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We study a three-dimensional holographic conformal field theory under the influence of a background
electric field on a spacetime containing two black hole horizons. The electric background is fixed such that
there is potential difference between the two boundary black holes, inducing a conserved current. By
constructing the holographic duals to this setup, which are solutions to the Einstein-Maxwell equations
with a negative cosmological constant in four dimensions, we calculate, to a fully nonlinear level, the
conductivity of the conformal field theory in this background. Interestingly, we find that the conductivity
depends nontrivially on the potential difference. The bulk solutions are flowing geometries containing
black hole horizons which are non-Killing and have nonzero expansion. We find a novel property that the
past boundary of the future horizon lies deep in the bulk and show this property remains present after small
perturbations of the temperature difference of the boundary black holes.

DOI: 10.1103/PhysRevD.109.L101904

Introduction. Given a quantum field theory (QFT), a natural
avenue of investigation is to test how it behaves under an
external electric field. Studying such behavior for a strongly
coupled QFT using direct field theory techniques is computa-
tionally very challenging (though progress has been made
when the system is in the proximity of quantum critical points
[1]; see also [2] for a holographic description of a similar
setup). However, since its advent, the AdS/CFT correspon-
dence [3–5] has allowed for the indirect study of strongly
coupled condensed matter systems via gravitational calcula-
tions (see for instance [6] for an excellent review on the topic).
Specifically, wework in the limit of the AdS/CFT duality

in which the gravitational theory is well described by
classical gravity. In this limit, the duality maps a problem of
studying a strongly coupled conformal field theory (CFT)
with a large number of degrees of freedom living on a fixed
(but possibly curved) background, B, to a gravitational
problem in which one must find a corresponding asymp-
totically locally anti–de Sitter (AlAdS) spacetime, called
the bulk, which possesses a conformal boundary on which
the induced metric is conformal to B (see Ref. [7] for an
introduction to this method).
Taking B to be a black hole background has allowed

for the study of Hawking radiation at strong coupling. The
dual bulk solutions are generally called droplets and

funnels [8–21], with the distinction between these two
classes originating from the structure of the horizons in
the bulk. A bulk solution with a horizon connecting two
distinct boundary horizons is called a funnel, whereas a
bulk solution with horizons each emanating from only a
single boundary horizon is called a droplet.
In this Letter, we will focus on four-dimensional global

funnels. The boundary geometry will be given by the
conformal compactification of the geometry obtained by
“patching together” two identical Bañados-Teitelboim-
Zanelli (BTZ) black holes (shown on the left in Fig. 1)
at infinity. This yields two black holes antipodally situated
in the Einstein static universe as sketched in the middle in
Fig. 1. There is a well-known solution called the BTZ black
string or uniform funnel which connects these two boun-
dary black holes, however, even in the case of vacuum
gravity in the bulk, there is a rich structure of bulk solutions
beyond this uniform funnel [17–20]. The right-hand sketch
in Fig. 1 is a schematic drawing of a global funnel.

FIG. 1. Some sketches of spatial cross sections of spacetimes of
interest.Left: twoBTZblackholeswith thedashed curves being their
asymptomatic boundaries and the dotted line their horizons. The
interior is shaded.Middle: the boundary geometry found by patching
the BTZ spacetimes together at infinity and then compactifying onto
the Einstein static universe. Right: the global funnel, a solution in the
bulk with a horizon connecting the two boundary horizons.
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We add a chemical potential to the field theory which
induces a conserved current, Jμ, and, on the gravitational side
of the duality, causes a deformation of the bulk geometry
away from the uniform funnel to a new solution to the
Einstein-Maxwell equations with a negative cosmological
constant. Wewill define the chemical potential to vary on the
boundary background, and in particular fix that it approaches
two different values at the two BTZ black hole horizons in
the boundary geometry. Since these charged global funnels
correspond to the QFT sourced by the two horizons at the
same temperature but with a potential difference between
them, we dub these solutions as holographic batteries.
Calculating the bulk solution allows one to extract the

conserved current, Jμ, induced by the source on the field
theory side, and so this provides a process to calculate
the nonlinear conductivity of the boundary field theory,
going beyond the linear regime examined in [22–30].
Interestingly, we find that the conductivity is not a constant
value, i.e. the current, Jμ, depends nontrivially on the
magnitude of the chemical potential, despite there being no
net current, in contrast to what was observed in [31,32].
Moreover, the chemical potential varying across the

