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We prove two new infinite families of holographic entropy inequalities. A key tool is a graphical
arrangement of terms of inequalities that is based on entanglement wedge nesting. It associates the
inequalities with tessellations of the torus and the projective plane, which reflect a certain topological
aspect of entanglement wedge nesting. The inequalities prove a prior conjecture about the holographic
entropy cone. We discuss their relation to black hole physics and differential entropy, and sketch
applications to quantum error correction, quantifying randomness of quantum states, and others.
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Introduction. Recent years have revealed the importance of
classifying and studying quantum states according to their
patterns of entanglement. One important class of quantum
states are those whose entanglement entropies can be
computed by a minimal cut prescription. The prescription
assumes that the state can be represented by an auxiliary
“bulk” structure, typically a tensor network or—in holo-
graphic duality [1]—a bulk geometry. The minimal cut
prescription equates the entanglement entropy of a region X
with the weight of a bulk cut, which separates X from X̄
(the complement of X). The prescription is valid for all
random tensor network states [2] at large bond dimension
and—in holographic duality—for the dominant area term
in the Ryu-Takayanagi proposal [3–6].
This paper concerns constraints on entanglement entro-

pies, which are implied by the minimal cut prescription.
Because of the application to holographic duality, such
constraints are conventionally called “holographic entropy
inequalities.” In the vector space of hypothetical assign-
ments of entropies to regions (entropy space), the locus of
saturation of each holographic inequality is a hyperplane.
Consequently, the set of entropies allowed by all holo-
graphic inequalities is called the “holographic entropy
cone” [7]. Further following the holographic nomenclature,
we will refer to weights of cuts as “areas.”
The simplest holographic inequality, known as the

monogamy of mutual information [8], is

SAB þ SBC þ SCA ≥ SA þ SB þ SC þ SABC: ð1Þ

Here A, B, C are disjoint subsystems and SX are their
entanglement entropies. Union signs for disjoint regions are
implied, for example AB≡ A ∪ B. Other than (1), currently
known holographic entropy inequalities include one single-
parameter infinite family (5) [7] and 378 isolated inequal-
ities [9–11]. However, research thus far has revealed only
limited insight into structural patterns or principles, which
undergird these constraints [12–23].

Results and relevance. In this work we formulate and prove
two new infinite families of holographic entropy inequal-
ities, one indexed by a pair of odd integers and another
indexed by one arbitrary integer. These new inequalities
prove a prior conjecture, which was motivated by unitary
models of black hole evaporation [19]. They also exhibit
intriguing connections with diverse corners of theoretical
physics, from gravity to quantum information to condensed
matter theory, which suggest novel relations among those
lines of research. Specific topics of relevance include the
following:
(1) Randomness of quantum states. Given a state

prepared as a tensor network at large bond dimen-
sion, how can we detect that the tensors were not
random? A violation of our inequalities is a suffi-
cient condition [2]. That is, the inequalities detect
atypical states, independent of network architecture.

(2) A novel role of topology in error correcting codes.
The basic rationale for the inequalities is that their
violations are prevented by phase transitions. Such
transitions are understood in terms of erasure cor-
rection [24,25]. Because our inequalities work for
topological reasons, they indicate a novel topologi-
cal aspect of erasure correcting codes such as [26].

(3) Spin models. The proof of the inequalities is
strongly reminiscent of the toric code. We elaborate
on this at the end of the paper.
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(4) Graph theory. Our results are of independent interest
there, especially the proof of inequality (17). To our
knowledge, they have not appeared in mathematical
literature.

This list highlights nonholographic applications. Within
holographic duality, the inequalities reveal a previously
unappreciated, topological consequence of entanglement
wedge nesting [27], which is manifested by a tessellation of
a two-dimensional manifold. We also discuss the inequal-
ities’ relation to black holes and differential entropy.

