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Measurement of the branching fraction of the decay
B~ — D%(770) at Belle II
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We measure the branching fraction of the decay B~ — D°p(770)~ using data collected with the Belle TT
detector. The data contain 387 million BB pairs produced in e e~ collisions at the T (4S) resonance. We
reconstruct 8360 + 180 decays from an analysis of the distributions of the B~ energy and the p(770)~
helicity angle. We determine the branching fraction to be (0.939 £ 0.021(stat) & 0.050(syst))%, in
agreement with previous results. Our measurement improves the relative precision of the world average by

more than a factor of two.

DOI: 10.1103/PhysRevD.109.L111103

The Belle II experiment uses e e~ collisions at center-
of-mass energies of about 10.6 GeV to access an abundant
sample of BB pairs produced through T (4S) decays and
search for nonstandard-model physics in weak decays of B
mesons [1,2]. A large part of this physics program depends
on reconstructing the decays of both B mesons: one is the
signal, the other (tag decay) is used to infer signal proper-
ties or to suppress background from continuum production
of light quarks. This analysis technique is known as
tagging. Belle II tagging algorithms use multivariate
classifiers trained with simulated events [3]. The algorithms
are calibrated on control data to correct for simulation
mismodeling, which originates mainly from inaccurate or
missing information on branching fractions and decay
models of some tag decays [4]. Improved knowledge of
these decays would yield better training, resulting in
enhanced and more reliable tagging performance. This
will improve Belle II physics reach.

Decays into fully hadronic final states offer the best
signal-to-background ratio for tagging. The dominant
hadronic tag channels are Cabibbo-favored decays into a
charm meson and several pions. Among these, B~ —
Dp(770)~ is one of the most effective (charge conjugation
is implied throughout the letter unless otherwise stated).
However, the tagging efficiency differs significantly
between data and simulation for this tag decay, strongly
suggesting the need to revisit the measurement of its
branching fraction. The current world average, (1.34 +
0.18)% [5], is dominated by a single measurement from
1994 by the CLEO collaboration, which employed a
sample of eTe™ collisions at the Y(4S) resonance with
an integrated luminosity of 0.9 fb~! [6]. We note that the
world average from Ref. [5] is not updated to the latest
branching fractions of D° and Y (4S) decays; scaling them
to the current values, the average would be about 10%
smaller.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

Branching-fraction measurements of the decays B~ —
D%, B - D*p~, and B® — D%p°, also provide tests of
calculations of hadronic decay rates based on the heavy-
quark limit and factorization models [7,8]. Hereafter, we
refer to p(770) mesons as p. Using isospin symmetry, their
decay amplitudes can be expressed in terms of amplitudes
for two isospin eigenstates, A; , and Az, [9-14]. The ratio
R and strong-phase difference o between these amplitudes
are related to the branching fractions B(Dp) of the three
decays and the ratio 7, /7, of the B* and B lifetimes, as

(371, B(D*p7) +B(D%’) 1\
= (e )
1 (37, B(D"p7) -2B(D%°) 1
cosd = 3R <5% B(D%") + 5) (2)

In the heavy-quark limit, factorization models predict R =
1 + O(Aqcep/my,) and 6 = O(Aqcep/my,), where my, is the
b quark mass and Agcp the QCD scale. The LHCb
collaboration reported R =0.69£0.15 and cosd =
0.984’_L8"é41§ [15]. The accuracy of the test is limited by
the 13% and 16% fractional uncertainties on the branching
fractions of the B~ — D%~ and B® — D*p~ decays,
respectively [5].