boundary geometry induces classical flow along the bulk
horizon. Unlike previously found solutions containing flow-
ing horizons [16,18,21,33], this flow is not caused by a
temperature difference between two asymptotic regions of
the bulk horizon, and this means the properties of the
holographic batteries are subtly different to these other
flowing solutions. In particular, we show that the past
boundary of the bulk horizon lies deep in the bulk, as
opposed to on one of the points at which the bulk horizon is
anchored on the boundary, as seen in all previous flowing
black hole geometries. We show that this property is generic
by considering holographic batteries in which the boundary
black holes can also have a small temperature difference.

Finding the batteries. First let us consider the metric of the
BTZ black hole:

ds2BTZ ¼ −fðrÞdT2 þ dr2

fðrÞ þ r2dφ2; ð1Þ

with fðrÞ ¼ ðr2 − r20Þ=l2
3, where r0 is the radius of the BTZ

black hole and l3 is the three-dimensional AdS length
scale. Taking

r ¼ r0
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p ; T ¼ l2
3

r0
t; φ ¼ l3

r0
ϕ; ð2Þ

so that x ¼ 1 is the horizon and x ¼ 0 is infinity, yields

ds̃2BTZ ¼ ΩðxÞ2ds2BTZ;

¼ l2
3

�
−dt2 þ 1

ð1 − x2Þ2
�

4dx2

2 − x2
þ dϕ2

��
; ð3Þ

where we have multiplied the metric by a conformal factor

ΩðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p

1 − x2
: ð4Þ

Note that ϕ has a period of 2πr0=l3, which we must take
into account when calculating any global properties of the
solutions. The geometry upon which we wish to study the
CFTis obtained bypatching two copies of themetric given by
ds̃2BTZ at their boundaries, i.e. at x ¼ 0. Thus the boundary
metric is given by the metric in (3), with x∈ ½−1; 1� and
x ¼ �1 being the two boundary black hole horizons. The
temperatureofbothhorizons,measured inunits of theoriginal
T coordinate, is given by TH ¼ r0=ð2πl2

3Þ.
The idea is to add an electric field on this background

which acts as a source and to fix the chemical potential at
the two boundary horizons, x ¼ �1. Specifically, let us add
an electrical source given by the following vector potential:

Að0Þ ¼ μgðxÞdt; ð5Þ
where gðxÞ is a profile we are free to choose and which
we will design so that gð1Þ ¼ þ1 and gð−1Þ ¼ −1. The
potential difference between the two horizons is

V ≔ ½Að0Þ · k�x¼1
x¼−1 ¼ 4πμTH; ð6Þ

where k ¼ ∂=∂T. For the majority of this Letter we take

gðxÞ ≔ sin

�
π

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p �
; ð7Þ

which we call the sine profile.

The ansatz: The addition of an electric source in the
boundary theory means that the bulk theory is Einstein-
Maxwell with a negative cosmological constant in four
dimensions, with the following equations of motion:

0 ¼ Eab ≔ Rab þ
3

l2
4

gab − 2Tab; ð8aÞ
0 ¼ ∇aFab; ð8bÞ

where l4 is the four-dimensional AdS length scale, F ¼ dA
is the field strength tensor of the Maxwell field and the bulk
stress tensor is given by

Tab ¼ Fa
cFbc −

1

4
gabFcdFcd: ð9Þ

Webeginwithanansatz inBondi-Sachsgaugewhichpossesses
a null hypersurface at y ¼ 1 and a conformal boundary
at y ¼ 0. We also assume the solutions will be stationary
and axisymmetric, with correspondingKilling vector fields ∂v
and ∂ϕ, respectively. For the gauge field we pick a gauge in
which Ay ¼ 0. In such a gauge, the ansatz is given by

