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The general form of a 2D conformal field theory (CFT) correlator on a Euclidean Riemann surface,
Lorentzian plane or Lorentzian cylinder is well known. This paper describes the general form of 2- and
3-point CFT correlators on the Lorentzian torus LT 2 which arises as the conformal boundary of the group
manifold SLð2;RÞ ≃ AdS3=Z. We consider only generic points, thereby omitting an analysis of contact
terms, which already exhibits a surprisingly rich structure. The results are relevant to celestial holography,
for which the LT 2 at the boundary of Klein space is the home of the putative celestial CFT.
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Introduction. Conformal field theory (CFT) on Minkowski
space R1;d−1 can typically be uplifted to the Einstein
cylinder. The latter is the universal cover of compactified
Minkowski space ðS1 × Sd−1Þ=Z2. CFT correlators on the
cylinder display a very rich analytic structure. The Einstein
cylinder arises as a boundary of the domain of analyticity of
Euclidean CFT correlators when they are analytically
continued to complexified spacetime [1], as well as at
the conformal boundary of anti–de Sitter space ðAdSÞdþ1.
Recent applications of these relations include the study of
light ray operators in Lorentzian CFT [2].
An intermediate geometry between compactified

Minkowski space and the Einstein cylinder is the torus
S1 × Sd−1, a double cover of the former. Here time becomes
periodic and runs along the S1 factor, so it has remained
unconventional to study CFT on such geometries. An
important special case is d ¼ 2, which we shall refer to
as the Lorentzian torus LT 2. In this paper we analyze CFT
correlators on LT 2 and find a surprisingly rich structure.
The conformal geometry LT 2 arises in a number of

related contexts. It appears as the conformal boundary of
the group manifold of SLð2;RÞ, which in turn is the
quotient AdS3=Z of AdS3 by a unit

1 global time shift. Split
signature Klein space can be expressed as a foliation by
AdS3=Z hypersurfaces, whose LT 2 boundaries are the
Kleinian analogs of the Minkowski celestial sphere [3].
Hence LT 2 plays a central role in celestial holography,
where it is known as the celestial torus. Kleinian scattering

amplitudes in a basis of conformal primary states are CFT
correlators on LT 2 [4–6].
For LT 2, it is important to tackle the global geometry of

the torus when constructing even the simplest conformal
correlators like at two or three points. Even thoughLT 2 is a
double cover of R1;1, many allowed conformally covariant
structures for correlators on a single Lorentzian diamond do
not uplift trivially to LT 2. They need to be regulated by
careful iϵ prescriptions while preserving single valuedness
on LT 2. Motivated by this, in this work we perform a
classification of various single-valued conformal correla-
tors at two and three points that can appear in a CFT on
LT 2. We find two generic allowed forms for 2-point
correlators and 16 for the 3-point correlators. This rich
structure contrasts with the Euclidean plane for which the
2- and 3-point correlators are uniquely determined (up to a
scale) by the conformal weights.
We focus on correlators that are single valued for generic

weights h; h̄∈C. At integer weights, new representations
of the conformal group appear. These are of great interest
[3,7,8] but not analyzed here. We also restrict ourselves to
generic points on the torus, avoiding contact terms. By
“contact term” in this paper we mean generically any type
of singularity (often distributional) supported only when
two or more points are coincident or separated by a null
geodesic. When two or more points lie on a common light
cone, distributional contact terms are allowed by conformal
invariance and in general arise. Although not pursued here,
a study of these terms is desirable for the application of
our analysis to celestial holography, as low-multiplicity
celestial amplitudes are often distributional in nature [6].
On the other hand there is much study [9–29] of smooth
celestial correlators arising from shadows or translation-
breaking backgrounds which may, in some suitable sense,
be a more direct characterization of the underlying celestial
CFT. To these correlators our results apply directly.
Moreover, as speculated in the concluding discussion,
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1I.e. double the AdS3 light-crossing time.
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the distributional expressions may arise as differences of
analytic ones.2

We begin by reviewing the geometry of LT 2 from its
origin as the celestial torus in R2;2. Conventions are
established for various local and global coordinate systems
on the torus. Following this, we illustrate at two points the
general class of arguments that constrain correlators on the
torus. The most important constraint comes from demand-
ing single valuedness as one goes around various cycles of
the torus. Each 2-point conformally covariant structure is
defined with a choice of branch—entering in the form of iϵ
prescriptions—and different choices pick up different
monodromies as one circles the torus cycles. We assemble
all the independent linear combinations of these “building
blocks” that remain single valued. In the sections that
follow, this argument is generalized to three points and
higher points. We end with a discussion of possible
applications and future directions pertaining to celestial
holography.