In this letter, we report an improved measurement of the
B~ — D%~ branching fraction using data collected at
Belle II. We reconstruct the D° meson in its two-body
favored decay D — K~z and restrict the z~z° invariant
mass to a 300 MeV/c? range centered at the p~ mass pole.
In this range, approximately twice the p~ natural width, we
expect the B~ — D°p~ decay to nearly saturate the D%z~ 7%
final state, with only a small contribution from the three-
body B~ — D%z~ 7° decay [6]. To determine the B~ —
D°p~ yield, we analyze the background-subtracted distri-
bution of the helicity angle of the p~ — z~2° decay. The
latter is obtained by fitting the B~ energy distribution in
nine independent intervals of the helicity angle. The B~ —
D%p~ yield is divided by the reconstruction efficiency and
the number of B~ mesons produced to determine the
branching fraction. The data sample has an integrated
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luminosity of 362 fb~!, which enables a more precise
measurement than the current world average. The main
uncertainty is systematic and related to the calculation of
the signal efficiency, and to the fit model. To reduce the
systematic uncertainty, the selection is chosen to minimize
background contamination while retaining a few-percent
fractional statistical precision on the branching-fraction
measurement. We designed the analysis using simulated
and experimental control data before examining the signal
region.

The Belle II experiment [16] is located at SuperKEKB,
which collides electrons and positrons at and near the
Y (4S) resonance [17]. The Belle II detector [16] has a
cylindrical geometry and includes a two-layer silicon-pixel
detector surrounded by a four-layer double-sided silicon-
strip detector and a 56-layer central drift chamber. These
detectors reconstruct tracks of charged particles. Only one
sixth of the second layer of the silicon-pixel detector was
installed for the data analyzed here. The symmetry axis of
these detectors, defined as the z axis, is almost coincident
with the direction of the electron beam. Surrounding the
drift chamber, which also provides dE/dx energy-loss
measurements, is a time-of-propagation counter in the
central region and an aerogel-based ring-imaging
Cherenkov counter in the forward region. These detectors
provide charged-particle identification. Surrounding them
is an electromagnetic calorimeter (ECL) based on CsI(Tl)
crystals that primarily provides energy and timing mea-
surements for photons and electrons. Outside of the ECL is
a superconducting solenoid magnet. Its flux return is
instrumented with resistive-plate chambers and plastic
scintillator modules to detect muons, K(L) mesons, and
neutrons. The solenoid magnet provides a 1.5 T magnetic
field parallel to the z axis.

Large samples of simulated data are generated by
modeling the physics processes resulting from e*e”
collisions and propagating the final-state particles through
a detailed simulation of the detector. We use the EvtGen [18],
PYTHIAS [19], and KkMC [20] software libraries to model
particle production and decay, PHOTOS [21] for photon
radiation, and GEANT4 [22] for material interaction and
detector response. The simulation includes beam-induced
backgrounds [23]. Collision and simulation data are proc-
essed using the BASF2 [24,25] software.

The event selection starts online with criteria based on
the total energy and charged-particle multiplicity, which are
fully efficient for signal and strongly suppress low-multi-
plicity events. Offline, we select tracks with loose require-
ments on their radial (6r < 0.5 cm) and longitudinal
(|6z] < 3.0 cm) displacements from the average e'e”
interaction point. We require tracks to be in the polar-
angle acceptance of the drift chamber (17° < 6 < 150°).

Photons are reconstructed from ECL energy clusters that
are not matched to tracks. Photons reconstructed in the
central region of the ECL (32.2° <6 < 128.7°) are

required to have energies greater than 50 MeV, and those
in the forward (12.4°< 6 <31.4°) and Dbackward
(130.7° < 8 < 155.1°) end caps greater than 60 and
100 MeV, respectively. To suppress beam background,
photon clusters must include more than one ECL crystal
and have a signal time within 200 ns of the collision time.
We reconstruct z° candidates by combining pairs of
photons. We require the angle between the two photons
to be smaller than 1 rad, the difference in their azimuthal
angles to be smaller than 2.2 rad, and the diphoton mass to
be consistent with the known z° mass within approximately
two times the resolution. We also exclude extreme values of
the cosine of the z° helicity angle. In the z° rest frame, this
is the angle between the photon direction and the 7° boost
direction from the lab frame. We remove candidates that
have cosine values larger than 0.98 to suppress combina-
torial background from collinear low-momentum photons.
We train a boosted-decision-tree (BDT) classifier with 14
variables associated with cluster shapes to suppress photons
misreconstructed from hadronic clusters and hadronic-
shower splitting [26]. We choose a threshold on the
BDT output optimized to select z° candidates from p~ —
%72~ decays. A requirement that the z° momentum be
larger than 240 MeV/c suppresses low-energy z° candi-
dates from decays of excited charm states.