ds2¼l2
4

y2

�
q22ð−ð1−y2Þq1dv2−2dvdyÞ

þ q25
ð1−x2Þ2

�
4ðdx−ð1−x2Þq4dvÞ2

ð2−x2Þq3
þq3dϕ2

��
ð10aÞ
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and

A ¼ l4

�
q6dvþ

q7
1 − x2

dx

�
; ð10bÞ

where qiðx; yÞ are unknown functions which depend upon
x and y. Schematically, this spacetime also looks like the
right-hand sketch in Fig. 1.
There is still some gauge freedom in the ansatz which

can be used to fix the radial dependence of either q2 or q5
completely. In our case we fix that of q5, by enforcing

q5ðx; yÞ ¼ 1þ y2S2ðxÞ: ð11Þ
With such an ansatz, the partial differential equations
arising from the equations of motion can be solved
numerically as a boundary value problem after setting
suitable boundary conditions, as was first set out, and more
fully explained, in [21] for the case of pure gravity and [34]
for Einstein-Maxwell. We have briefly summarized the
integration scheme in the Supplemental Material [35]. Let
us emphasize here that at the conformal boundary, y ¼ 0,
we set Dirichlet boundary conditions such that the induced
metric is conformal to the metric given by (3) and the bulk
vector potential is equal, up to a factor of l4, to the
boundary source (5).
We also obtained the solutions using the DeTurck

method [36–38], and present the ansatz for the solutions
in that gauge in the Supplemental Material [35].

Results. The holographic stress tensor, hTμνi, and con-
served current, hJμi, can be extracted from the numerical
solutions using the standard procedure of holographic
renormalization [39], which we describe explicitly in the
Supplemental Material [35]. One benefit of the Bondi-
Sachs gauge over the DeTurck gauge is that no non-
analyticities arise in this procedure.

Conductivity: Of particular interest will be the current,
hJμi, which is conserved:

DμhJμi ¼ 0; ð12Þ
where D is the covariant derivative associated to the
boundary metric, given by (3). We find that

hJxi ¼
νC1

l3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p ; ð13Þ

where ν is a dimensionless quantity which depends upon
the number of degrees of freedom of the CFTand is defined
holographically in terms of the dual parameters of the
gravitational theory by

ν ¼ l2
4

4πG4

; ð14Þ

with G4 being Newton’s gravitational constant for the four-
dimensional theory. Moreover, as is explained explicitly in

the Supplemental Material [35], C1 is an integration
constant that arises from a local analysis of the equations
of motion near the conformal boundary. Specifically, one
can show that

∂yq7ðx; 0Þ ¼ ð1 − x2Þ
�

C1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p − μg0ðxÞ
�
: ð15Þ

Though the local analysis of the equations of motion fix
that ∂yq7 must take this functional form near the boundary,
one must solve the equations fully, after enforcing regu-
larity deep in the bulk, in order to extract the precise value
of C1.
We can define the total current, I, by integrating hJμi

over a circle, S1x, of fixed x at a fixed time slice in the
boundary geometry:

I ≔
Z
S1x

dϕ
ffiffiffiffiffiffiffi
gϕϕ

p
mμhJμi;

¼ 2νπ2THC1; ð16Þ
where mμ unit normal is the unit normal to the circle S1x.
Let us note again that ϕ has periodicity 2πr0=l3, which
must be taken into account when computing this integral.
Note that the value of I is independent of the choice of x at
which one fixes the circle, S1x, which follows as a direct
consequence of (12).
We can describe the conductance, G, of the holographic

battery by dividing the total current by the potential
difference between the two horizons, i.e.

G ≔
I
V
¼ νπC1

2μ
: ð17Þ

The conductance depends upon both the choice of profile,
gðxÞ, and the magnitude of the chemical potential, μ, or
equivalently the potential difference between the two
horizons, V. In Fig. 2, we plot the conductance of the
holographic batteries, with the sine profile defined by (7),
against the potential difference. As V=TH → 0, the con-
ductance tends to two and it increases with the voltage.
Moreover, the gradient of the curve at V ¼ 0 is zero,
meaning that one has to go beyond the linear regime in
order to see the nontrivial dependence of the conductance
on the potential difference. The derivative of the conduct-
ance with respect to V=TH possesses a turning point, in this
case at V=TH ≃ 6.62, with the gradient of the curve
decreasing for larger values of V=TH. It would be of
interest to investigate further what happens to G as V=TH
becomes very large, though there are numerical challenges
in extending to this region of the parameter space.
The behavior of the conductance appears qualitatively

similar for other choices of the profile, gðxÞ, and each
satisfy gð1Þ ¼ 1 ¼ −gð−1Þ. In the Supplemental Material
[35] we provide plots of the conductance for other such
profiles as well as a proof that G=ν → 2 as V=TH → 0 for
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any choice of odd profile gðxÞ by conducting an analysis of
the linearized equations of motion.
One can also compute the local conductivity of the field

by computing the ratio between the x components of the
induced current and the source electric field,

