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In AdS/CFT, we introduce a robust method for computing n-point gluon Mellin amplitudes, applicable
in various spacetime dimensions. Using the Mellin transform and a recursive algorithm, we efficiently
calculate tree-level gluon amplitudes. Our approach simplifies the representation of higher-point
amplitudes, eliminating the need for complicated integrations. Crucially, the resulting amplitudes closely
mirror those in flat space, allowing a straightforward dictionary between the two settings circumventing
explicit calculations.
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Introduction. In the context of anti–de Sitter (AdS)
spacetime, the natural generalizations of the scattering
amplitudes are the correlation functions in the associated
dual conformal field theory (CFT) [1,2]. Some important
strides have been made, revealing simplifications and
elegant structures akin to those observed in flat space.
A particularly useful approach in calculating AdS ampli-
tudes is the adoption of the Mellin basis [3,4]. This
technique offers advantages analogous to those provided
by the momentum basis in Minkowski space computa-
tions. In an important development, researchers have
created a ‘dictionary’ for scalar particles that translates
the familiar Feynman rules from flat-space amplitudes to
write Mellin amplitudes directly [5,6].1 However, despite
these advancements, the field still faces a significant
hurdle. The prime difficulty is the systematic computation
of amplitudes that include external particles with spin,
particularly as we attempt to move beyond the simpler
cases, like three and four-point functions. (See some
progress for spinning AdS amplitudes [19–29].)
There are several compelling physical motivations for

considering higher-point gluon AdS amplitudes. Firstly,
higher-point gluon amplitudes in flat space, while appear-
ing complicated, are often simpler as demonstrated by the
Parke-Taylor formula [30] and innumerable subsequent
research (see for instance [31,32]). Secondly, study of

gluon scattering has catalyzed the development of on shell
recursion relations, enabling systematic amplitude com-
putations based on fundamental three-point gluon ampli-
tudes [33]. Finally, these higher-point amplitudes provide
essential building blocks for constructing more involved
gravity amplitudes through techniques such as color-
kinematic duality and double-copy construction [34].
This letter aims to construct the direct dictionary between

the external n-gluon AdS amplitude and the flat-space
amplitude. Some hints for the connection in lower-point
gluons was observed in [6]. However, the complexities
inherent in higher-point spinning amplitudes have stalled
progress. In general bulk integration and propagation of
indices make tree-level external gluon amplitudes for
higher-point functions exceedingly difficult to compute.
Hence, to date notmuch progress has occurred to investigate
if this relationship (or the modification) can extend to
n-point. In this letter, with the aid of novel and explicit
computations we are able to see the map between flat space
and AdS computations.
This letter is structured as follows. Section II serves a

pedagogical purpose, introducing the fundamental tech-
niques employed in our analysis. We outline the concept of
Mellin amplitudes, the factorization of bulk-to-bulk propa-
gators, and the differential operator associated to the
spinning boundary-to-bulk propagator. Additionally, we
explore a concept analogous to momentum conservation
for gluon AdS amplitudes, which streamlines our calcu-
lations. By combining these elements, we can formulate a
general expression for a recursion relation. This provides a
systematic approach to constructing an n-point amplitude
from its lower-point counterparts and a three-point
amplitude.
In Sec. III, we introduce the concept of the reduced

Mellin amplitude and proceed to simplify the previously
mentioned recursion relation within the framework of pure
Yang-Mills theory. We observe a significant simplification
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1Complementing this development, there has also been con-
siderable progress in AdS momentum space, as reflected in recent
studies [7–18].
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in our expression, which results from the antisymmetry
between the two external legs in the three-point amplitude.
This simplification enables us to more efficiently compute
across various Feynman-Witten diagram topologies for
gluons in AdS.
To validate the efficacy of our methodology, we have

conducted calculations extending up to eight-point ampli-
tudes in our accompanying paper, emphasizing the scal-
ability and applicability of our approach [35]. Surprisingly,
we discovered a precise relation between the Mellin
amplitudes and their flat-space equivalents for the cases
we examined, which we elaborate on in Sec. IV. Based on
these promising findings, we hypothesize that our results
could be extended to all tree-level gluon amplitudes. We
present our final remarks in Sec. V.