Setup and notation. Consider a composite system with
mþ n constituents, which are called Ai (1 ≤ i ≤ m) and Bj

(1 ≤ j ≤ n). The indices on Ai (respectively, Bj) are
understood modulo m (respectively, modulo n), for exam-
ple i ¼ mþ 1≡ 1. We assume that this (mþ n)-partite
system is in a pure state; this is equivalent to studying
arbitrary states with mþ n − 1 constituents.
Our inequalities are expressed in terms of unions of

consecutive A- and B-type regions:

AðkÞ
i ¼ AiAiþ1…Aiþk−1 ð2Þ

and likewise for BðlÞ
j . When m and n are both odd, it is

useful to shorthand a special case of this notation, which
involves largest consecutive minorities and smallest con-
secutive majorities of A and B regions:

A�
i ≡ Aððm�1Þ=2Þ

i and B�
j ≡ Bððn�1Þ=2Þ

j : ð3Þ

Throughout the paper, we write the inequalities in the form
“lhs ≥ rhs” with only positive coefficients.

New inequalities. We prove two new infinite families of
holographic inequalities:
(1) Toric inequalities are defined for m and n, which are

both odd. They take the following form:

Xm
i¼1

Xn
j¼1

SAþ
i B

−
j
≥
Xm
i¼1

Xn
j¼1

SA−
i B

−
j
þ SA1A2…Am

ð4Þ

The toric character of (4) is related to the symmetry
Zm × Zn, which rotates the A and B regions. [The
full symmetry group of (4) is in fact Dm ×Dn.]
This family subsumes the dihedral inequalities [7]

Xm
i¼1

SAþ
i
≥
Xm
i¼1

SA−
i
þ SA1A2…Am

ð5Þ

by setting n ¼ 1 because Bð0Þ
j ¼ ∅. Inequalities (4)

also subsume two other previously known inequal-
ities [9,10]; see Supplemental Material [28].

(2) RP2 inequalities are indexed by m ¼ n:

1

2

Xm
i;j¼1

ðS
AðjÞ
i Bðm−jÞ

iþj−1
þ S

AðjÞ
i Bðm−jÞ

iþj
Þ

≥
Xm
i;j¼1

S
Aðj−1Þ
i Bðm−jÞ

iþj−1
þ SA1A2…Am

: ð6Þ

We explain momentarily how (6) relates to the
projective plane. These inequalities are invariant
under D2m, which acts on the regions B1; A1;
B2; A2…Bm; Am, in this order, like it does on vertices
of a regular ð2mÞ-gon.
Family (6) includes monogamy of mutual informa-
tion (1) and one other previously known inequality
[9] as special cases (m ¼ 2, 3).

We sketch a proof of (4) and (6) in the main text and fill in
details in the Supplemental Material [28]. Reference [30]
showed that inequalities (4) and (6) are maximally tight, i.e.
they are facets of the holographic entropy cone.

Entanglement wedge nesting (EWN). Schematically, each
holographic inequality states the following: For any set of
minimal cuts that realize the lhs terms, there exist some cuts
for the rhs terms with a smaller or equal combined area.
With this characterization of the problem, we should expect
that facts and theorems about minimal cuts are likely to
inform the structure and proofs of holographic entropy
inequalities. This paper exploits one such fact, known as
the EWN theorem [27].
The theorem says that if two composite regions X, Y are

in either of these two relationships

X ⊂ Y or X ⊂ Ȳ; ð7Þ

then the minimal cuts for SX and SY can meet but cannot
intersect; see Fig. 1. In the AdS/CFT correspondence,
subregion duality [31,32] states that the largest bulk region
reconstructible with access to boundary subsystem X—the
entanglementwedge ofX—is enclosed byX and theminimal
cut forX. This statement logically requires the EWN theorem
or else extra access to YnX would limit one’s ability to
reconstruct the bulk.

FIG. 1. Intersecting minimal cuts, which are forbidden by the
entanglement wedge nesting theorem.
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As we explain below, inequalities (4) and (6)—and the
crux of their proof—concern structural constraints on
minimal cuts, which are induced by entanglement wedge
nesting and which arise for topological reasons.