Tracks are assumed to be charged pions. We combine a
neutral and a charged pion to form a p~ candidate. We
reconstruct D° candidates by combining oppositely
charged kaon and pion candidates with invariant masses
between 1.85 and 1.88 GeV/c?, a range about six units of
mass resolution wide. The kaon candidate is a track that
satisfies a threshold on the ratio L/ (L, + L), where the
likelihood L, x for a pion or kaon hypothesis combines
particle-identification information from all subdetectors
except the pixel detector. The requirement retains 95%
of kaons and rejects about 90% of pions misidentified as
kaons. We combine D and p~ candidates through a
kinematic fit of the entire decay chain to form B~ —
DPp~ decays, constraining the B~ to originate from the
e*e™ interaction region and the 7° mass to its known value
to improve B energy and momentum resolutions. For each
B candidate, we calculate the beam-constrained mass,
My = \E2,./c* — |py|?/c?, and the energy difference,
AE = E} — Ef ..., where E; . is the beam energy, E} is
the B energy, and pj its momentum vector, all computed in
the center-of-mass frame. We require M,, > 5.27 GeV/c?
and —0.18 < AE < 0.2 GeV.

We define the p helicity angle 6, as the angle between the
7z~ momentum and the direction opposite to the B~
momentum in the p~ rest frame. We select the region
cos 8, < 0.7, which excludes events with invariant masses
m(D°z°) smaller than about 2.6 GeV/c?. This removes
background from B decays into D%z~ z° through
D’ —» D°2% D3° — D2 which could interfere with
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the signal. Rates for these processes are not known, but
simulation studies show that our selection suppresses to
negligible levels any excited D* contribution regardless of
the unknown decay amplitudes.

To further suppress background, we use all tracks not
associated with the signal to reconstruct the decay vertex of
the other B meson and to identify its flavor with a dedicated
algorithm [27]. This information, along with event-shape
variables (modified Fox-Wolfram moments [28,29], energy
flows [30], sphericity-related quantities [31], and thrust-
related quantities [32]), is used as input to a BDT classifier.
The BDT is trained with simulation to distinguish signal
from continuum background: e*e™ — gg processes, where
q = u, d, s, c. The most discriminating inputs are the ratio
between the second and zeroth Fox-Wolfram moments, the
magnitude of the signal B thrust, and the cosine of the angle
between the thrust axis of the signal B and that of all the
remaining charged and neutral particles in the event. We cut
on the BDT output to reduce the continuum background to
a negligible level. There are multiple candidates in 4% of
events (2% in the signal region |AE| < 50 MeV) and are all
retained.

After the selection, simulation shows that 64% of the
total background is due to B decays other than signal, the
majority being Cabibbo-favored semileptonic decays. We
refer to these decays as BB background. Studies of
simulated samples show that backgrounds from suppressed
charmless decays, such as B~ - K zn'p~ and B~ —
K~ntnn°, are negligible. The remaining 36% originates
from misreconstructed signal decays (self-cross-feed),
where one of the final-state particles is mistakenly taken
from the decay of the accompanying B meson. Such
misreconstruction only occurs for the p~ — 777" decay.
The neutral pion is misreconstructed using a photon not
belonging to the signal in half of the cases of self-cross-
feed, and a charged or neutral pion from the other B-meson
decay is used in the other half.

We determine the sample composition with a maximum
likelihood fit to the unbinned distribution of AE, including
three components: signal, BB background, and self-cross-
feed. At this stage, we treat possible contamination of the
three-body decay B~ — D%z~ z°, where the 7~ 2° system is
nonresonant, as part of the signal, as its AE distribution is
indistinguishable from that of B~ — D%~ decay. The AE
fit is performed in nine independent intervals of cos 6, to
reconstruct the background-subtracted distribution of this
variable and separate B~ — D%~ from B~ — D%z~ z°
decays. As the p~ is fully longitudinally polarized in B~ —
D'p~ decays, the helicity angle distribution is proportional
to cos’*d,; by contrast, in nonresonant B~ — D%z~ z°
decays the 777" system is in S-wave with a uniform
cos @, distribution. Interference between the amplitudes
of the two decays modifies these distributions. To maxi-
mize the sensitivity at cos 9,, ~(0, where B~ — Dop‘