Mellin amplitude and recursion. In our treatment, AdSdþ1

is envisioned as a hyperboloid embedded in a Minkowski
space of (dþ 2) dimensions, Mdþ2, with X as point in the
bulk AdS and P as its boundary (P2 ¼ 0). Mellin space is
the natural space for correlation functions in CFTs,
especially for weakly coupled AdS duals [3,4]. We can
write down a conformal field theory spinning correlator in
the Mellin representation as

hJM1 � � � JMni ¼
Z

½dγ�MMi
n ΓðγijÞP−γij

ij ; ð2:1Þ

where we have defined ½dγ�≡Qn
i<j dγij=2πi. The Mellin

amplitude, MMi
n ≡MM1���Mn

n , can depend on Mellin var-
iables γij and boundary points Pi. Here, Pij ¼ −2Pi · Pj

and the scaling dimension for the spin-1 field
is Δi ¼ d − 1.
In AdS amplitude analysis, the Witten diagram mirrors

Feynman’s, comprising of vertices and propagators.
Intriguingly, vector field’s boundary-to-bulk propagators
emerge from acting a differential operator on their scalar
counterparts; EMiAi

Δi
ðPi; XÞ ¼ D̂MiAi

Δi
EΔi

ðPi; XÞ, with the
scalar propagator EΔi

ðPi; XÞ ¼ Cið−2Pi · XÞ−Δi.2 The dif-
ferential operator is given by [6]

D̂MiAi
Δi

¼ Δi − 1

Δi
ηMiAi þ 1

Δi

∂

∂PMi
i

PAi
i : ð2:2Þ

Crucially, the utilization of this operator greatly streamlines
functional manipulations. Let us consider a function FðPiÞ
with a scaling dimension Δi − 1 in Pi. One can see that

D̂MiAi
Δi

∂

∂PAi
i

FðPiÞ ¼ 0: ð2:3Þ

Here we present a simple illustrative example,

D̂MiAi
X
j≠i

Pj;Ai

Y
k<l

ΓðγklÞP−γkl
kl ¼ 0: ð2:4Þ

In the equation, we have shifted the Mellin variables so that
each term has the same scaling dimension asΔk, for any Pk.
We will call this feature (and analog examples such as (2.5)
etc.) generalized momentum conservation as they help
replace a boundary point by other boundary points.3 We
remind the reader that one uses such techniques, i.e.,P

j kj ¼ 0 in flat-space scattering amplitude computations.
Bulk-to-bulk propagators represent exchange fields of

scaling dimension Δ in the bulk. In the embedding
formalism, the bulk-to-bulk propagator can be factorized
into two boundary-to-bulk propagators integrated over an
internal boundary point Q. For vector fields [36],

GAB
Δ ðX1; X2Þ ¼

Z
c;∂

EMA
h−cðQ;X1ÞηMNENB

hþcðQ;X2Þ; ð2:6Þ

where
R
c;∂≡

R
i∞
−i∞

dc
2πi ð 4c2ðh2−c2Þ

ðc2−ðΔ−hÞ2Þ2Þ
R
∂AdS dQ. Here the

expression has double poles in c, which makes the integral
over c complicated. Later, we will see that this pole
simplifies in our computation.
In our analysis, we will factorize an (nþ 1)-point

amplitude into an n-point and a 3-point amplitude, as
illustrated in Fig. 1. In order to integrate over the internal
boundary point Q, we take the following two important
steps. First, we use the generalized momentum conserva-
tion to substitute Q with a free index with the other Pi’s.
Next, we can utilize Symanzik’s formula4 to perform

the integration over Q. After shift of γij → γij − γ0ij for

FIG. 1. Schematic of how nþ 1 Mellin amplitude factorizes
into two subamplitudes.

2Here, Ci ¼ ΓðΔiÞ=ð2πhΓðΔi þ 1 − hÞÞ with h ¼ d=2.

3Another example of applying (2.3) is that

D̂MiAi
Δi

�
ηAiAj

− 2Pi;Aj

X
k≠i

Pk;Ai

�Y
l<m

ΓðγlmÞP−γlm
lm ¼ 0: ð2:5Þ

Here again each term has the same scaling dimension as Δk for
any Pk.