σðxÞ ≔ hJxi
ðFð0ÞÞtx ;

¼ 2G
π

·
1

g0ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p : ð18Þ

Since the external electric field is not homogeneous, the
conductivity is not constant, however, for a given profile its
functional form is always the same, with its magnitude
determined by the value of the overall conductance, G.

Energy flow: The addition of a chemical potential causes
some heating of the dual CFT by the Joule effect and hence
there is flow in the boundary field theory. As was observed in
other flowing solutions [16,18,21,33], this means that the
bulk horizon is not a Killing horizon. The flow can be
expressed via an integral of the holographic stress tensor over
a circle, S1x, of fixed x in the boundary geometry as follows:

ΦðxÞ ¼ −
Z
S1x

dϕ
ffiffiffiffiffiffi
−γ

p
mμkνhTμ

νi;

¼ 2πTHð2Gμ2gðxÞ þ 3πνC2Þ; ð19Þ
where γμν is the induced metric on a constant x slice of the
boundary geometry with determinant γ and unit normal
mμ ∝ ðdxÞμ, whilst kμ ∝ ðdtÞμ is the normalized stationary
Killing vector field. Note, therefore, that the flow is simply
proportional to the Tx

t component of the holographic stress
tensor, which is given in the Supplemental Material [35]. The
constantC2 is a coefficient in the asymptotic expansion of the

q4 function, which is not fixed by a local analysis of the
equations of motion.
In the current case, in which the two boundary horizons

have the same temperature and the chemical potential, gðxÞ,
is odd, we find empirically, as one would expect, that
C2 ¼ 0, and hence there is no net flow between the two
horizons. Thus, the flow, ΦðxÞ, is proportional to the
chemical potential, and is odd with ΦðxÞ > 0 for x > 0,
meaning that there is flow in both directions originating from
the point x ¼ 0 and moving outwards towards the boundary.
As we will see this behavior near x ¼ 0 has an interesting
effect on the structure of the horizon of the bulk geometry.

Properties of the bulk horizon: By design, the y ¼ 1 is a
null hypersurface. We checked explicitly (in a similar
manner to in [21]) that there exist future-directed radial
null curves from anywhere outside of this hypersurface to
the boundary, suggesting it is the event horizon. Let us
consider a generator of the horizon, Ua ∝ ðdyÞa, which can
be parametrized by the x coordinate. The affine parameter,
λðxÞ, can be obtained from the geodesic equation or from
Raychaudhuri’s equation.
At the axis of symmetry at x ¼ 0, we find that λ0ðxÞ → 0,

with λð0Þ taking a finite value, which we are free to choose
via an affine transformation as λð0Þ ¼ 0. Moreover, we find
that Ua is future directed in both directions moving away
from x ¼ 0. This suggests that the horizon is better thought
of as being generated by two separate future-directed
generators, both described by Ua and originating at x ¼ 0,
one moving in the positive x direction and the other moving
in the negative x direction. Hence, the point x ¼ 0 is the past
boundary of the future horizon of the solutions.
Let us restrict to the x ≥ 0 region of the horizon, since

the behavior in the x ≤ 0 region is similar by symmetry. In
the left-hand panel of Fig. 3, we plot the affine parameter
along the generator against the x coordinate in a log plot.
Given our affinely parametrized null geodesic Ua, the B

tensor is given by BIJ ¼ ∇IUJ, where I and J run over

FIG. 2. The conductance of the holographic batteries with the
sine profile. Each black dot is a different solution with a different
value of the parameter μ. We plot the conductance, G, against the
potential difference, V, normalized by the temperature of the
black hole horizons, TH .