The Lorentzian torus. This section collects our conven-
tions. Let us start by reviewing the appearance of LT 2 as
the celestial torus at the boundary of Klein space.
Klein space and its conformal compactification have

been studied in [3,31]. The term Klein space refers to flat
space R2;2 with a metric of split, i.e., (2, 2) signature

ds2 ¼ −ðdX0Þ2 − ðdX1Þ2 þ ðdX2Þ2 þ ðdX3Þ2: ð2:1Þ

In Cartesian coordinates Xμ, the light cone of the origin of
R2;2 is given by

ðX0Þ2 þ ðX1Þ2 ¼ ðX2Þ2 þ ðX3Þ2: ð2:2Þ

Removing the origin and quotienting this by positive
rescalings Xμ ∼ αXμ, α > 0, we can impose

ðX0Þ2 þ ðX1Þ2 ¼ ðX2Þ2 þ ðX3Þ2 ¼ 1: ð2:3Þ

This yields a celestial torus LT 2 ¼ S1 × S1 as the geom-
etry of the light cone cuts. It replaces the celestial sphere
when going from Lorentzian to split signature.
We can globally parametrize LT 2 by solving (2.3) in

terms of angles ðτ;φÞ∈ S1 × S1:

X0 þ iX1 ¼ eiτ; X2 þ iX3 ¼ eiφ: ð2:4Þ

These angles have independent periodicities τ ∼ τ þ 2π and
φ ∼ φþ 2π. But the action of the Kleinian isometry group
SOð2; 2Þ ∼ SLð2;RÞ × SLð2;RÞ can be realized more nat-
urally if we work with the “light cone coordinates”

σ ¼ τ þ φ

2
; σ̄ ¼ τ − φ

2
: ð2:5Þ

In terms of these, the split signature metric (2.1) induces a
Lorentzian conformal structure on LT 2 represented by

ds2LT 2 ¼ −dτ2 þ dφ2 ¼ −4dσdσ̄: ð2:6Þ

In this conformal structure, null rays on the celestial torus
are given by cycles of fixed σ or σ̄.
The periodicities of σ and σ̄ are tied together:

ðσ; σ̄Þ∼ðσþðmþnÞπ; σ̄þðm−nÞπÞ; m;n∈Z: ð2:7Þ

A convenient fundamental domain for these coordinates
can be taken to be

0 ≤ σ < 2π; 0 ≤ σ̄ < π ð2:8Þ

as depicted in Fig. 1. The equivalence ðσ; σ̄Þ ∼ ðσ þ π; σ̄ þ
πÞ can be used to ensure σ̄ ∈ ½0; πÞ. Then the equivalence
σ ∼ σ þ 2π for fixed σ̄ can be used to bring σ within ½0; 2πÞ.
The open set LT 2 − fσσ̄ ¼ 0g is a union of two

antipodally placed Lorentzian diamonds R1;1. On each
diamond, one can introduce a pair of real and independent
local coordinates,

z ¼ tan σ; z̄ ¼ tan σ̄; ð2:9Þ

that are invariant under the periodicities of σ, σ̄. Up to Weyl
rescalings, the corresponding 2D metric is −dzdz̄. The 4D
Klein group ∼2D conformal group SLð2;RÞ × SLð2;RÞ
acts by real and independent Möbius transformations on z
and z̄. Under these transformations

z ↦
azþ b
czþ d

; σ ↦ arctan

�
a tan σ þ b
c tan σ þ d

�
; ð2:10Þ

FIG. 1. A convenient fundamental domain for the celestial
torus.