4Namely for
P

n
i¼1 li ¼ d,Z

∂AdS
dQΓðliÞð−2Pi ·QÞ−li ¼ πh

Z
½dγij�ΓðγijÞP−γij

ij : ð2:7Þ
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1 ≤ i; j ≤ n − 1 and i; j ¼ n; nþ 1 (where γ0ij denote the
original Mellin variables in the lower-point amplitudes), we
obtain a recursive formula for Mellin amplitudes (note that
scalar Mellin amplitudes have a similar factorization
structure [5])

MMi
nþ1 ¼ πh

Z
c
M

MnMnþ1M
3 ðΔn;Δnþ1; h − cÞηMN

⊗
↔
MM1M2���Mn−1N

n ðhþ c;Δ1;…;Δn−2Þ; ð2:8Þ

where ⊗
↔

denotes an operator that acts on the Mellin
amplitudes and involves an integration over γ0ij
(1 ≤ i; j ≤ n − 1). Since ΓðγijÞ → Γðγij − γ0ijÞ, there are
poles at γ0ij ¼ γij þ nij with non-negative integers nij.
Integrating around them with the constraints on Mellin
variables, one can get a discrete sum of simple pole terms,
in the form of

⊗
↔ ¼

X∞
m¼0

⊗
↔

m

γnðnþ1Þ −
Δ−

nþΔ−
nþ1

−h−c
2

þm
; ð2:9Þ

with Δ−
i ¼Pj≠i γij which constrains the Mellin varai-

ables.5 More explicitly, the action of ⊗
↔

m is made up of6

M 3⊗⃖m ¼ M 3

Γðγnðnþ1Þ þ cþmÞΓð−c −mÞ
Γðγnðnþ1ÞÞ

; ð2:10Þ

and

⊗⃗mM n ¼
X

P
nij¼m

Yn−1
i<j

ðγijÞnij
nij!

M njγij→γijþnij : ð2:11Þ

The formal expression (2.8) reduces to strikingly simple
expressions for gluon in AdS as we will see in the
subsequent sections.

Algorithm for Yang-Mills theory. Here, we explain the
main technical details. First, it is convenient to write the
Mellin amplitude in terms of a reduced one, namely
πh=2ðQn

i¼1 CiD̂
MiAi
Δi

=ΓðΔiÞÞM̃ n;Ai
.7 We will derive a recur-

sion relation for the reduced Mellin amplitude M̃ in the
context of Yang-Mills theory in AdS,8 starting from (2.8).
Recall that this formula is for a diagram factorized into

a 3-point amplitudeM 3 and an n-point amplitudeM n as in
Fig. 1. Here is the algorithm:
(1) Action of D̂ on 3-point and simplification of the pole:

For the amplitude of the 3 points [see Fig. 2(a)],
calculated in [6],

M̃ a1a2a3
3;Ai

¼ igfa1a2a3Γ
�P

3
i¼1Δi − dþ 1

2

�
I Ai

;

ð3:1Þ

where I Ai
¼ 2ηA2A3

ðP2 − P3ÞA1
þ 2ηA3A1

ðP3 −
P1ÞA2

þ 2ηA1A2
ðP1 − P2ÞA3

. To be consistent with
Fig. 1, we map ðP1; P2; P3Þ to ðPn; Pnþ1; QÞ. We
want to eliminate the Q dependence in order to
use (2.8), which appears in M̃ 3 as well as in D̂MA

h−c.
Hence, we use the generalized momentum conserva-
tion to replace Q by Pn and Pnþ1. As a result, one
arrives at a simple expression with the replacement
D̂MA

h−cI AnAnþ1A → XM
nðnþ1Þðh − c − 1Þ=ðh − cÞ [19],

where we have defined

XM
ij ≡ 2ðηAiAj

PM
i − 2δMAi

Pi;Aj
Þ − ði ↔ jÞ: ð3:2Þ

Importantly, the zero c ¼ h − 1 coincides with one of
the double poles in

R
c when Δ ¼ d − 1. So, the pole

c ¼ h − 1 becomes simple. And the integration
around it can be easily performed.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. (a)–(i) From simple to complex: A compendium of tree-
level higher-point Witten diagrams for gluons.

5More specifically, Δ−
i ¼ Δi − δi with δi the scaling dimen-

sion of Pi in the Mellin amplitude.
6Here we suppress indices for notation simplicity.
7Here we suppress the color factor temporarily, since it is a

spectator of the subsequent procedure. We will retrieve it in the
final result (3.3) of this section.

