ppnp.2022.104016
https://doi.org/10.1016/j.ppnp.2022.104016
https://arXiv.org/abs/1402.4760
https://doi.org/10.1103/PhysRevD.93.065017
https://doi.org/10.1103/PhysRevD.91.085035
https://doi.org/10.1103/PhysRevD.91.061301
https://doi.org/10.1103/PhysRevD.91.061301
https://doi.org/10.1088/1475-7516/2016/01/025
https://doi.org/10.1088/1475-7516/2016/01/025
https://doi.org/10.1103/PhysRevD.105.123029
https://doi.org/10.1103/PhysRevD.105.123029
https://doi.org/10.1103/PhysRevLett.128.065002
https://doi.org/10.1103/PhysRevLett.128.065002
https://doi.org/10.1103/PhysRevD.108.063529
https://doi.org/10.1007/JHEP03(2016)210
https://doi.org/10.1007/JHEP03(2016)210
https://doi.org/10.1103/PhysRevD.92.125031
https://doi.org/10.1103/PhysRevD.94.054042
https://doi.org/10.1103/PhysRevD.94.054042
https://doi.org/10.1016/j.nuclphysa.2017.09.015
https://doi.org/10.1103/PhysRevLett.131.102303
https://doi.org/10.1103/PhysRevLett.131.102303
https://doi.org/10.1103/PhysRevD.95.036002


[42] V. Galitski, M. Kargarian, and S. Syzranov, Dynamo effect
and turbulence in hydrodynamic Weyl metals, Phys. Rev.
Lett. 121, 176603 (2018).

[43] T. Amitani and Y. Nishida, Dynamical chiral magnetic
current and instability in Weyl semimetals, Phys. Rev. B
107, 014302 (2023).

[44] Y. Nishida, Chiral light amplifier with pumped Weyl
semimetals, Phys. Rev. Lett. 130, 096903 (2023).

[45] K. Hattori, Y. Hirono, H.-U. Yee, and Y. Yin, MagnetoHy-
drodynamics with chiral anomaly: Phases of collective ex-
citations and instabilities, Phys. Rev. D 100, 065023 (2019).

[46] N. Yamamoto and D.-L. Yang, Helical magnetic effect and
the chiral anomaly, Phys. Rev. D 103, 125003 (2021).

[47] W.-T. Deng and X.-G. Huang, Vorticity in heavy-ion
collisions, Phys. Rev. C 93, 064907 (2016).

[48] X.-G. Deng, X.-G. Huang, Y.-G. Ma, and S. Zhang,
Vorticity in low-energy heavy-ion collisions, Phys. Rev.
C 101, 064908 (2020).

[49] Y. Jiang, Z.-W. Lin, and J. Liao, Rotating quark-gluon
plasma in relativistic heavy ion collisions, Phys. Rev. C 94,
044910 (2016); 95, 049904(E) (2017).

[50] D. T. Son and A. R. Zhitnitsky, Quantum anomalies in dense
matter, Phys. Rev. D 70, 074018 (2004).

[51] M. A. Metlitski and A. R. Zhitnitsky, Anomalous axion
interactions and topological currents in dense matter, Phys.
Rev. D 72, 045011 (2005).

[52] W.M. Elsasser, The hydromagnetic equations, Phys. Rev.
79, 183 (1950).

[53] L. Woltjer, A theorem on force-free magnetic fields, Proc.
Natl. Acad. Sci. U.S.A. 44, 489 (1958).

[54] W. H. Matthaeus, A. Pouquet, P. D. Mininni, P. Dmitruk,
and B. Breech, Rapid alignment of velocity and magnetic
field in magnetohydrodynamic turbulence, Phys. Rev. Lett.
100, 085003 (2008).

[55] N. Yokoi, Cross helicity and related dynamo, Geophys.
Astrophys. Fluid Dyn. 107, 114 (2013).

[56] A. Yoshizawa, Hydrodynamic and Magnetohydrodynamic
Turbulent Flows: Modelling and Statistical Theory
(Springer, New York, 1998).

[57] P. Davidson, Introduction to Magnetohydrodynamics,
2nd ed. (Cambridge University Press, Cambridge, England,
2017).

CHIRAL MAGNETOVORTICAL INSTABILITY PHYS. REV. D 109, L121302 (2024)

L121302-7

https://doi.org/10.1103/PhysRevLett.121.176603
https://doi.org/10.1103/PhysRevLett.121.176603
https://doi.org/10.1103/PhysRevB.107.014302
https://doi.org/10.1103/PhysRevB.107.014302
https://doi.org/10.1103/PhysRevLett.130.096903
https://doi.org/10.1103/PhysRevD.100.065023
https://doi.org/10.1103/PhysRevD.103.125003
https://doi.org/10.1103/PhysRevC.93.064907
https://doi.org/10.1103/PhysRevC.101.064908
https://doi.org/10.1103/PhysRevC.101.064908
https://doi.org/10.1103/PhysRevC.94.044910
https://doi.org/10.1103/PhysRevC.94.044910
https://doi.org/10.1103/PhysRevC.95.049904
https://doi.org/10.1103/PhysRevD.70.074018
https://doi.org/10.1103/PhysRevD.72.045011
https://doi.org/10.1103/PhysRevD.72.045011
https://doi.org/10.1103/PhysRev.79.183
https://doi.org/10.1103/PhysRev.79.183
https://doi.org/10.1073/pnas.44.6.489
https://doi.org/10.1073/pnas.44.6.489
https://doi.org/10.1103/PhysRevLett.100.085003
https://doi.org/10.1103/PhysRevLett.100.085003
https://doi.org/10.1080/03091929.2012.754022
https://doi.org/10.1080/03091929.2012.754022