decays are suppressed, we use a variable interval width
so that the expected B~ — D°p~ distribution is remapped
into a uniform distribution. With this choice, the B~ —
D'z~ 7° shape peaks in the central region. The interval
scheme is chosen by using simulated data and accounts for
the efficiency variation as a function of cos 6,. We require
the same number of B~ — D’p~ candidates in each of the
nine intervals and we check that the cos 6, resolution is
negligible compared to the interval width.

The AE distribution changes significantly across the
cos 8, intervals for each fit component. Examples in the
two extremal intervals are shown in Fig. 1. The signal is
modeled with a Johnson Sy function [33], which peaks
close to zero in each interval and has a tail at negative AE.
However, variations of the peak position, width, and
skewness are observed because the energy resolution
depends on the momenta of the pions in the p~ decay.
When cos 6, approaches —1, the energy resolution is
dominated by the ECL energy resolution on the fast z°;
for cos 8, values closer to 1, the largest contribution to the
energy resolution comes from the measurement of the
momentum of the fast z~. Self-cross-feed also peaks
around zero, but with a broad structure that is modeled
by a Gaussian function; in the extremal cos 6, intervals, an

120 [ Bellell ¢ Data
i 4 —— Fit result
> 100;det=362fb ] signal
= [ [ ] Self-cross-feed
© sl [ BB background
g
g 60 -1<cosf, <-0.92
3 40
S
g 20
O
0 '
-0.15 0.1 -0.05 O 005 0.1 0.15 0.2
AE [GeV]
E Belle ll ¢ Data
180 i _1 —— Fit result

% 160 *J. L dt =362 fb [ Signal
= 140F [ ] Self-cross-feed
S 10k [ BB background
S 100f
® 0.55 < cosf, <0.70

80
o
S 60
2 40
@
O 20

0 et b e a0
-0.15 -01 -005 O 005 0.1 0.15 0.2
AE [GeV]
FIG. 1. Distribution of AE with fit projection overlaid for (top)

the lowest and (bottom) the highest cos 8, intervals.
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exponential function is also added. The shape of the BB
background is exponential in each cos 6, interval and peaks
at the lower edge of the AE range with different slopes;
intervals closer to cosf, = —1 have a smaller slope. All
shapes are determined by fitting simulated data and allow
for adjustments across the cos@, intervals. For each
interval, the free parameters of the fits to the experimental
data are the yields of the signal and BB background, the
exponential slope of the BB background, and shift- and
width-correction parameters common to the signal and self-
cross-feed peaks. The ratio of self-cross-feed to signal is
also a fit parameter that is Gaussian constrained to the value
found in simulation; the uncertainty on this constraint is
discussed below. The AFE distribution is modeled well in
each cos 6, interval, with p values from 0.07 to 0.96. The p
value of a fit is calculated as the y? probability from the pull
distribution of the fit projection with 26 bins in
—0.18 < AE < 0.08 GeV, with degrees of freedom equal-
ing the number of bins minus the free parameters of the fit.

The background-subtracted cos 6, distribution is shown
in Fig. 2 (top). We carry out a y fit to this distribution to
extract the B~ — Dp~ signal yield. Since we adopt an
interval scheme with equiprobable B~ — D%~ yields, we
use a uniform probability density function to model B~ —
D°p~ candidates and a peaking template obtained from
simulation to model B~ — D%z~ 7" candidates. We find
8360 + 180 B~ — D°p~ decays and a (1.9 + 1.8)% frac-
tion of B~ — D%z~ 2" decays. The p value of the fit is
0.074. Figure 2 (bottom) shows the background-subtracted
distribution of the z~z° invariant mass, overlaid with the
simulated distribution using the fractions of B~ — D%~
and B~ — D%z 7% decays resulting from the fit.
Background is subtracted using the sPlot method [34] with
per-candidate weights calculated from the AE fits in the
nine cos®, intervals. Simulation reproduces the data
distribution well. We check the stability of the obtained
results by separately fitting the candidates with 7z~ z°
invariant masses above and below 770 MeV/c2. We obtain
compatible cos 6, distributions, with fractions of nonreso-
nant B~ — D%z~ 7" decays again consistent with zero and
branching fractions of B~ — D°p~ decays that agree within
half a standard deviation considering only the statistical
uncertainties. These results indicate that interference effects
between the two amplitudes are negligible.