Geometric organization. We propose a graphical way to
organize terms of holographic inequalities, which is based
on entanglement wedge nesting. We represent lhs terms as
facets and rhs terms as vertices of a graph. Facets are
defined with respect to an embedding on a two-dimensional
surface, which we discuss momentarily. The organizing
rule for the graph is that a vertex (rhs term) is incident to a
facet (a lhs term) if and only if they satisfy a nesting
relationship (7).
A priori, it is not guaranteed that applying this rule to a

holographic inequality will produce a sensible graph, which
can be embedded on a two-dimensional manifold. Yet it
turns out to work perfectly for inequalities (4) and (6), with
illuminating consequences.
The result of applying this graphical rule to inequalities

(4) is shown in the upper panel of Fig. 2. It is a rhombus
with diagonals spanningm and n squares and with opposite
sides identified—a tessellation of a torus. The special term
SA1A2…Am

is left out of the graph because it is not in a
nesting relationship with other terms.
For inequalities (6), the result is shown in the lower panel

of Fig. 2. A priori, the special rhs term SA1A2…Am
could be

canceled out because the lhs containsm copies of the same.
Taking inspiration from the toric inequalities, we do not

cancel it but leave it out of the graph. This produces an
m ×m array of squares with one reflected periodic iden-
tification—a tessellation of the Möbius strip. The identi-
fication involves complementary regions with equal
entropies, for example:

S
AðjÞ
i Bðm−jÞ

iþj
¼ S

Aðm−jÞ
iþj BðjÞ

i
: ð8Þ

The boundary of this Möbius strip consists of m identical
terms SA1A2…Am

¼ SB1B2…Bm
. If we treat them all as one

facet, then we effectively glue the Möbius strip to a disk,
which produces the projective plane RP2.

Sketch of proof of inequalities. Reference [7] reduced the
task of proving holographic entropy inequalities to finding
maps x → fðxÞ∶f0; 1gl → f0; 1gr, which satisfy

jx − x0j1 ≥ jfðxÞ − fðx0Þj1 x; x0 ∈ f0; 1gl ð9Þ

as well as certain inequality-specific boundary conditions.
Here l and r refer to the numbers of terms on the lhs and rhs
of the inequality, accounting for multiplicity, such that
component bits of x∈ f0; 1gl and fðxÞ∈ f0; 1gr are
associated to individual terms of the inequality. The
rationale for and details of this method of proof are
reviewed in the Supplemental Material [28].
The contraction that proves inequalities (4) is defined as

follows. The proof of (6) is similar in spirit; see
Supplemental Material [28]. Since our graphical scheme
represents lhs terms as facets in a square tiling, every
x∈ f0; 1gl is an assignment of 0s and 1s to squares. The
contraction fðxÞ∈ f0; 1gr assigns 0 or 1 to every vertex in
the tiling and to the special term SA1A2…Am

not present in the
tiling. To express fðxÞ, define a graph ΓðxÞ by drawing a
horizontal/vertical pair of line segments on every square
that carries a 0=1, as shown in Fig. 3. Because every node
of ΓðxÞ—that is, every edge in the tiling—is connected to
two other nodes, ΓðxÞ is composed of nonintersecting
loops. Therefore, ΓðxÞ partitions the torus into components.
Map f assigns 1 to one special vertex (say, bottommost and

FIG. 2. Graphical representations of a toric [ðm; nÞ ¼ ð5; 3Þ;
upper panel] and an RP2 inequality (m ¼ 4; lower panel).
Diamonds of same color are equivalent. We highlight funda-
mental domains of periodic identifications.

FIG. 3. Rules for drawing graphs ΓðxÞ and one such graph,
which arises in proving the (5,5) toric inequality. Tiling vertices,
which are mapped to 1 under fðxÞ, are highlighted.
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rightmost) in every component, which does not wrap a
nontrivial cycle of the torus. To all other vertices f
assigns 0.
Finally, the value of f in the last bit (on the special rhs

term SA1A2…Am
) is set so that jxj1 ≡ jfðxÞj1 (mod 2). This

condition turns out to equivalently characterize the torus
cycle, which is wrapped by the noncontractible loop(s)
in ΓðxÞ.
For details, and to confirm that f is indeed a contraction,

see the Supplemental Material [28]. Here we wish to
convey that the spatial organization of terms as facets
and vertices on a manifold is indispensable for proving the
inequalities. The logic of the proof indicates that inequal-
ities (4) and (6) are topological statements undergirded by
entanglement wedge nesting.

