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We introduce a novel approach for deriving one-loop Bern-Carrasco-Johansson (BCJ) numerators
and reveal the world-sheet origin of the one-loop double copy. Our work shows that expanding Cachazo-
He-Yuan half-integrands into generalized Parke-Taylor factors intrinsically generates BCJ numerators
on quadratic propagators satisfying Jacobi identities. We validate our methodology by successfully
reproducing one-loop BCJ numerators for the nonlinear sigma model as well as those of pure Yang-Mills
theory in four dimensions with all-plus or single-minus helicities.
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Introduction. Recent advancements in quantum field theory
have highlighted the essential role of scattering amplitudes
in unraveling the fundamental interactions in nature. At the
forefront of these advancements are the Bern-Carrasco-
Johansson (BCJ) double-copy relations, rooted in the
concept of color-kinematic duality (cf. [1–5]). These
relations have unveiled significant structures and simplifi-
cations in scattering amplitudes at both tree and loop levels,
suggesting a complex interplay within Feynman diagrams
that hints at a unified framework underlying gauge and
gravitational theories.
Another noteworthy development in this area is the

Cachazo-He-Yuan (CHY) formula [6–9], which offers an
alternative approach to understanding scattering amplitudes
beyond traditional Feynman diagram methods. The CHY
formula, known for its intricate geometry and combinato-
rial intelligence in the realm of world-sheet moduli space,
streamlines the derivation of BCJ numerators at the tree
level and enhances the efficiency of amplitude calculations.
Significant contributions in this field include the identi-
fication of relationships between various theories [9–11]
and the development of polynomial representations of BCJ

numerators for Yang-Mills (YM) theory and many other
theories of any multiplicity [12–15].
Moreover, ambitwistor strings [16,17], along with tradi-

tional string theories [18–22], have provided deeper
insights into the CHY formula from a world-sheet per-
spective and broadened the applicability of the CHY
formula, particularly in the realm of loop amplitudes.
Additionally, intersection theories have also proven instru-
mental to illuminate the mathematical and geometric
foundations inherent in the CHY formula [23,24]. It has
also been established that manipulating tree-level CHY
integrands through their forward limit in higher dimensions
generates one-loop CHY integrands [25,26].
Despite considerable advancements, accessing BCJ

numerators on quadratic propagators at loop level via
world-sheet methods remains a daunting task, with the
traditional world-sheet formula introducing loop propaga-
tors with linear loop momentum dependence, complicating
analyses [25–29]. Although new BCJ double copies have
been discovered employing these loop integrands [30,31],
the linear aspect hinders simplified integration.
However, significant research by Feng et al. [32], among

many other works (cf. [33–41]), introduced a method for
generating loop integrands with quadratic propagators,
pivoting on the expansion of CHY half-integrands via one-
loop generalized Parke-Taylor (PT) factors. This approach
alleviates the complexities posed by linear dependencies in
loop momentum, propelling forward the exploration of
loop-level scattering amplitudes.
In this paper, for the first time, we prove that the

expansion onto generalized PT factors naturally gives rise
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to BCJ numerators on quadratic propagators that adhere to
Jacobi identities using the formulas in [32]. Consequently,
this significantly enhances the relevance of the CHY
formulas, affirming their utility at the one-loop level.
Besides, our method proposes a more flexible double-copy
framework building upon the foundations established in
previous works [1,2].
As a practical application of our methodology, we

demonstrate its efficiency in reconstituting one-loop BCJ
numerators for the nonlinear sigma model (NLSM) for
arbitrary multiplicities recently proposed in [42] as well
as those of pure YM theories in four dimensions with all-
plus or single-minus helicity external gluons [43]. Simple
double copies among them yield the loop integrands for
special Galileon, Born-Infeld, and pure gravity amplitudes
[9] with corresponding helicities.

Quadratic propagators from the world sheet.

CHY formula for one-loop scattering amplitudes: The one-
loop CHY formula yields loop integrands for the scattering
of n external, incoming massless particles by integrating
over the moduli space of the degenerate tori, specifically,
the nodal Riemann sphere localized by the one-loop
scattering equations [27,44]:

MðlÞ ¼ 1

l2

Z Yn
i¼2

dσiδ

 
2l · ki
σi

þ
Xn
j¼1
j≠i

sij
σij

!