The branching fraction of the B~ — D%p~ decay is
given by

N
- 0,.—\ __
T G)

where N is the B~ — D%~ yield, Nyz = (387 + 6) x 10°
the number of BB pairs in the sample, f*~ = 0.516 &+

0.012 the branching fraction of the decay Y (4S) — B*B~
[35], €=(5.714+0.03)% the signal efficiency, and
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FIG. 2. Top: background-subtracted cos 8, distribution with fit
projection overlaid. The horizontal bar on the markers represents
the cos 6, interval. The y-axis scale is zero-suppressed to show
the small B~ — D°z~z° contribution. Bottom: background-
subtracted distribution of the #~ 7" invariant mass, with overlaid
simulated data reflecting the B~ — D%~ and B~ — D%z 7°
proportions from the cos 6, fit.

Bop, = (3.90 & 0.03)% the product of the branching frac-
tions of the subdecays D° — K=zt and 7° — yy [5]. The
result is

B(B~ = D) = (0.939 +0.021 £ 0.050)%. (4)

where the first uncertainty is statistical and the second
systematic. This value already includes the simulation
corrections for the efficiency described below.
Contributions to the systematic uncertainty are reported
in Table 1. The uncertainties on the number Ny of BB
pairs, on the branching fraction 7, and on the subdecay
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branching fraction B, contribute systematic uncertainties
of 1.5%, 2.4%, and 0.8%, respectively.

We calculate systematic uncertainties associated with the
choice of the AFE fit model, for each component, by
drawing one thousand samples of pseudodata from an
alternative model and fitting them with the model used in
the analysis (nominal model). The alternative models
consist of different probability density functions that fit
simulated data with the same quality as the nominal
models. In addition, we generate samples with variations
of parameters that are fixed to the values found from the fit
to simulated data and fit them with the default model, to
mimic potential data-simulation discrepancies. We assign
as a systematic uncertainty the observed average residual,
i.e., the difference between the average fit value and the true
value, of the signal B~ — D%~ yield. We sum in quad-
rature the systematic uncertainties related to the model
choices and to the fixed parameters to obtain the systematic
uncertainty associated with the fit modeling reported in
Table I.

We validate the background composition by inspecting
several distributions in two sidebands of the diphoton
invariant mass (110-120 and 145-160 MeV/c?), which
are enriched in self-cross-feed and BB background. A 10%
relative uncertainty is assigned to the fraction of self-cross-
feed determined from simulated data in each cos 6, interval.
This uncertainty is calculated in sideband data by compar-
ing the simulated and experimental distributions of the 7°
momentum, which is the kinematic variable most sensitive
to variation of the self-cross-feed fraction. Since this
fraction is Gaussian constrained in the AFE fit, the corre-
sponding systematic uncertainty is already included in the
statistical uncertainty on the signal yields.

The signal efficiency is calculated from simulated data;
the quoted 0.03% uncertainty is statistical. Control data are
used to validate the efficiency and to correct for data-
simulation differences. We propagate uncertainties of all
efficiency corrections as systematic uncertainties on the
branching fraction.

The correction for the z°-reconstruction efficiency is
obtained by measuring the ratio of the yields of the decays

TABLE I. Summary of the fractional systematic uncertainties.
The total is the sum in quadrature of the individual contributions.