2In another work [30], we will explicitly show how distribu-
tional 3-point amplitudes can be written as sums of these
nondistributional terms.
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where ad − bc ¼ 1 [3]. This makes z, z̄ ideal for studying
2D CFT on a single Lorentzian diamond.
When studying CFT on a Lorentzian torus (or the

Einstein cylinder), one can again try to work with such
a local description diamond by diamond. But in this
description, the global structure of the torus remains
obscure. For example, in celestial CFT the global structure
only emerges through various indicator functions that
multiply celestial amplitudes and describe the allowed
scattering channels [6]. One way to make it partially
manifest is to work with boost eigenstates that diagonalize
the Z2 action Xμ ↦ −Xμ [17,18]. In contrast, in this work
we will make it completely manifest by directly studying
CFT correlators on LT 2 in global coordinates σ, σ̄.

Two-point correlators. In this section we work out the
classification of conformally covariant structures for
generic weight operators at two generic points in a
Lorentzian CFT on the celestial torus. This is more con-
strained than the analogous exercise on an Einstein cylinder
because our time coordinate τ ¼ σ þ σ̄ is periodic.
Let us start by analyzing 2D translation symmetry on

LT 2. Translations σ ↦ σ þ θ act as Möbius transforma-
tions z ↦ ðz cos θ þ sin θÞ=ðcos θ − z sin θÞ, so we need
them to be a symmetry. Let Oh;h̄ðz; z̄Þ be a conformal
primary operator of weights ðh; h̄Þ in a Lorentzian CFT on
R1;1. In global ðσ; σ̄Þ coordinates Oh;h̄ uplifts to

Oh;h̄ðσ; σ̄Þ ≔ jcos σj−2hjcos σ̄j−2h̄Oh;h̄ðz; z̄Þ: ð3:1Þ

Translation invariance on R1;1 requires that correlators of
Ohi;h̄iðzi; z̄iÞ only depend on zij ≡ zi − zj and z̄ij ≡ z̄i − z̄j.
A short calculation shows that

zij ¼
sin σij

cos σi cos σj
; z̄ij ¼

sin σ̄ij
cos σ̄i cos σ̄j

: ð3:2Þ

By conformal covariance, one finds that any correlator of
the uplifted operators Ohi;h̄iðσi; σ̄iÞ will only be a function
of sin σij, sin σ̄ij. These are manifestly invariant under
2D translations in σi, σ̄i. The translation-breaking factors
of cos σi and cos σ̄i cancel against the Jacobians
jcos σij−2hi jcos σ̄ij−2h̄i coming from the uplift (3.1).
So our task reduces to classifying conformally covariant

functions of sin σij, sin σ̄ij on the torus. We begin our
analysis with 2-point functions. To be precise, we construct
all the independent conformally covariant 2-point correla-
tors on LT 2 at generic (not null separated) points with
generic (nonintegral) weights.
Our main technique is to start with conformal correlators

on R1;1 and find combinations of them that uplift to
single-valued functions on LT 2. Consider a general
2-point correlator (for noncontact points scale invariance
requires equal weights) of an operatorOh;h̄ðz; z̄Þ with itself,

with both insertions placed in a common diamond of LT 2.
In the region z12 > 0, z̄12 > 0, conformal covariance
dictates that it take the form

hOh;h̄ðz1; z̄1ÞOh;h̄ðz2; z̄2Þi¼
1

z2h12 z̄
2h̄
12

; z12>0; z̄12>0

ð3:3Þ

up to normalization. Changing to σ, σ̄ coordinates, this can
be written as

hOh;h̄ðσ1; σ̄1ÞOh;h̄ðσ2; σ̄2Þi¼
1

ðsinσ12Þ2hðsin σ̄12Þ2h̄
;

sinσ12>0; sin σ̄12>0:

ð3:4Þ

This expression has branch cuts where sin σ12 or sin σ̄12
vanish. We need to provide an iϵ prescription if we wish to
extend this 2-point function to the entire torus. Let ϵ > 0 be
a small regulator. The independent choices of iϵ prescrip-
tions for ðsin σ12Þ−2h and ðsin σ̄12Þ−2h̄ are3