8For a discussion of CFT dual to Yang-Mills theory in AdS,
see e.g., [2].
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(2) Action of D̂ on n-point: Similarly, for the n-point
amplitude, we will label the internal boundary point
as Q, which we would like to eliminate. We first act
D̂MA

hþc on M̃ n;AiA
Q

ið−2Pi ·QÞ−li . The action of the
first term in the differential operator gives an addi-
tional factor ηMAðhþ c − 1Þ=ðhþ cÞ. For the sec-
ond term in D̂MA, we contract QAM̃AiA, eliminate
the Q dependence again by using the generalized
momentum conservation, and perform the action of
∂QM .9 Finally, the action of the second term in D̂MA

gives an additional factor 2
P

n−1
i¼1 P

M
i =ðhþ cÞ.

(3) Simplification of (nþ 1)-point: Now we glue the
3-point to the n-point, as in Fig. 1. Due to the
antisymmetry of (3.2), we can show that the term
with

P
n−1
i¼1 P

M
i does not contribute to the total

(nþ 1)-point amplitude (2.8). In (2.8),
P

n−1
i¼1 P

M
i

contracts with XM
nðnþ1Þ, (3.2). The contraction leads

to two kinds of terms, with free indices in the metric
or in the boundary point. For the former, we can shift
the Mellin variables and get ηAnAnþ1

ðΔn − Δnþ1Þ,
which vanishes when we take Δi ¼ d − 1. For
the latter, we can use the generalized momen-
tum conservation to replace Pn;Anþ1

P
n−1
i¼1 Pi;An

by
−Pn;Anþ1

Pnþ1;An
, which is also canceled out by the

antisymmetry between the label n and nþ 1.
The above algorithm leads to dramatic simplification

of (2.8). Finally we have the following refined recursion
formula for the reduced Mellin amplitudes10

M̃ ai
nþ1;Ai

¼ igfbananþ1XM
nðnþ1Þ

X∞
m¼0

Vm;0;0
3

γ̃nðnþ1Þ

X
P

n−1
i<j

nij¼m

×m!
Yn−1
i<j

ðγijÞnij
nij!

M̃ aib
n;AiM

���
γij→γijþnij

; ð3:3Þ

where we have defined γ̃ij ≡ 4m!ΓðhþmÞðγij − hþmÞ
and Vm;0;0

3 ≡ ðh −mÞmΓðd − 1Þ which represents the con-
tribution of the three-vertices connecting to one bulk-to-
bulk propagator. Note that with n ¼ 0, Vn;0;0

3 reduces to the
expression Γðd − 1Þ, which is the factor that appears in the
amplitude of the three gluons (3.1) with Δi ¼ d − 1.

Map to flat amplitudes. Now equipped with the necessary
tools, we are poised to calculate the gluon amplitudes
spanning from lower to higher points. We present salient
features for various topologies, as illustrated in Figs. 2(c)–
2(i). As a nontrivial and representative example, we

showcase a result for a higher-point computation in
Fig. 3 that has not been computed before in literature.
We will discuss the detailed computation for this and other
higher-point topologies in the accompanying paper [35].
We will also delineate a simple correspondence between

flat space amplitudes and AdS amplitudes for gluons. After
rigorous computation of the Mellin amplitudes for the
diagrams shown in Fig. 2,11 we identify a direct corre-
spondence between these amplitudes (modulo for differ-
ential operators D̂) and their flat-space analogs. This
correspondence is tabulated in Table I.
As one can see in the dictionary, the kinematic variables,

momenta and boundary points, are mapped to each other. In
the previous sections we have already seen several exam-
ples where these two variables mimic each other. First, they
both satisfy the null condition, P2 ¼ 0 and k2 ¼ 0. Second,
there is generalized momentum conservation for the boun-
dary points, similar to the conservation law

P
i ki ¼ 0, as

discussed in Sec. II. In addition, we can also provide a
quantitative understanding as follows. In scattering ampli-
tudes, kinematic variables with free indices arise from the
derivative term in the action. For flat space, applying the
derivative ∂xA on eikix (where x denotes the interaction
vertex location) results in a factor of ikA. For AdS space,
the action of ∂XA on the boundary-to-bulk propagator
EMiAi
Δi

ðPi; XÞ gives a factor of 2PA
i . This is why ikA and

2PA
i appear on the two sides of the dictionary. However, for

the internal propagator, the inner product of momenta is
mapped to the Mellin variables. More specifically, each
bulk-to-bulk propagator is associated with an integer m to
be summed from 0 to ∞ and we have defined

X̃
i<j

γij ≡ 4m!Γðd=2þmÞ
�X

i<j

γij þ ðd − 1Þ=2

−
X
i

ðd − 1 − δiÞ=2þm

�
: ð4:1Þ

FIG. 3. Decoding the complexity: topology of eight-point
“drone diagrams” as a representative example (4.2).