Source Fractional uncertainty (%)
Ngp 1.5
ft= 2.4
B 0.8
Fit modeling 1.7
70 efficiency 3.7
Particle-identification efficiency 0.6
Continuum-suppression efficiency 1.5
Tracking efficiency 0.7
Total 53

Dt - D(-K=ztz%z" and D** —» D°(—»K n")xt,
scaled by the inverse of the branching-fraction ratio. We
measure the yield ratio in experimental and simulated data
to determine a per-candidate correction as a function of the
momentum and polar angle of the z° candidate. The
corrections span a range between 0.7 and 1.1 with an
average of 1.011 £ 0.037. The uncertainty is dominated by
that on the ratio of D°-decay branching fractions [5].
The correction for the efficiency of the kaon selection is
obtained using an abundant control sample of D*T —
D°(—»K~zt)z*t decays. We measure the data-to-simulation
efficiency ratio from the control sample and scale the signal
efficiency using per-candidate corrections as a function of
the momentum and polar angle of the kaon candidate. The
corrections span a range between 0.7 and 1.2 with an
average of 1.009 £ 0.005. The uncertainty is dominated by
that on the background subtraction of the control channels.
The efficiency of the continuum-suppression require-
ment is validated using B~ — D°(—K~z")z~ decays. We
use a signal-enriched region (signal purity of 95%) and a
continuum-background-dominated region (continuum-
background fraction of 83%) to compare distributions of
the BDT input variables and BDT output between exper-
imental and simulated data. No significant discrepancy is
found. The ratio of efficiency of the continuum-suppression
requirement in experimental and simulated control data is
0.987 £ 0.015, where the uncertainty is statistical. We use
this ratio to correct the signal efficiency and propagate the
corresponding uncertainty to the signal branching fraction.
The tracking efficiency is validated using e"e™ — 717~
events, where one 7 decays leptonically, 7+ — #tv,0, with
¢ = e, u, and the other hadronically, 7~ — 7~z 7z v,. The
efficiency to reconstruct a track is found to be the same for
experimental and simulated data with an uncertainty of
0.24%. No correction is applied to the signal efficiency.
Finally, we validate the overall efficiency and its cor-
rections by measuring the branching fraction of the B~ —
D°(—»K~7*7°)n~ decay, selected as the signal (except for
requirements on z~ z° invariant-mass and cos 6,). Although
the final-state particles are the same, the kinematics of the
control decay differs from that of the signal decay. This
results in a selection efficiency for the control channel of
(2.98 + 0.03)%, where the difference with that of the signal
is mainly due to the charged pion accompanying the D°
candidate in the B~ — D%z~ decay. However, for the other
particles, the B~ — D°(—K~z*z°)z~ decay covers most
of the relevant B~ — D%~ phase-space. In particular, the
neutral pion from the B~ — D°(—K~7" %)z~ decay has a
softer momentum distribution that peaks in the region
where the efficiency corrections are larger. As in the signal
analysis, the control sample is categorized by three com-
ponents: signal B~ — D°(—=K~n"7z%)x~ (75% fraction),
BB background (21%), and self-cross-feed (3%).
Continuum background is negligible. To determine the
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signal yield, we use a maximum likelihood fit to the
unbinned AFE distribution using probability density func-
tions similar to those described for the signal AE fit. We
obtain 7700 =90 B~ — D°(—»K~-z*z°)z~ decays, which
yields a branching fraction of (0.454 £+ 0.022)% in agree-
ment with the world average value, (0.461 +0.010)% [5].
The result includes the efficiency corrections and their
uncertainties, as well as those due to the number of BB
pairs, in £, and in the subdecay branching fractions.

Using our result, we update the value of R and cosd in
Egs. (1) and (2). Taking the branching fractions B(B°—
D*p™)=(0.76£0.12)% and B(B® — D°p") = (0.03214
0.0021)%, and the ratio of lifetimes 7z, /7, =1.0761+0.004
[5], we obtain R =0.93"0]) and cosd=0.919"053,
which agree with and are significantly more precise than
previous determinations [15]. These results confirm expect-
ations from factorization in the heavy-quark limit.

In conclusion, we measure the branching fraction of the
B~ — D%~ decay using et e~ -collision data collected by
the Belle II detector at the Y'(45) resonance and containing
387 million BB meson pairs. The result is (0.939 +
0.021(stat) = 0.050(syst))%, in agreement with previous
determinations. Our measurement improves the fractional
precision of the world average [5] by more than a factor of
two and will also significantly ameliorate the calibration
factor of the Belle II hadronic-tagging algorithm.
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