1

ðsin σ12 � iϵÞ2h ;
1

ðsin σ̄12 � iϵÞ2h̄ : ð3:5Þ

In each of these, the iϵ prescription picks a branch. Note
however that for any of the above choice of signs, the
correlator is single valued under 2π shifts of σk or σ̄k, as two
branch cuts with canceling phases are crossed.4

Here, we are following the convention that expressions
like ðxþ iϵÞa have a branch cut along the negative
imaginary axis starting at x ¼ −iϵ, whereas ðx − iϵÞa is
given a branch cut along the positive imaginary axis
starting at x ¼ þiϵ. In particular, for x∈R − 0 and
a∈C, on the principal branches we obtain

lim
ϵ→0

ðx� iϵÞa ¼
�
xa x > 0

e�iπað−xÞa x < 0
ð3:6Þ

away from the branch point of xa at x ¼ 0 that shows up
when a is not an integer. A pair of useful identities for what
follows are

ð−xþ iϵÞa ¼ eiπaðx − iϵÞa
ð−x − iϵÞa ¼ e−iπaðxþ iϵÞa ð3:7Þ

again understood in the limit of small, positive ϵ.

3To be completely clear about notation, the iϵ is outside the
sine functions.

4In contrast e.g. ðsinðσ12 � iϵÞÞ2h is not single valued for
generic h.
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Depending on the choice of the iϵ prescription used to
regulate (3.4), the resulting correlator may be single valued
on the celestial torus for a restricted set of weights or spins.
We focus on linear combinations of terms with varying iϵ
prescriptions that are single valued for generic complex
weights and spins.5 For each iϵ prescription, the 2-point
function is proportional to jsin σ12j−2hjsin σ̄12j−2h̄ with a
phase depending on the signs of sin σ12, sin σ̄12.
We present the single-valued answer in terms of the

conformally covariant building blocks

Gηη̄ðσ1; σ̄1; σ2; σ̄2Þ ¼
1

ðsin σ12 þ iηϵÞ2hðsin σ̄12 þ iη̄ϵÞ2h̄ ;

η; η̄ ¼ �: ð3:8Þ

For each i∈ f1; 2g, denote the combined shift by π by the
map

πi∶ ðσi; σ̄iÞ ↦ ðσi þ π; σ̄i þ πÞ: ð3:9Þ

Our building blocks (3.8) are single valued under 2π shifts
of σi and σ̄i, but transform nontrivially under π1, π2.
Applying the identities (3.7), one finds

πiGηη̄ ¼ e−2πiðηhþη̄ h̄ÞG−η;−η̄; i ¼ 1; 2 ð3:10Þ

which satisfies π2i Gηη̄ ¼ Gηη̄ as expected.
We can make linear combinations of the four building

blocks Gþþ; Gþ−; G−þ; G−− and impose the constraints
coming from demanding invariance under π1, π2. Note that
π1 and π2 generate the same constraints because the
expression (3.8) depends only on the difference σ12.
Also, invariance under π1 only generates two instead of
four constraints because π21 ¼ 1. Using (3.10), it follows
that there are two independent combinations that remain
single valued for arbitrary h; h̄∈C,

Hþþ ≡ eiπΔGþþ þ e−iπΔG−− ð3:11Þ

Hþ− ≡ eiπJGþ− þ e−iπJG−þ; ð3:12Þ

whereΔ ¼ hþ h̄ and J ¼ h − h̄. These span a vector space
of 2-point conformal correlators on LT 2.
The branch cuts divide the domain of the correlator into

two regions distinguished by the sign of the product
sin σ12 sin σ̄12. (The individual signs are not invariant under
πi.) An alternate basis of two-point functions can be
constructed from linear combinations of (3.11) and
(3.12) which vanish in one of the two regions.
We note that there are other single-valued forms of the

2-point function that differ only by contact terms. A
representative simple example for h ¼ h̄ is