9For Q appearing in product Pi ·Q, we can simply absorb it
into the basis of Mellin space, ðPi ·QÞ−li , by shifting li.

10Here we stress that our recursion formula is only for Witten
diagrams, although it looks like Britto–Cachazo–Feng–Witten
(BCFW) recursion relation which is for the full amplitude.

11Previous calculations for the 3, 4, and 5-point amplitudes can
be found in [6,19].
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The map between ki · kj and γij is similar to the one
discussed in the scalar case [6]. This at first may look
surprising. However, from the above discussion we can
infer that ki · kj is mapped to Pij. Alternatively, we can shift
Mellin variables γij → γij þ 1. Then, the Mellin basisQ

ΓðγijÞP−γij
ij “swallows” the Pij and returns a γij.

We also observe an interesting coupling map when
studying interaction vertices. This is represented on the
AdS side by an additional factor,Vna;nb;���, which indicates a
vertex connected to propagators indexed by na; nb; � � �
integers. Notably, this includes boundary-to-bulk propa-
gators with n ¼ 0. The definitions of V3 and V4 are
provided in Appendixes A and B.
Utilizing the supplied map, we present an intricate

illustration of the eight-point Mellin amplitude within
the drone channel, as showcased in Fig. 3,

MM1M2���M8
Drone ¼ g6

πh

2

 Y8
i¼1

Ci

ΓðΔiÞ
D̂MiAi

Δi

!

×
X∞
n¼0

Vna;0;0
3

γ̃12ðnaÞ
Vnb;0;0

3

γ̃34ðnbÞ
Vna;nb;nc;nd

4

×
Vnc;0;0

3

γ̃56ðncÞ
Vnd;0;0

3

γ̃78ðndÞ
×
�
XNa
12X

Nb
34X

Nc
56X

Nd
78

�
faa1a2fba3a4fca5a6fda7a8

×
�ðfacb0fbdb0 þ fadb

0
fbcb

0 ÞηNaNb
ηNcNd

þ cyclic perm of ðb; c; dÞ�; ð4:2Þ

where, n ¼ fna; nb; nc; ndg and Xij is defined in (3.2). One
can see how closely it resembles its flat-space counterpart.
We see similar patterns for the other topologies in Fig. 2 by
explicit computation [35]. We are tempted to conjecture,
based on the results of our complicated computation, that it
works for any tree-level gluon amplitude in AdS.
Finally, it is worth mentioning that in the high-energy

limit γij → ∞, the scalar Mellin amplitude reduces to the
flat-space amplitude [4]. This flat-space limit is further
proven in [5]. We now generalize it to spinning cases,

M̃Ai
≈
Z

∞

0

dββ

P
n
i¼1

Δi−d

2
−1e−βA Ai

�
iki → 2

ffiffiffi
β

p
Pi;

× i

�
2
X

ki · kj

�
−1

→

�
4β
X

γij

�
−1
�
: ð4:3Þ

For more details see Ref. [35].

Discussion and future directions. In this work, we have
explored a technique to recursively compute tree-level
gluon amplitudes in AdS in Mellin space. Our analysis
of several higher-point amplitudes reveals a noteworthy
resemblance to flat-space counterparts, paving the way for
us to write a dictionary between tree-level amplitudes in
AdS and amplitudes in flat space for gluons.
This dictionary opens several avenues for future research.

Of particular interest is the application of our techniques to
higher-spin particles, such as gravitons, which show prom-
ise for computation with analogous methods. Further,
extending and using the dictionary to compute loop-level
AdS computations presents a significant opportunity (see
some advances in spinning loop [37–39]). Additionally, the
flexibility of our methods indicates potential for broader
applications, extending to the cosmological bootstrap pro-
gram and computations of de Sitter space correlators; fields
that stand to benefit greatly from the development of
spinning Mellin space technology [40–44].
With the proposed dictionary, we can tackle several