Inequalities versus strong subadditivity. Consider one edge
of the tiling in Fig. 2. Let the two facets incident to the edge
be SX and SV̄ . An inspection of the inequalities reveals that
the vertices incident to the edge are SX∪V and SX∩V . For
example, in inequalities (4), the edge that separates the
facets with

X ¼ Aþ
i B

−
j and V̄ ¼ Aþ

iþðm−1Þ=2B
−
jþðnþ1Þ=2 ð10Þ

has end points at

X ∪ V ¼ A−
iþðmþ1Þ=2B

−
jþðnþ1Þ=2 and X ∩ V ¼ A−

i B
−
j :

The same observation holds in the graph of (6).
If we now collect the four terms that are associated with

one edge, then we obtain a nonnegative [33] quantity called
conditional mutual information:

CMIedge ≔ SX þ SV − SX∩V − SX∪V: ð11Þ

We have used the fact that we are working with pure states
so complementary regions have equal entropies.
After adding up contributions from various edges, and

correcting for a double-counting of terms, we discover that
inequalities (4), (6) can be written in the simple form:

1

2

X0
CMIedges ≥ SA1A2…Am

: ð12Þ

In toric inequalities, the
P0

runs over either set of parallel
edges. In the RP2 inequalities we sum over edges, which
run parallel to the boundary of the Möbius strip in Fig. 2.
Rewriting (12) presents the inequalities as a collective
improvement on strong subadditivity.

Continuum limit. The regular structure of the inequalities
allows us to take a continuum limit m; n → ∞. The idea is
to keep the union of all A- and B-type regions fixed, but
subdivide it into a growing number of Ais and Bjs. Due to

the cyclic symmetries that rotate the A and B regions, it is
easiest to visualize a special case: an entangled state of two
(1þ 1)-dimensional holographic conformal field theories
(CFT2) living on circles, which are subdivided into
intervals Ai and Bj. Holographically, this setup describes
a (2þ 1)-dimensional, two-sided black hole with entropy
SBH ¼ SA1A2…Am

.
In these settings, studying the continuum limit of holo-

graphic inequalities has a useful precedent. Taking m → ∞
in subfamily (5) of the toric inequalities gives

Sdiff ¼
I

dv
∂Sðu; vÞ

∂v

����
u¼uðvÞ

≥ SA1A2…Am
¼ SBH; ð13Þ

where Sðu; vÞ is the entanglement entropy of interval
ðu; vÞ. In expression (13), we traded the discrete label i
in Aþ

i for a continuous variable v using Aþ
i ≔ ðuðvÞ; vÞ, so

that the function uðvÞ implicitly encodes the sizes of
intervals Aþ

i . Quantity Sdiff, called differential entropy
[34,35], computes the length of the bulk curve whose
tangents subtend boundary intervals ðuðvÞ; vÞ. Inequality
(13) is manifestly true because such a curve necessarily
wraps around the black hole horizon.
For a similar limit of inequalities (4), let Aþ

i ¼
ðuA; vAðuAÞÞ and B−

j ¼ ðuBðvBÞ; vBÞ. Observing that in
the continuum limit quantity CMIedge becomes a second
partial derivative of entropy, we find

−
1

2
∯ duAdvB

∂
2SðuA; vA; uB; vBÞ

∂uA∂vB
≥ SBH: ð14Þ

The integral in (14) admits many bulk interpretations,
depending on the phases of SðuA; vA; uB; vBÞ. Its behav-
iors—as well as the continuum limit of inequalities (6)—
will be studied in a separate publication [36].
To give a flavor of the bulk interpretation of (14), we

consider one illustrative case. Assume that the Ryu-
Takayanagi surfaces for A�

i B
−
j do not wrap or cross the

horizon; this can be easily arranged by choosing a
shockwave geometry [37] with a large horizon. Then the
terms in (4) can only be in one of two phases:

SA�
i B

−
j
¼ ðSA�

i
þ SB−

j
Þ or ðSA∓

iþðm�1Þ=2
þ SBþ

jþðn−1Þ=2
Þ:

Suppose Bn is much larger than all the other regions, so that
the phase of SA�

i B
−
j
is determined solely by whether or not

Bn ⊂ B−
j . Substituting in Eqs. (10) and (11), we see that the

only nonvanishing terms in (12) arise from X ¼ Aþ
i B

−
ðnþ1Þ=2

and V̄ ¼ Aþ
iþðm−1Þ=2B

−
1 and evaluate to
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CMIedge ¼ ðSAþ
i
− SA−

i
Þ þ ðSAþ

iþðm−1Þ=2
− SA−

iþðmþ1Þ=2
Þ

⟶
continuum

dvA
∂SðuA; vAÞ

∂vA
− duA

∂SðuA; vAÞ
∂uA

: ð15Þ

Replacing 1
2

P0
→ 1

2

H
and integrating by parts, we again

find (13). Thus, toric inequalities also reproduce the geo-
metric fact “differential entropy ≥ black hole entropy.”

Significance for the holographic entropy cone. In searching
for order among holographic inequalities, two of us
previously conjectured a pattern [19] (see also [20]).
Take any valid inequality and apply to it the permutation
group acting on region labels. Adding up all permutation
images gives a weaker inequality, which involves only
averages of p-partite entropies, denoted Sp. For example,
averaging monogamy (1) in this way gives

ðSAB þ SBC þ SCAÞ ≥ ðSA þ SB þ SCÞ þ SABC

→ 3S2 ≥ 3S1 þ S3: ð16Þ

We conjectured that for every p there exists a valid
holographic inequality on 2p − 1 or more regions which,
after averaging, gives

2Sp=p ≥ Sp−1=ðp − 1Þ þ Spþ1=ðpþ 1Þ: ð17Þ

If valid, inequalities (17) cannot be improved. That is, every
valid holographic inequality averages to a convex combi-
nation of (17). This is because so-called extreme rays—
values of Sp that simultaneously saturate all but one
inequality (17)—have known realizations as tensor net-
works and holographic geometries, so any improvement
over (17) is necessarily wrong. These extreme rays corre-
spond rigorously to stages of evaporation of an old black
hole—a fact that motivated our conjecture.
Each family presented in this paper independently

proves the conjecture. Indeed, toric inequalities with m ¼
n and m ¼ nþ 2 average to (17) with p ¼ ðmþ nÞ=2
while the RP2 inequalities average to (17) with p ¼ m.
At present, we know 375 holographic inequalities, which

are not part of families (4), (6). It will be interesting to see
whether they too are associated with two-dimensional

manifolds under our EWN-based graphical scheme. We
have not yet checked this because 373 of them were
announced only recently [11]. Encouragingly, the answer
is affirmative for one of the “older” inequalities: it defines a
polytope with the topology of the four-cross-cap surface;
see the Supplemental Material [28].

Applications outside holographic duality. In holographic
error correcting codes such as [26], the maximal number of
degrees of freedom protected against erasure of Ā is
ðlog dimHAÞ − SA [24]. Inequalities (4) set an upper
bound on SA1A2…Am

, which in turn bounds from below
the size of the largest code subspace protected against
erasing B1B2…Bn. We stress that the bound arises due to
the toroidal topology of the abstract polytope, which is
formally assembled from regions A�

i B
−
j .

The topological origin of this bound may be further
illuminated by a comparison with the toric code [38]. In the
latter, logical qubits are represented by noncontractible
loops in the loop gas picture of the wave function. Our
proof of the inequalities is in many respects reminiscent of
the construction of the ground state wave function of the
toric code. Specifically, the proof relates SA1A2…Am

to loops
in graph ΓðxÞ which—like the carriers of logical qubits in
the toric code—wrap noncontractible cycles of the torus.
We hope to recast our proof as constructing a wave function
of a variant of the toric code, whose logical qubits directly
manifest the bound on SA1A2…Am

.
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