ðsin σ12 sin σ̄12 þ iϵÞ−2h: ð3:13Þ

This can also be generalized to incorporate spin.
The building blocks (3.8) have a useful geometric

interpretation. Let T 2 ¼ S1 × S1 be a torus with coordi-
nates σ, σ̄ running along the two S1 factors, so that we
impose σ ∼ σ þ 2π and σ̄ ∼ σ̄ þ 2π. LT 2 is then a quotient
LT 2 ¼ T 2=Z2 where the Z2 is generated by
ðσ; σ̄Þ ∼ ðσ þ π; σ̄ þ πÞ. So T 2 is a double cover of
LT 2. To construct single-valued objects on LT 2, one
can start with single-valued objects on T 2. The four
building blocks Gηη̄ are precisely the single-valued pos-
sibilities for 2-point conformal correlators on T 2, as they
are invariant under 2π shifts of σi or σ̄i.

6 To construct
single-valued correlators on LT 2, one simply computes the
Z2 invariant linear combinations. This argument general-
izes cleanly to higher points, as we now see for three points.

Three-point correlators. The construction of single-valued
correlators on LT 2 proceeds similarly at three points.
Naively uplifting the standard conformally covariant
3-point function to LT 2 gives

hOh1;h̄1ðσ1; σ̄1ÞOh2;h̄2ðσ2; σ̄2ÞOh3;h̄3ðσ3; σ̄3Þi ¼
1

ðsin σ12Þh1þh2−h3ðsin σ23Þh2þh3−h1ðsin σ31Þh3þh1−h2

×
1

ðsin σ̄12Þh̄1þh̄2−h̄3ðsin σ̄23Þh̄2þh̄3−h̄1ðsin σ̄31Þh̄3þh̄1−h̄2
: ð4:1Þ

As with the 2-point functions, these need to be regulated via iϵ prescriptions. The most general 3-point building blocks
regulated with iϵ prescriptions are of the form

5Nonintegral spins find applications in the study of light transforms [2,11].
6The noninvariant correlators may have an interpretation—not explored here—as twist fields which acquire phases around nontrivial

cycles.
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Gηij;η̄ij ¼
1

ðsin σ12 þ iη12ϵÞh1þh2−h3ðsin σ23 þ iη23ϵÞh2þh3−h1ðsin σ31 þ iη31ϵÞh1þh3−h2

×
1

ðsin σ̄12 þ iη̄12ϵÞh̄1þh̄2−h̄3ðsin σ̄23 þ iη̄23ϵÞh̄2þh̄3−h̄1ðsin σ̄31 þ iη̄31ϵÞh̄1þh̄3−h̄2
; ð4:2Þ

where ηij; η̄ij ¼ �. These are invariant under the shifts
ðσi; σ̄iÞ ↦ ðσi þ 2πm; σ̄i þ 2πnÞ for integral m, n, so are
single-valued functions on the double cover T 2 of LT 2.
There is an algorithmic way to generate all possible

combinations of these building blocks that descend to LT 2.
Start with any block Gηij;η̄ij . By summing the images of
Gηij;η̄ij under each of the linked periodicities (3.9), one can
construct the combination

Hηij;η̄ij ¼ Gηij;η̄ij þ π1Gηij;η̄ij þ π2Gηij;η̄ij þ π3Gηij;η̄ij : ð4:3Þ

This is single valued on the celestial torus because π2i ¼ 1
and the triple shift π1π2π3 acts trivially on Gηij;η̄ij due to
overall translation invariance on the torus. Since (4.3)
constructs a single-valued function out of every Gηij;η̄ij, it
certainly provides a basis for single-valued 3-point func-
tions on LT 2, if only an overcomplete one.
Each combination of the form (4.3) involves four distinct

G’s. So the space of independent combinations is 26=4 ¼
24 dimensional. A minimal basis is provided by the 16
functions

Hηij;þþþ; Hηij;−−−; ð4:4Þ

which define independent 3-point functions on LT 2. Any
3-point function on LT 2 can be written as a sum of these
3-point functions up to possible contact terms. Other
choices of bases could of course be relevant for specific
applications.
The domain of the 3-point function is divided by branch

cuts into 16 regions characterized by the four signs of the
invariant products

sin σ12 sin σ̄12; sin σ23 sin σ̄23; sin σ31 sin σ̄31;

sin σ12 sin σ23 sin σ31: ð4:5Þ

Sixteen linear combinations of the 16 basis elements (4.4)
can be found which are nonvanishing only in any one of the
16 regions. These linear combinations provide an alternate
basis for 3-point functions on LT 2.