important research problems in this area. It would be
interesting to develop a refined version of the flat-space
BCFW relations to calculate higher-point AdS amplitudes.
The efficacy of these methods in momentum space for
gluons and graviton amplitudes is well-established [45–47];
however, extending this success to calculations beyond four-
point remains a formidable challenge. The succinctness of
the results and a clear map to flat space suggest a possibility
of a generalized BCFW in Mellin space.
Another significant avenue for further research is the

explicit construction of the double copy framework in AdS
spaces. Although our grasp of perturbative gravitational
dynamics in curved spacetime is still rudimentary com-
pared to that in flat space, there have been promising
developments [10,25,48–55]. These methodologies, while
innovative, are limited to lower-point functions. One
exception is the color/kinematics duality construction in
five-point functions for supersymmetric theories within
AdS5 [25]. With the application of our dictionary, we
anticipate that the complexities associated with formulating
double copy can be considerably reduced, aligning AdS
amplitude computations with their flat-space counterparts.
We are actively pursuing this line of research.

Acknowledgments. We want to thank Soner Albayrak and
Xinkang Wang for discussions.

TABLE I. This table provides a dictionary between flat space
and AdS amplitudes.

Description Flat space AdS

Amplitude denotation A n;Ai M̃ n;Ai

Kinematic variable iki 2Pi

Internal propagator ið2P ki · kjÞ−1 ðP̃γijÞ−1
Three-vertex coupling g gVna;nb;nc

3

Four-vertex coupling g2 g2Vna;…;nd
4
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Appendix A: Definition of V3. We start from the
definition of Vm;n;0

3 ,

Vm;n;0
3 ≡ Γðd − 1Þ

�
d
2
−mþ n

�
m

�
d
2
− nþm

�
n
: ðA1Þ

This definition is explicitly symmetric under m ↔ n,
and when m ¼ 0 it is consistent with Vn;0;0

3 defined
before.
Then, we can present the definition of Vm1;m2;m3

3 ,

Vm1;m2;m3

3 ≡ Xminfm3;m2g

n2¼0

Xminfm3−n2;m1g

n1¼0

m3!

n1!n2!

×
ðd
2
−m3 þm1 þm2Þm3−n1−n2

ðm3 − n1 − n2Þ!
Vm1−n1;m2−n2;0

3

×
Y2
i¼1

ðmi − ni þ 1Þni
�
d
2
þmi − ni

�
ni

: ðA2Þ

Presumably this definition is symmetric among mi, for
which we do not have a proof. But we can check from the
definition (A2) that Vm;n;0

3 ¼ Vm;0;n
3 ¼ V0;m;n

3 .

Appendix B: Definition of V4. We start from

Vm;n;0;0
4 ≡ Γ

�
3d − 4

2

�
m!

Xminfm;ng

n1¼0

×
ðd − 1 −mþ nÞm−n1

n1!ðm − n1Þ!
ðn − n1 þ 1Þn1

×

�
d
2
þ n − n1

�
n1

ðd − 1 − nþ n1Þn−n1 : ðB1Þ

Then,

Vm1;m2;m3;0
4 ≡m3!

Xminfm3;m2g

n2¼0

Xminfm3−n2;m1g

n1¼0

×
ðd− 1−m3 þm1 þm2Þm3−n1−n2

n1!n2!ðm3 − n1 − n2Þ!
×Vm1−n1;m2−n2;0;0

4

×
Y2
i¼1

ðmi − ni þ 1Þni
�
d
2
þmi − ni

�
ni

: ðB2Þ

One can check that from this definition, Vm;n;0;0
4 ¼

V0;m;n;0
4 ¼ Vm;0;n;0

4 and reduces to Vm;n;0;0
4 in (B1).

Finally,

Vm1;m2;m3;m4

4 ≡m4!
Xminfm4;m2g

n2¼0

Xminfm4−n2;m1g

n1¼0

×
Xminfm4−n1−n2;m3g

n3¼0

Vm0−n34;n−n12;n0−n56;0
4

×
ðd− 1−m4þm1þm2þm3Þm4−n1−n2−n3

n1!n2!n3!ðm4 −n1−n2−n3Þ!

×
Y3
i¼1

ðmi−niþ 1Þni
�
d
2
þmi−ni

�
ni

: ðB3Þ

One can check that from this definition Vm1;m2;m3;0
4 ¼

Vm1;m2;0;m3

4 ¼ Vm1;0;m2;m3

4 ¼ V0;m1;m2;m3

4 and reduces to (B2).
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