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡dμn

ILðlÞIRðlÞ;

ð1Þ

where σij ≡ σi − σj and sij ≡ 2ki · kj. These loop inte-
grands can also be derived from the (nþ 2)-point massless
tree-level CHY formula via the forward limit in higher
dimensions [25,26]. Further integration upon the off-shell
loop momentum l yields the one-loop amplitudes.
We have fixed the SLð2;CÞ gauge redundancy in the

nodal Riemann spheres in (1) by setting the two nodal
punctures as σþ → 0; σ− → ∞, and σ1 → 1. The measure
dμn is universal, while the half-integrands IL=RðlÞ with
equal SLð2;CÞ weights encode the dynamics information
for a specific theory. The n external momenta satisfy
momentum conservation,

P
n
i¼1 ki ¼ 0. For brevity, we

introduce multiparticle momenta k12…p ≡Pp
i¼1 ki and

the shorthand l12���p ≡ lþ k12���p, such that l2
12���p signifies

the quadratic loop propagator.

One-loop cubic graph and quadratic propagators: An
important ingredient in the one-loop double copy con-
struction is the one-loop cubic graph [1,2]. To describe this,
we introduce a uniform notation, gðA1;A2;…;AmÞ, where
the sequence A1;A2;…;Am with 1 ≤ m ≤ n symbolizes
all m dangling trees located at the corners of the polygon
and the loop momentum l is directed from Am to A1 as

illustrated below.

ð2Þ

The exclusive use of cubic vertices allows for each
dangling tree Ai to be represented by a nested square
bracket.
Additionally, we define Pg as the product of all propa-

gators in graph g, encompassing both loop and tree
elements. For instance,

Pgð½1;2�;½½3;4�;5�;6Þ ≡ P½1;2�;½½3;4�;5�;6 ¼ l2l2
12l

2
12345s12s34s345:

Henceforth, for simplicity, when referencing a graph gð� � �Þ
as a subscript, we drop both the g symbol and the
parentheses to simplify the notation. Note that Pg depends
on the orientation and position of l:

PAm;A1;…;Am−1
¼ PA1;A2;…;Am

jl→lAm
; ð3Þ

PA1;Am;…;A2
¼ PA1;A2;…;Am

jl→−lA1
: ð4Þ

Generalized PT factors and their integrals: Inspired by the
maximally helicity violating gluon amplitude formula [45],
tree-level PT factors are used in the tree-level CHY formula
to encode the information of color ordering for theories
like YM theory [8]. They only have simple poles and can
act as the basis of the tree-level CHY half-integrands
(cf. [7,15,46,47]). Building on this, the one-loop variant
of PT factors was introduced in the one-loop CHY formula
in [44] to similarly convey color-ordering information.
In [32], further operators acting on the standard scalar one-
loop PT factors were introduced to define the generalized
one-loop PT factors,

lμ1;μ2;…;μr
1 PTð1;2;…; nÞ≡

 Yr
j¼1

l
μj
1

!
PTð1;2;…; nÞ

≡X
n

i¼1

Yr
j¼1

ðlμj − k
μj
12���i−1Þ

×PTtreeðþ; i; iþ 1;…; i− 1;−Þ;
ð5Þ

which have nontrivial dependency on the loop momentum.
Leg 1 in (5) plays a special role as we define l as the loop
momentum flowing into the subtree that contains leg 1 and
we use the subscript in the operator l1 to emphasize it.
The tree-level PT factor reads PTtreeðþ; 1; 2;…; n;−Þ≡

1
σ1σ1;2σ2;3���σn−1;n.
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It was demonstrated in [32] that the CHY integral of two
generalized PT factors yields loop integrands with quad-
ratic loop propagators,