FIG. 3. Left: the affine parameter, λ, along the generator of the
x > 0 region of the horizon, plotted in a log plot against the
coordinate x, for a holographic battery with μ ¼ 0.24. Here we
have made the choice that λð0Þ ¼ 0 and λ0ð0.1Þ ¼ 0.1. Right:
the expansion, Θ, along the generator for this holographic
battery, plotted in a log-log plot against λ. The expansion
diverges at λ ¼ 0.
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fv;ϕg. The expansion, Θ, and shear, σIJ, are the trace and
symmetric-traceless parts of this tensor, respectively. The
fact that λ0ðxÞ → 0 as x → 0 means that the expansion and
shear diverge as x → 0 along the horizon. In the right-hand
panel of Fig. 3 we have plotted the expansion against the
affine parameter along the generator of the x > 0 region of
the horizon.
In flowing horizons, the past boundary is generally

situated at the point at which the flow along the horizon
emanates from and, moreover, the expansion diverges at
this point. In the previous cases [16,18,21], the flow was
induced by a temperature difference between the boundary
black holes meaning that the past boundary tended to be the
hotter boundary horizon. However, in the current case there
is no temperature difference; the flow is instead induced by
the Joule effect, emerging from x ¼ 0 and proceeding
outwards, towards the boundary black holes, situated at
x ¼ �1. Hence, our case is distinct in that the past
boundary is situated spatially in the center of the horizon
with the future-directed horizon generators extending out-
wards in either direction. This has another interesting
consequence: at x ¼ 0 (and only at x ¼ 0), the generator
Ua coincides with the stationary Killing vector, Ua∝ ð∂vÞa,
meaning that the Killing vector is a generator of the horizon
only on a proper submanifold of the horizon. To our
knowledge, this feature has so far not been found to occur
in any other instances of flowing horizons.
The divergent expansion at x ¼ 0 suggests that the tidal

forces between neighboring horizon generators diverges
at this point. However, since the future-directed generators
emerge from this point, this singularity is always in their
far past. If we instead consider the geodesics of infalling
observers, then we find no infinite tidal forces are felt for
such neighboring geodesics, even near x ¼ 0, hence these
solutions do not contain any physical singularities.

Detuning the temperatures: One may wonder whether this
property of the past boundary of the future horizon of the
holographic batteries lying deep in the bulk is generic or
simply a product of the symmetry of the setup. To investigate
this, we detune the temperatures by adding a nontrivial
profile to the gtt component of the boundary geometry:

ds2detuned¼−l2
3hðxÞ2dt2þ

l2
3

ð1−x2Þ2
�
4dx2

2−x2
þdϕ2

�
; ð20aÞ

where

hðxÞ ≔ 1þ β sin

�
π

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p �
; ð20bÞ

so that the ratio between the temperatures of the two
boundary horizons is ð1þ βÞ=ð1 − βÞ. The detuned holo-
graphic batteries are the bulk duals to the CFT on this
background, still under the influence of an additional
chemical potential, given by (7). The method to find the

detuned solutions is almost identical to the previous, tuned
case, with the ansatz only slightly modified to accommodate
for the nontrivial hðxÞ profile. Note, one can recover the
tuned holographic batteries by taking β ¼ 0.
Interestingly, we find that there is an open set in the

parameter space, depicted by the shaded region in Fig. 4, in
which the flow vanishes at some point along the horizon
and hence the past boundary of the future horizon lies deep
in the bulk. Roughly speaking, for these solutions, the
contribution to the flow from the temperature difference is
not large enough to everywhere overcome the flow due to
the Joule effect and cause the flow to be in the same
direction throughout the boundary geometry.

Discussion of dominance: Finally, one may wonder
whether the charged funnels dominate over a solution with
the same boundary geometry in which two droplets emerge
from the boundary horizons but do not connect in the bulk,
though it is yet to be explicitly shown that such a solution
exists for μ ≠ 0. Due to the fact the funnels are flowing
solutions, there will be difficulty in using thermodynamic
arguments since the free energy is not well defined (a
problem also faced in [21]). However, it is known that the
uniform funnel dominates for a BTZ black hole with a large
enough radius [10], and physically one would expect that
by adding a charge difference between the two boundary
black holes one would remain in the phase in which the
funnel dominates.
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