Higher-point correlators. In this section, we count the
number of independent choices of iϵ prescriptions for an
n-point function. Noting that the conformal cross ratios

sin σij sin σkl
sin σik sin σjl

;
sin σ̄ij sin σ̄kl
sin σ̄ik sin σ̄jl

ð5:1Þ

are themselves single valued on the celestial torus, we need
to specify a choice of iϵ prescription for the conformally
covariant prefactor of the n-point function.
Deforming

sin σij ↦ sin σij þ iηijϵ

sin σ̄ij ↦ sin σ̄ij þ iη̄ijϵ ð5:2Þ

gives a total of 22ðn2Þ choices of iϵ prescriptions leading to a
single-valued function on the double cover of the torus. To
assemble these into single-valued functions on the celestial
torus, we can sum over the independent π shifts. Because
the overall function is invariant under global translations,
the shift πi is equal to the shift

Q
j≠i πj, so that we need to

sum 2n−1 terms to construct a single-valued function.
Therefore, for an n-point function, there are

Nn ¼ 22ð
n
2
Þ−nþ1 ð5:3Þ

independent choices of iϵ assignments that generate a
single-valued function of LT 2. That is, we find Nn distinct
types of noncontact single-valued n-point conformal cor-
relators on the celestial torus.

Discussion. This note is largely concerned with the
problem of building single-valued conformal correlators
on LT 2. We classified, for generic weights up to contact
terms, correlators that obey the standard constraints of
conformal symmetry on each Lorentzian diamond and
uplift to single-valued functions on LT 2. Generic corre-
lators at separated σi, σ̄i can be written as linear combi-
nations of these correlators. We conclude with speculations
on the smooth 3-point correlators (4.4) as the fundamental
building blocks for celestial CFT, and their relation to
distributional 3-point correlators [6]—not falling under this
classification—arising from direct Mellin transforms.
The distributional singularities encountered in [6] are

relics of momentum-conserving delta functions. They
are consistent with conformal invariance and implied by
translation invariance [32]. In recent literature, various
approaches have been employed for avoiding distributional
celestial amplitudes, either using integral transforms like
shadow and light transforms or expanding around a trans-
lation noninvariant background [9–29]. The idea is that the
underlying celestial CFT may be more easily understood in
these smooth contexts.
While we studied smooth correlators at generic points in

this paper, we nevertheless envisage that our results may be
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useful for the study of contact terms. The basic idea comes
from the observation that

−2πiδðxÞ ¼ 1

xþ iϵ
−

1

x − iϵ
: ð6:1Þ

This identity and generalizations thereof suggest that the
contact form of the amplitudes may arise from taking the
difference of the more familiar looking, everywhere non-
vanishing, amplitudes such as the individual basis elements
in (4.4). Indeed any translation invariant combination of
3-point amplitudes must be a contact term [32].7

How would such differences between amplitudes natu-
rally arise? One way is via the construction of celestial
amplitudes as AdS-Witten diagrams [19,33] associated to

the distinct hyberbolic foliation regions spacelike and
timelike separated from the origin. Each such region gives
a smooth conformally, but nontranslationally, invariant
“semiamplitude”which must be of the form (4.4) at generic
points. On the other hand (for three points) the translation
invariant sum of semiamplitudes must be a contact term.
Related work appears in [34] which constructs Lorentz but
not translation invariant Rindler-like “hyperbolic vacua.”
Celestial amplitudes in some of these vacua are expected to
be smooth. On the other hand amplitudes in the Poincaré
vacuum can be reexpressed as sums of these. Compatibility
of both these observations may be possible through higher-
point generalizations of the identity (6.1). We hope to
pursue this in the future.
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