1

l2

Z
dμnl

μ1;μ2;…;μr
1 PTð1; ρð2Þ;…; ρðnÞÞ

× lν1;ν2;…;νt
1 PTð1; σð2Þ;…; σðnÞÞ

≅ sgnρσ
X

g∈Tð1;ρÞ∩Tð1;σÞ

lμ1;μ2;…;μr
Aðg;ρÞ lν1;ν2;…;νt

Aðg;σÞ
Pg

; ð6Þ

where ρ and σ denote permutations of the elements
2; 3;…; n and the symbol ≅ signifies that the integrands
on both sides yield identical results after loop integra-
tion [48]. The summation extends over all graphs that are
members of both Tð1; ρÞ and Tð1; σÞ defined as follows.
Considering a one-loop cubic graph gðA1;A2;…;AmÞ
defined in (2) with 2 ≤ m ≤ n, the loop momentum circu-
lates clockwise and particle 1 is positioned in the initial
corner, that is, A1 ∋ 1, and the set Tð1; ρÞ represents all of
such cubic graphs with the external legs ordered according to
the sequence ð1; ρÞ, in a clockwise arrangement.
lμ1μ2
Aðg;ρÞ implies lμ1

Aðg;ρÞl
μ2
Aðg;ρÞ and the shift factor Aðg; ρÞ in

lAðg;ρÞ ¼ lþ kAðg;ρÞ signifies the subset of particles in the
first corner A1 of graph g that are situated before particle 1
in the cyclic order ð1; ρÞ. Note that Aðg; ρÞ can be empty.
More explicitly, suppose ρðbÞρðbþ1Þ � � �ρðnÞ1ρð2Þ � � �ρðaÞ
belong toA1; then, Aðg; ρÞ ¼ fρðbÞ;…; ρðnÞg. The overall
sign is delineated as follows:

sgnρσ ≡
Yjσj−1
i¼1

sgnρσðiÞ;σðiþ1Þ ¼ sgnσρ; ð7Þ

where sgnρi;j equals þ1 if i is ahead of j in ρ, and −1
otherwise.
In the next section, we will show how to derive BCJ

numerators on quadratic propagators based on (6).

One-loop BCJ numerators from the world sheet. In the
study of one-loop CHY formulas for theories such as
those with SUðNÞ or SOðNÞ color groups, the formula-
tion involves distinctive half-integrands. The first half-
integrand, Cn, represents a color-dressed scalar PT factor,
devoid of all kinematic considerations, defined as

Cn ≡
X

σ ∈ Sn−1

C1;σPTð1; σÞ;

where C1;2;…;n ≡ fza1bfba2cfca3d…fyanz; ð8Þ
with fabc representing the structure constants of the color
group.
The second half-integrand, In, is in general more

complicated. However, as we prove later, for theories that
accept a BCJ double copy, their second half-integrand can
always be expanded to generalized PT factors (5). This

expansion can be organized based on scalar PT factors
PTð1; ρÞ, with all operators l1 and σ-independent variables
like ki, polarizations ϵi, etc., consolidated as a single
operator N1;ρ. Consequently, In mirrors the structure of
Cn, described as

In ¼
X

ρ∈ Sn−1

N1;ρPTð1; ρÞ: ð9Þ

In the next section, we show the concrete expansions (9)
for NLSM and pure YM theory with all-plus or single-
minus helicities. More examples of the expansions for low-
point super-Yang-Mills amplitudes can be found in [32],
suggesting a potential for generalization to higher-point
scenarios [50–52]. In this section, our focus is on using the
(abstract) expansion (9) as a foundation to illustrate a
universal approach for deriving BCJ numerators.

General claim: Our central statement is that the integral
1
l2
R
dμnInCn inherently generates BCJ numerators for

theory O. Specifically, the master BCJ numerator for an
n-gon graph can be straightforwardly acquired via the
substitution

N1;ρð2Þ;…;ρðnÞ ≡ Ngð1;ρð2Þ;…;ρðnÞÞ ¼ N1;ρjl1→l: ð10Þ

Jacobi identities: For any triplet graphs with identical
placement and orientation of loop momentum l but differ-
ing by a single propagator (as shown below),

their numerators satisfy Jacobi identities similar to color
factors. This denotes an antisymmetrization of the
numerators,

N���;½B1;B2�;��� ¼ N���;B1;B2;��� − N���;B2;B1;���; ð11Þ
where the ellipsis represents consistent dangling tree
sequences across the three graphs.
Applying these identities recursively enables deriving

the numerator Ng of any graph as a linear combination of
ðn − 1Þ! master BCJ numerators N1;ρ with ρ∈ Sn−1, con-
sidering potential loop momentum shifts.
The shift arises because varying l positions within the

same n-gon yield different numerator representations,

ð12Þ
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That is, Nγð2Þ;…;γðiÞ;1;… ≡ N1;…;γð2Þ;…;γðiÞjl→lγð2Þ;…;γðiÞ , where
γð2Þ,γð3Þ;…; γðnÞ denote a permutation of 2; 3;…; n.

Double copy: Having obtained all BCJ numerators and
color factors for the one-loop cubic graphs, we express the
loop integrand for theory O as

1

l2

Z
dμnInCn ≅ MO

n ðlÞ ¼
X
g∈W1

NgCg

Pg
; ð13Þ

where W1 denotes all one-loop cubic graphs gðA1;A2;…;
AmÞ with 2 ≤ m ≤ n and A1 ∋ 1.
Consider another theory O0 with half-integrand

I0n ¼
P

σ ∈ Sn−1 N
0
1;σPTð1; σÞ. The double copy between O

and O0 gives the loop integrand of a third distinct theory,

1

l2

Z
dμnInI0n ≅ MDC

n ðlÞ ¼
X
g∈W1

NgN0
g

Pg
; ð14Þ

where Cg in (13) is replaced by another set of BCJ
numerators N0

g ¼ NgjN→N0 .

Numerators: For clarity, the numerator Ng in (13) and (14)
is explicitly formulated as

Ng ¼ sgnρ0g
X

ð1;ρÞ∈T−1ðgÞ
sgnρ0ρ N1;ρjl1→lAðg;ρÞ : ð15Þ

Here, the sum is over all orderings ð1; ρÞ such that
g∈Tð1; ρÞ and we have selected an arbitrary ð1; ρ0Þ from
them as a reference. The sign sgnρ0ρ is specified in (7).
In a parallel manner, the color factor is given by

Cg ¼ sgnρ0g
X

ð1;σÞ∈T−1ðgÞ
sgnρ0σ C1;σ: ð16Þ

Notably, the comprehensive overall signs sgnρ0g in (15)
and (16) result in þ1 upon the multiplication of Ng and Cg

in (13), ensuring consistency.

Example: Here is an example at n ¼ 3 for (13):

1

l2

Z
dμ3I3C3 ≅

N1;2;3C1;2;3

P1;2;3
þ N1;3;2C1;3;2

P1;3;2
þ N1;½2;3�C1;½2;3�

P1;½2;3�

þ N½1;2�;3C½1;2�;3
P½1;2�;3

þ N½1;3�;2C½1;3�;2
P½1;3�;2

; ð17Þ

where N½1;2�;3 ¼N1;2;3−N2;1;3 ¼N1;2;3jl1→l −N1;3;2jl1→l2 .
The example of (14) can be easily given by substituting C
with N0.
The proof of our general proposal as outlined in (13) and

(14) are presented in the Supplemental Material [53].

Refined double copy: In our construction (13) and (14),
graph pairs gðA1;A2;…;AmÞ and gðA1;Am;…;A2Þ,
typically seen as identical for 3 ≤ m ≤ n, are distinct in

set W1. We introduce set Ŵ1 by merging such pairs in W1

and formulate a new CHY half-integrand tied to In as
follows:

Īn ¼
X

ρ∈ Sn−1

N̄1;ρPTð1; ρÞ;

with N̄1;ρ ¼
1

2

�
N1;ρ þ ð−1ÞnN1;ρT jl1→−l1−k1

�
; ð18Þ

where ρT reverses ρ. Employing Īn in place of In in the
CHY integral (13) reveals new master BCJ numerators
N̄1;ρ ¼ N̄1;ρjl1→l satisfying

N̄1;ρT ¼ ð−1ÞnN̄1;ρjl→−l−k1 : ð19Þ
This ensures identical contributions from n-gon pairs
gð1; ρÞ and gð1; ρTÞ to amplitudes, extending to any
gðA1;A2;…;AmÞ and gðA1;Am;…;A2Þ, as proved in [53].
Importantly, the new loop integrand matches MðlÞ from
(13) after integration, establishing Īn ≅ In as a refined In,
leading to the refined double copies,

MO
n ðlÞ ≅

X
g∈ Ŵ1

Sg
N̄gCg

Pg
; MDC

n ðlÞ ≅
X
g∈ Ŵ1

Sg
N̄gN̄0

g

Pg
:

ð20Þ
Here, the symmetry factor Sg is 1 for bubble graphs but
becomes 2 for triangles and larger polygons [60].
In particular, our initial double copy (13) and (14), which

naturally arises from world-sheet perspectives, does not
mandate (19), allowing unrelated BCJ numerators for
identical graphs with differing l orientations. This suggests
potential redundancies in loop-level double-copy construc-
tions, urging further exploration into higher-loop BCJ
numerators.
In the context of scattering of n identical external bosons,

we achieve one-loop crossing-symmetric BCJ numerators
[61–64] through averaging permutations of particle labels
in the half-integrand Īn, as delineated in [53].
Having established the derivation of master BCJ numer-

ators from the CHY half-integrand expansion, we posit that
the inverse is equally valid. When provided with BCJ
numerators that satisfy the Jacobi identities (11), we can
elevate the master numerators symbolized as Nð1; ρÞ for
n-gons to operators, Nð1; ρÞjl→l1

→ N1;ρ. The CHY half-
integrand for theory O then follows the expansion (9),
inherently yielding the same loop integrand for theory O
according to (13). As a corollary, this proves the existence
of the expansion (9) for theories that accept BCJ double
copies.
Further exploration in this area reveals additional

insights. In (1), we have assumed that the CHY integrand
for a given theory decomposes into two half-integrands,
ILðlÞ and IRðlÞ; however, it could in principle just

be a quadratic combination of them,
P

i I
ðiÞ
L ðlÞI ðiÞ

R ðlÞ.
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Nevertheless, our investigations confirm that the existence
of BCJ numerators for a theory ensures that its CHY
integrands can indeed be represented as a product of two
half-integrands.

Applications. In this section, we demonstrate our approach
through an analysis of one-loop amplitudes for pure gluons
in D ¼ 4, focusing on all-positive or single-minus helicity
configurations. Using straightforward techniques, similar
to those employed at the tree level [9–11], we successfully
derive the BCJ numerators for NLSM theories as well. This
not only demonstrates the straightforwardness of the
method in deriving BCJ numerators from the world sheet
but also indicates its broad applicability to diverse par-
ticle types.
Utilizing spinors, we can express the four-dimensional

polarizations ϵi and momenta ki, ensuring ϵi · ϵj → 0 via a
specific reference spinor choice [65,66]. For all-plus or
single-minus helicity configurations in gluon scattering, as
established in [67,68], loop amplitudes involving a gluon,
fermion, or scalar in the loop are proportionally equivalent.
Thus, we concentrate exclusively on the scalar case.
We derive the corresponding one-loop CHY half-

integrand from the tree level in the forward limit [25,29].
The tree-level ones for n external gluons and two scalars,
denoted as þ;−, can be straightforwardly obtained from
the well-known reduced Pfaffian for nþ 2 external gluons
[7,8] by extracting its coefficient ϵþ · ϵ− [9,10]. When
setting all remaining ϵi · ϵj → 0, the Pfaffian simplifies to a
determinant. Implementing the forward limit yields the
one-loop CHY half-integrand for n external gluons with a
scalar propagating in the loop,

IYMn ¼ − detCðϵi; ki; σiÞ; ð21Þ
where C is an n × n matrix defined as

Ci;j ≡ ϵi · kj
σi;j

for i ≠ j and Ci;i ≡−
Xn

a¼1;a≠i
Ci;a −

ϵi · l
σi

:

Applying the matrix tree theorem [69] to expand det C
results in a summation over all labeled trees G with nodes
fþ; 1; 2;…; ng and orientations of the n edges eði; jÞ
flowing to the root node þ [70],

IYMn ¼ ð−1Þnþ1
X
G

Y
eði;jÞ

ϵi · kj
σi;j

: ð22Þ

By utilizing partial fraction identities and grouping coef-
ficients for each PTtreeðþ; π;−Þ [71], we express (22) as

IYMn ¼
X
π ∈ Sn

Yn
i¼1

ϵi · ðlþ YiðπÞÞPTtreeðþ; π;−Þ; ð23Þ

where Yiðπð1Þ; � � � ; πðjÞ; i; � � �Þ ¼ kπð1Þ;…;πðjÞ.

As proved in [53], IYMn can be expanded to the
generalized PT factors with ranks ranging from 2 to n,

IYMn ¼
X

ρ∈ Sn−1

Yn
i¼1

ϵi · ðl1 þ Yið1; ρÞÞPTð1; ρÞ: ð24Þ

Utilizing (10), we derive all master BCJ numerators as

NYM
1;ρ ¼

Yn
i¼1

ϵi ·
�
lþ Yið1; ρÞ

�
: ð25Þ

One can easily check that NYM
1;ρT ¼ ð−1ÞnNYM

1;ρ jl→−l1 .

Consequently, we directly employ (20) and (15) to compute
the loop integrands for all-plus or single-minus YM and GR
amplitudes.
Note that we derive (25) directly from detCðϵi; ki; σiÞ

(see also [72–75]), ensuring manifest symmetry across all n
external gluons. Consequently, the master BCJ numerators,
represented as NYM

1;2;…;n ¼
Q

n
i¼1 ϵi · l12���i−1, exhibit cross-

ing symmetry, as elucidated in [53], in scenarios involving
all-plus helicities.
Remarkably, it is straightforward to extend our deriva-

tion from gluons to pions. Starting at the one-loop CHY
half-integrand (21) for YM theory with a scalar running in
the loop, simply replacing ϵi → ki in (21), we get the half-
integrand for NLSM [9] in the one-loop CHY formula.
Crucially, we have not taken the derivative of a Lorentz
product of a pair of external polarizations in this procedure,
which is different from the one at tree level [9,10,76]. Then,
a parallel derivation further demonstrates that NNLSM

1;2;…;n ¼Q
n
i¼1 ki · l12���i−1. The double copies of themselves or

together with the gluon ones (25) produce the loop integrands
for special Galileon and Born-Infeld theories with corre-
sponding helicities, which will be further studied in [77].
Although the BCJ numerators (25) for gluons have

been previously presented in [28,43,68,78–80] and those
of pions were recently proposed in [42], our approach
reproduces them universally in a streamlined and elegant
manner. The success in these specific cases highlights the
adaptability of our method, suggesting its potential appli-
cability to a broader array of theories.

Discussion. This research signifies an important advance
in quantum field theories, particularly in computing one-
loop BCJ numerators. We have pioneered a method for
extracting one-loop BCJ numerators, generating one-loop
integrands using CHY half-integrands expanded into gen-
eralized PT factors. Our strategy, tested on the NLSM as
well as pure Yang-Mills theories with all-plus or single-
minus helicities, demonstrates robustness and flexibility,
showing great potential to enhance computational tech-
niques and uncover previously unknown connections
among one-loop amplitudes.
By expressing any one-loop double copy as a CHY

integral combining a direct product of two half-integrands,
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our method potentially alludes to a one-loop variant of the
Kawai-Lewellen-Tye (KLT) relations [6,81,82] using quad-
ratic propagators (see Refs. [30,31] using linear propaga-
tors), potentially linked to recent studies on the genus-one
KLT relations in string amplitudes [83–85].
Although we have concentrated on one-loop BCJ

numerators, the foundational principles of our technique
hold promise for an extension to higher-loop levels, with
various CHY integrands already suggested via ambitwistor
strings [86–88], traditional strings [89–91], or double or
multiple forward limits [92,93]. Exploring these possibil-
ities is a direction for our upcoming research.
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